1
|
Mora J, Modak S, Kinsey J, Ragsdale CE, Lazarus HM. GM-CSF, G-CSF or no cytokine therapy with anti-GD2 immunotherapy for high-risk neuroblastoma. Int J Cancer 2024; 154:1340-1364. [PMID: 38108214 DOI: 10.1002/ijc.34815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Colony-stimulating factors have been shown to improve anti-disialoganglioside 2 (anti-GD2) monoclonal antibody response in high-risk neuroblastoma by enhancing antibody-dependent cell-mediated cytotoxicity (ADCC). A substantial amount of research has focused on recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant to anti-GD2 monoclonal antibodies. There may be a disparity in care among patients as access to GM-CSF therapy and anti-GD2 monoclonal antibodies is not uniform. Only select countries have approved these agents for use, and even with regulatory approvals, access to these agents can be complex and cost prohibitive. This comprehensive review summarizes clinical data regarding efficacy and safety of GM-CSF, recombinant human granulocyte colony-stimulating factor (G-CSF) or no cytokine in combination with anti-GD2 monoclonal antibodies (ie, dinutuximab, dinutuximab beta or naxitamab) for immunotherapy of patients with high-risk neuroblastoma. A substantial body of clinical data support the immunotherapy combination of anti-GD2 monoclonal antibodies and GM-CSF. In contrast, clinical data supporting the use of G-CSF are limited. No formal comparison between GM-CSF, G-CSF and no cytokine has been identified. The treatment of high-risk neuroblastoma with anti-GD2 therapy plus GM-CSF is well established. Suboptimal efficacy outcomes with G-CSF raise concerns about its suitability as an alternative to GM-CSF as an adjuvant in immunotherapy for patients with high-risk neuroblastoma. While programs exist to facilitate obtaining GM-CSF and anti-GD2 monoclonal antibodies in regions where they are not commercially available, continued work is needed to ensure equitable therapeutic options are available globally.
Collapse
Affiliation(s)
- Jaume Mora
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Shakeel Modak
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joyce Kinsey
- Partner Therapeutics, Inc, Lexington, Massachusetts, USA
| | | | | |
Collapse
|
2
|
Suprien C, Guimarães LH, de Carvalho LP, Machado PRL. Pentavalent Antimony Associated with G-CSF in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania (Viannia) braziliensis. Pathogens 2024; 13:301. [PMID: 38668256 PMCID: PMC11054058 DOI: 10.3390/pathogens13040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Cutaneous leishmaniasis (CL), caused by Leishmania braziliensis, in recent decades has shown decreasing cure rates after treatment with meglumine antimoniate (MA). Granulocyte colony-stimulating factor (G-CSF) is a cytokine associated with epithelialization and healing processes. METHODS This study compares the effectiveness of G-CSF associated with MA in the treatment of CL. A total of 32 patients aged between 18 and 50 years with CL confirmed for L. braziliensis were included in this study. G-CSF or placebo (0.9% saline) was applied by intralesional infiltration at four equidistant points on the edges of the largest ulcer on days 0 and 15 of treatment associated with intravenous MA. RESULTS Males predominated in the G-CSF group (59%), while females predominated in the control group (53%). Injuries to the lower limbs predominated in both study groups. The cure rate in the G-CSF group was 65% and in the control group it was 47%, 90 days after initiation of therapy. CONCLUSIONS Our data indicate that the association of G-CSF with MA is not superior to MA monotherapy. Although not significant, the potential benefit of this combination deserves further investigation. The use of higher doses or other routes of application of G-CSF in a greater number of patients should contribute to a definitive response.
Collapse
Affiliation(s)
- Carvel Suprien
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Bahia, Salvador 40026-010, Bahia, Brazil; (C.S.); (L.P.d.C.)
| | - Luiz H. Guimarães
- National Institutes of Science and Technology in Tropical Diseases, Ministry of Science and Technology, Salvador, Bahia, Brazil;
- Medicine School, Federal University of Recôncavo Bahia, Santo Antônio de Jesus 44380-000, Bahia, Brazil
| | - Lucas P. de Carvalho
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Bahia, Salvador 40026-010, Bahia, Brazil; (C.S.); (L.P.d.C.)
- National Institutes of Science and Technology in Tropical Diseases, Ministry of Science and Technology, Salvador, Bahia, Brazil;
- Immunology Service of the Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador 40110-060, Bahia, Brazil
- Gonçalo Moniz Institute, Fiocruz, Salvador 40296-710, Bahia, Brazil
| | - Paulo R. L. Machado
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Bahia, Salvador 40026-010, Bahia, Brazil; (C.S.); (L.P.d.C.)
- National Institutes of Science and Technology in Tropical Diseases, Ministry of Science and Technology, Salvador, Bahia, Brazil;
- Immunology Service of the Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador 40110-060, Bahia, Brazil
| |
Collapse
|
3
|
Vieira GDS, Kimura TDC, Scarini JF, de Lima-Souza RA, Lavareze L, Emerick C, Gonçalves MT, Damas II, Figueiredo-Maciel T, Sales de Sá R, Aquino IG, Gonçalves de Paiva JP, Fernandes PM, Gonçalves MWA, Kowalski LP, Altemani A, Fillmore GC, Mariano FV, Egal ESA. Hematopoietic colony-stimulating factors in head and neck cancers: Recent advances and therapeutic challenges. Cytokine 2024; 173:156417. [PMID: 37944421 DOI: 10.1016/j.cyto.2023.156417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Colony-stimulating factors (CSFs) are key cytokines responsible for the production, maturation, and mobilization of the granulocytic and macrophage lineages from the bone marrow, which have been gaining attention for playing pro- and/or anti-tumorigenic roles in cancer. Head and neck cancers (HNCs) represent a group of heterogeneous neoplasms with high morbidity and mortality worldwide. Treatment for HNCs is still limited even with the advancements in cancer immunotherapy. Novel treatments for patients with recurrent and metastatic HNCs are urgently needed. This article provides an in-depth review of the role of hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and interleukin-3 (IL-3; also known as multi-CSF) in the HNCs tumor microenvironment. We have reviewed current results from clinical trials using CSFs as adjuvant therapy to treat HNCs patients, and also clinical findings reported to date on the therapeutic application of CSFs toxicities arising from chemoradiotherapy.
Collapse
Affiliation(s)
- Gustavo de Souza Vieira
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolina Emerick
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mayara Trevizol Gonçalves
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ingrid Iara Damas
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tayná Figueiredo-Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raisa Sales de Sá
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Iara Gonçalves Aquino
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - João Paulo Gonçalves de Paiva
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Patrícia Maria Fernandes
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery, School of Medicine, University of São Paulo (USP), São Paulo, Brazil; Department of Head and Neck Surgery and Otolaryngology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States.
| |
Collapse
|
4
|
Ray AL, Saunders AS, Nofchissey RA, Reidy MA, Kamal M, Lerner MR, Fung KM, Lang ML, Hanson JA, Guo S, Urdaneta-Perez MG, Lewis SE, Cloyde M, Morris KT. G-CSF Is a Novel Mediator of T-Cell Suppression and an Immunotherapeutic Target for Women with Colon Cancer. Clin Cancer Res 2023; 29:2158-2169. [PMID: 36951682 PMCID: PMC10239359 DOI: 10.1158/1078-0432.ccr-22-3918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE G-CSF enhances colon cancer development. This study defines the prevalence and effects of increased G-CSF signaling in human colon cancers and investigates G-CSF inhibition as an immunotherapeutic strategy against metastatic colon cancer. EXPERIMENTAL DESIGN Patient samples were used to evaluate G-CSF and G-CSF receptor (G-CSFR) levels by IHC with sera used to measure G-CSF levels. Peripheral blood mononuclear cells were used to assess the rate of G-CSFR+ T cells and IFNγ responses to chronic ex vivo G-CSF. An immunocompetent mouse model of peritoneal metastasis (MC38 cells in C57Bl/6J) was used to determine the effects of G-CSF inhibition (αG-CSF) on survival and the tumor microenvironment (TME) with flow and mass cytometry. RESULTS In human colon cancer samples, the levels of G-CSF and G-CSFR are higher compared to normal colon tissues from the same patient. High patient serum G-CSF is associated with increases in markers of poor prognosis, (e.g., VEGF, IL6). Circulating T cells from patients express G-CSFR at double the rate of T cells from controls. Prolonged G-CSF exposure decreases T cell IFNγ production. Treatment with αG-CSF shifts both the adaptive and innate compartments of the TME and increases survival (HR, 0.46; P = 0.0237) and tumor T-cell infiltration, activity, and IFNγ response with greater effects in female mice. There is a negative correlation between serum G-CSF levels and tumor-infiltrating T cells in patient samples from women. CONCLUSIONS These findings support G-CSF as an immunotherapeutic target against colon cancer with greater potential benefit in women.
Collapse
Affiliation(s)
- Anita L Ray
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Apryl S Saunders
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Robert A Nofchissey
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Megan A Reidy
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Megan R Lerner
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Joshua A Hanson
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Shaoxuan Guo
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Maria G Urdaneta-Perez
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Samara E Lewis
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael Cloyde
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Katherine T Morris
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
5
|
Royba E, Repin M, Balajee AS, Shuryak I, Pampou S, Karan C, Wang YF, Lemus OD, Obaid R, Deoli N, Wuu CS, Brenner DJ, Garty G. Validation of a High-Throughput Dicentric Chromosome Assay Using Complex Radiation Exposures. Radiat Res 2023; 199:1-16. [PMID: 35994701 PMCID: PMC9947868 DOI: 10.1667/rade-22-00007.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Validation of biodosimetry assays is routinely performed using primarily orthovoltage irradiators at a conventional dose rate of approximately 1 Gy/min. However, incidental/ accidental exposures caused by nuclear weapons can be more complex. The aim of this work was to simulate the DNA damage effects mimicking those caused by the detonation of a several kilotons improvised nuclear device (IND). For this, we modeled complex exposures to: 1. a mixed (photons + IND-neutrons) field and 2. different dose rates that may come from the blast, nuclear fallout, or ground deposition of radionuclides (ground shine). Additionally, we assessed whether myeloid cytokines affect the precision of radiation dose estimation by modulating the frequency of dicentric chromosomes. To mimic different exposure scenarios, several irradiation systems were used. In a mixed field study, human blood samples were exposed to a photon field enriched with neutrons (ranging from 10% to 37%) from a source that mimics Hiroshima's A-bomb's energy spectrum (0.2-9 MeV). Using statistical analysis, we assessed whether photons and neutrons act in an additive or synergistic way to form dicentrics. For the dose rates study, human blood was exposed to photons or electrons at dose rates ranging from low (where the dose was spread over 32 h) to extremely high (where the dose was delivered in a fraction of a microsecond). Potential effects of cytokine treatment on biodosimetry dose predictions were analyzed in irradiated blood subjected to Neupogen or Neulasta for 24 or 48 h at the concentration recommended to forestall manifestation of an acute radiation syndrome in bomb survivors. All measurements were performed using a robotic station, the Rapid Automated Biodosimetry Tool II, programmed to culture lymphocytes and score dicentrics in multiwell plates (the RABiT-II DCA). In agreement with classical concepts of radiation biology, the RABiT-II DCA calibration curves suggested that the frequency of dicentrics depends on the type of radiation and is modulated by changes in the dose rate. The resulting dose-response curves suggested an intermediate dicentric yields and additive effects of photons and IND-neutrons in the mixed field. At ultra-high dose rate (600 Gy/s), affected lymphocytes exhibited significantly fewer dicentrics (P < 0.004, t test). In contrast, we did not find the dose-response modification effects of radiomitigators on the yields of dicentrics (Bonferroni corrected P > 0.006, ANOVA test). This result suggests no bias in the dose predictions should be expected after emergency cytokine treatment initiated up to 48 h prior to blood collection for dicentric analysis.
Collapse
Affiliation(s)
- Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Adayabalam S. Balajee
- Radiation Emergency Assistance Center/Training Site (REAC/TS), Cytogenetic Biodosimetry Laboratory (CBL), Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Sergey Pampou
- Columbia Genome Center High-Throughput Screening facility, Columbia University Irving Medical Center, New York, New York
| | - Charles Karan
- Columbia Genome Center High-Throughput Screening facility, Columbia University Irving Medical Center, New York, New York
| | - Yi-Fang Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Olga Dona Lemus
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Razib Obaid
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
- Currently at Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, California
| | - Naresh Deoli
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
| |
Collapse
|
6
|
Battram AM, Oliver-Caldés A, Suárez-Lledó M, Lozano M, Bosch I Crespo M, Martínez-Cibrián N, Cid J, Moreno DF, Rodríguez-Lobato LG, Urbano-Ispizua A, Fernández de Larrea C. T cells isolated from G-CSF-treated multiple myeloma patients are suitable for the generation of BCMA-directed CAR-T cells. Mol Ther Methods Clin Dev 2022; 26:207-223. [PMID: 35859694 PMCID: PMC9271987 DOI: 10.1016/j.omtm.2022.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/16/2022] [Indexed: 10/29/2022]
Abstract
Autologous cell immunotherapy using B cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T cells is an effective novel treatment for multiple myeloma (MM). This therapy has only been used for relapsed and refractory patients, at which stage the endogenous T cells used to produce the CAR-T cells are affected by the immunosuppressive nature of advanced MM and/or side effects of previous therapies. An alternative pool of "fitter" T cells is found in leukocytoapheresis products that are routinely collected to obtain hematopoietic progenitor cells for autologous stem cell transplantation (ASCT) early in the treatment of MM. However, to mobilize the progenitor cells, patients are dosed with granulocyte colony-stimulating factor (G-CSF), which is reported to adversely affect T cell proliferation, function, and differentiation. Here, we aimed to first establish whether G-CSF treatment negatively influences T cell phenotype and to ascertain whether previous exposure of T cells to G-CSF is deleterious for anti-BCMA CAR-T cells. We observed that G-CSF had a minimal impact on T cell phenotype when added in vitro or administered to patients. Moreover, we found that CAR-T cell fitness and anti-tumor activity were unaffected when generated from G-CSF-exposed T cells. Overall, we showed that ASCT apheresis products are a suitable source of T cells for anti-BCMA CAR-T cell manufacture.
Collapse
Affiliation(s)
- Anthony M Battram
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Aina Oliver-Caldés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Maria Suárez-Lledó
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Miquel Lozano
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy & Hemostasis, ICMHO (Institut Clínic de Malalties Hematològiques i Oncològiques), Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Miquel Bosch I Crespo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Núria Martínez-Cibrián
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Joan Cid
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Apheresis & Cellular Therapy Unit, Department of Hemotherapy & Hemostasis, ICMHO (Institut Clínic de Malalties Hematològiques i Oncològiques), Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - David F Moreno
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Luis Gerardo Rodríguez-Lobato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.,Department of Haematology, University of Barcelona, 08036 Barcelona, Spain
| | - Carlos Fernández de Larrea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain.,Department of Haematology, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
7
|
Chujo D, Kawabe A, Matsushita M, Tsutsumi C, Haseda F, Imagawa A, Hanafusa T, Ueki K, Kajio H, Yagi K, Tobe K, Shimoda M. Fulminant type 1 diabetes patients display high frequencies of IGRP-specific type 1 CD8 + T cells. Clin Immunol 2021; 233:108893. [PMID: 34808330 DOI: 10.1016/j.clim.2021.108893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
The role of cellular autoimmunity in the pathogenesis of fulminant type 1 diabetes (FT1D) remains largely unknown. In this study, we performed an integrated assay using peripheral blood mononuclear cells to determine the islet antigen-specific CD8+ T cell responses in FT1D and compare the responses among acute-onset T1D (AT1D) and slowly progressive T1D (SP1D). IGRP- and ZnT8-specific IL-6, G-CSF, and TNF-α responses were significantly upregulated in patients with FT1D, while IGRP- and ZnT8-specific IP-10 responses were significantly upregulated in patients with AT1D than in non-diabetics (ND). Furthermore, the frequencies of IGRP-specific type 1 CD8+ cytotoxic T (Tc1) cells were significantly higher in the FT1D group than in the ND, SP1D, and AT1D groups. Additionally, IGRP-specific Tc1 cells were more abundant in the FT1D with HLA-A2 group than in the FT1D without A2 group. In conclusion, our study suggests that IGRP-specific CD8+ T cells significantly contribute to the pathogenesis of FT1D.
Collapse
Affiliation(s)
- Daisuke Chujo
- Center for Clinical Research, Toyama University Hospital, Toyama, Japan; Islet Cell Transplantation Project, National Center for Global Health and Medicine, Tokyo, Japan; Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan; Department of Internal Medicine (I), Toyama University Hospital, Toyama, Japan.
| | - Akitsu Kawabe
- Islet Cell Transplantation Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maya Matsushita
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Chiharu Tsutsumi
- Department of Internal Medicine (I), Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Fumitaka Haseda
- Department of Internal Medicine (I), Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Akihisa Imagawa
- Department of Internal Medicine (I), Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Toshiaki Hanafusa
- Department of Internal Medicine (I), Osaka Medical and Pharmaceutical University, Takatsuki, Japan; Sakai City Medical Center, Sakai, Japan
| | - Kohjiro Ueki
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan; Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kunimasa Yagi
- Department of Internal Medicine (I), Toyama University Hospital, Toyama, Japan
| | - Kazuyuki Tobe
- Center for Clinical Research, Toyama University Hospital, Toyama, Japan; Department of Internal Medicine (I), Toyama University Hospital, Toyama, Japan
| | - Masayuki Shimoda
- Islet Cell Transplantation Project, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Mouchemore KA, Anderson RL. Immunomodulatory effects of G-CSF in cancer: Therapeutic implications. Semin Immunol 2021; 54:101512. [PMID: 34763974 DOI: 10.1016/j.smim.2021.101512] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023]
Abstract
Numerous preclinical studies have reported a pro-tumour role for granulocyte colony-stimulating factor (G-CSF) that is predominantly mediated by neutrophils and MDSCs, the major G-CSF receptor expressing populations. In the presence of G-CSF (either tumour-derived or exogenous) these myeloid populations commonly exhibit a T cell suppressive phenotype. However, the direct effects of this cytokine on other immune lineages, such as T and NK cells, are not as well established. Herein we discuss the most recent data relating to the effect of G-CSF on the major immune populations, exclusively in the context of cancer. Recent publications have drawn attention to the other tumour-promoting effects of G-CSF on myeloid cells, including NETosis, promotion of cancer stemness and skewed differentiation of bone marrow progenitors towards myelopoiesis. Although G-CSF is safely and commonly used as a supportive therapy to prevent or treat chemotherapy-associated neutropenia in cancer patients, we also discuss the potential impacts of G-CSF on other anti-cancer treatments. Importantly, considerations for immune checkpoint blockade are highlighted, as many publications report a T cell suppressive effect of G-CSF that may diminish the effectiveness of this immunotherapy.
Collapse
Affiliation(s)
- Kellie A Mouchemore
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Theron AJ, Steel HC, Rapoport BL, Anderson R. Contrasting Immunopathogenic and Therapeutic Roles of Granulocyte Colony-Stimulating Factor in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13110406. [PMID: 33233675 PMCID: PMC7699711 DOI: 10.3390/ph13110406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor cells are particularly adept at exploiting the immunosuppressive potential of neutrophils as a strategy to achieve uncontrolled proliferation and spread. Recruitment of neutrophils, particularly those of an immature phenotype, known as granulocytic myeloid-derived suppressor cells, is achieved via the production of tumor-derived granulocyte colony-stimulating factor (G-CSF) and neutrophil-selective chemokines. This is not the only mechanism by which G-CSF contributes to tumor-mediated immunosuppression. In this context, the G-CSF receptor is expressed on various cells of the adaptive and innate immune systems and is associated with induction of T cell polarization towards the Th2 and regulatory T cell (Treg) phenotypes. In contrast to the potentially adverse effects of sustained, endogenous production of G-CSF by tumor cells, stringently controlled prophylactic administration of recombinant (r) G-CSF is now a widely practiced strategy in medical oncology to prevent, and in some cases treat, chemotherapy-induced severe neutropenia. Following an overview of the synthesis, structure and function of G-CSF and its receptor, the remainder of this review is focused on: (i) effects of G-CSF on the cells of the adaptive and innate immune systems; (ii) mechanisms by which this cytokine promotes tumor progression and invasion; and (iii) current clinical applications and potential risks of the use of rG-CSF in medical oncology.
Collapse
Affiliation(s)
- Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- Correspondence: ; Tel.: +27-12-319-2355
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| | - Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| |
Collapse
|
10
|
Chujo D, Kawabe A, Matsushita M, Takahashi N, Tsutsumi C, Haseda F, Imagawa A, Hanafusa T, Ueki K, Kajio H, Yagi K, Tobe K, Shimoda M. Distinct Phenotypes of Islet Antigen-Specific CD4+ T Cells Among the 3 Subtypes of Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:dgaa447. [PMID: 32652026 DOI: 10.1210/clinem/dgaa447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/08/2020] [Indexed: 01/06/2023]
Abstract
CONTEXT Type 1 diabetes (T1D) is classified into 3 subtypes: acute-onset (AT1D), slowly progressive (SP1D), and fulminant (FT1D). The differences in the type of cellular autoimmunity within each subtype remain largely undetermined. OBJECTIVE To determine the type and frequency of islet antigen-specific CD4+ T cells in each subtype of T1D. PARTICIPANTS Twenty patients with AT1D, 17 with SP1D, 18 with FT1D, and 17 persons without diabetes (ND). METHODS We performed an integrated assay to determine cellular immune responses and T-cell repertoires specific for islet antigens. This assay included an ex vivo assay involving a 48-hour stimulation of peripheral blood mononuclear cells with antigen peptides and an expansion assay involving intracytoplasmic cytokine analysis. RESULTS The results of the ex vivo assay indicated that glutamic acid decarboxylase 65 (GAD65)-specific interleukin-6 and interferon-inducible protein-10 (IP-10) responses and preproinsulin (PPI)-specific IP-10 responses were significantly upregulated in AT1D compared with those of ND. Furthermore, GAD65- and PPI-specific granulocyte colony-stimulating factor responses were significantly upregulated in FT1D. Expansion assay revealed that GAD65- and PPI-specific CD4+ T cells were skewed toward a type 1 helper T (Th1)- cell phenotype in AT1D, whereas GAD65-specific Th2 cells were prevalent in SP1D. GAD65-specific Th1 cells were more abundant in SP1D with human leukocyte antigen-DR9 than in SP1D without DR9. FT1D displayed significantly less type 1 regulatory T (Tr1) cells specific for all 4 antigens than ND. CONCLUSIONS The phenotypes of islet antigen-specific CD4+ T cells differed among the three T1D subtypes. These distinct T-cell phenotypes may be associated with the manner of progressive β-cell destruction.
Collapse
Affiliation(s)
- Daisuke Chujo
- Center for Clinical Research, Toyama University Hospital, Toyama, Japan
- Islet Cell Transplantation Project, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Internal Medicine (I), Toyama University Hospital, Toyama, Japan
| | - Akitsu Kawabe
- Islet Cell Transplantation Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maya Matsushita
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobuyuki Takahashi
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Chiharu Tsutsumi
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Fumitaka Haseda
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Akihisa Imagawa
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Toshiaki Hanafusa
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
- Sakai City Medical Center, Sakai, Japan
| | - Kohjiro Ueki
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
- Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kunimasa Yagi
- Department of Internal Medicine (I), Toyama University Hospital, Toyama, Japan
| | - Kazuyuki Tobe
- Center for Clinical Research, Toyama University Hospital, Toyama, Japan
- Department of Internal Medicine (I), Toyama University Hospital, Toyama, Japan
| | - Masayuki Shimoda
- Islet Cell Transplantation Project, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Karagiannidis I, Jerman SJ, Jacenik D, Phinney BB, Yao R, Prossnitz ER, Beswick EJ. G-CSF and G-CSFR Modulate CD4 and CD8 T Cell Responses to Promote Colon Tumor Growth and Are Potential Therapeutic Targets. Front Immunol 2020; 11:1885. [PMID: 33042110 PMCID: PMC7522314 DOI: 10.3389/fimmu.2020.01885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
Cytokines are known to shape the tumor microenvironment and although progress has been made in understanding their role in carcinogenesis, much remains to learn regarding their role in tumor growth and progression. We have identified granulocyte colony-stimulating factor (G-CSF) as one such cytokine, showing that G-CSF is linked with metastasis in human gastrointestinal tumors and neutralizing G-CSF in a mouse model of colitis-associated cancer is protective. Here, we set out to identify the role of G-CSF and its receptor, G-CSFR, in CD4+ and CD8+ T cell responses in the tumor microenvironment. MC38 colon cancer cells were injected into WT, G-CSFR-/- mice, or Rag2-/- mice. Flow cytometry, Real Time PCR and Multiplex cytokine array analysis were used for in vitro T cell phenotype analysis. Adoptive transfer of WT or G-CSFR-/- CD4+ of CD8+ T cells were performed. Mouse tumor size, cytokine expression, T cell phenotype, and cytotoxic activity were analyzed. We established that in G-CSFR-/- mice, tumor growth of MC38 colon cancer cells is significantly decreased. T cell phenotype and cytokine production were also altered, as both in vitro and in vivo approaches revealed that the G-CSF/G-CSFR stimulate IL-10-producing, FoxP3-expressing CD4+ and CD8+ T cells, whereas G-CSFR-/- T cells exhibit increased IFNγ and IL-17A production, leading to increased cytotoxic activity in the tumor microenvironment. Furthermore, peritumoral injection of recombinant IFNγ or IL-17A inhibited colon and pancreas tumor growth compared to controls. Taken together, our data reveal an unknown mechanism by which G-CSF, through its receptor G-CSFR, promotes an inhibitory Treg phenotype that limits tumor immune responses and furthermore suggest that targeting this cytokine/receptor axis could represent a novel therapeutic approach for gastrointestinal, and likely other tumors with high expression of these factors.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Coculture Techniques
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Cytotoxicity, Immunologic
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Female
- Granulocyte Colony-Stimulating Factor/metabolism
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Interleukin-17/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Receptors, Colony-Stimulating Factor/deficiency
- Receptors, Colony-Stimulating Factor/genetics
- Receptors, Colony-Stimulating Factor/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Burden
- Tumor Microenvironment
Collapse
Affiliation(s)
- Ioannis Karagiannidis
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Stephanie J. Jerman
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center Albuquerque, Albuquerque, NM, United States
| | - Damian Jacenik
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Brandon B. Phinney
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center Albuquerque, Albuquerque, NM, United States
| | - Ruoxin Yao
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Eric R. Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Ellen J. Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
12
|
Modulation of TAP-dependent antigen compartmentalization during human monocyte-to-DC differentiation. Blood Adv 2020; 3:839-850. [PMID: 30867143 DOI: 10.1182/bloodadvances.2018027268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/13/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) take up antigen in the periphery, migrate to secondary lymphoid organs, and present processed antigen fragments to adaptive immune cells and thus prime antigen-specific immunity. During local inflammation, recirculating monocytes are recruited from blood to the inflamed tissue, where they differentiate to macrophages and DCs. In this study, we found that monocytes showed high transporter associated with antigen processing (TAP)-dependent peptide compartmentalization and that after antigen pulsing, they were not able to efficiently stimulate antigen-specific T lymphocytes. Nevertheless, upon in vitro differentiation to monocyte-derived DCs, TAP-dependent peptide compartmentalization as well as surface major histocompatibility complex I turnover decreased and the cells efficiently restimulated T lymphocytes. Although TAP-dependent peptide compartmentalization decreased during DC differentiation, TAP expression levels increased. Furthermore, TAP relocated from early endosomes in monocytes to the endoplasmic reticulum (ER) and lysosomal compartments in DCs. Collectively, these data are compatible with the model that during monocyte-to-DC differentiation, the subcellular relocation of TAP and the regulation of its activity assure spatiotemporal separation of local antigen uptake and processing by monocytes and efficient T-lymphocyte stimulation by DCs.
Collapse
|
13
|
Park DS, Robertson-Tessi M, Luddy KA, Maini PK, Bonsall MB, Gatenby RA, Anderson ARA. The Goldilocks Window of Personalized Chemotherapy: Getting the Immune Response Just Right. Cancer Res 2019; 79:5302-5315. [PMID: 31387920 PMCID: PMC6801094 DOI: 10.1158/0008-5472.can-18-3712] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/20/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022]
Abstract
The immune system is a robust and often untapped accomplice of many standard cancer therapies. A majority of tumors exist in a state of immune tolerance where the patient's immune system has become insensitive to the cancer cells. Because of its lymphodepleting effects, chemotherapy has the potential to break this tolerance. To investigate this, we created a mathematical modeling framework of tumor-immune dynamics. Our results suggest that optimal chemotherapy scheduling must balance two opposing objectives: maximizing tumor reduction while preserving patient immune function. Successful treatment requires therapy to operate in a "Goldilocks Window" where patient immune health is not overly compromised. By keeping therapy "just right," we show that the synergistic effects of immune activation and chemotherapy can maximize tumor reduction and control. SIGNIFICANCE: To maximize the synergy between chemotherapy and antitumor immune response, lymphodepleting therapy must be balanced in a "Goldilocks Window" of optimal dosing.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5302/F1.large.jpg.
Collapse
Affiliation(s)
- Derek S Park
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kimberly A Luddy
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | | | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
14
|
Hu Y, Chen A, Zheng X, Lu J, He H, Yang J, Zhang Y, Sui P, Yang J, He F, Wang Y, Xiao P, Liu X, Zhou Y, Pei D, Cheng C, Ribeiro RC, Hu S, Wang QF. Ecological principle meets cancer treatment: treating children with acute myeloid leukemia with low-dose chemotherapy. Natl Sci Rev 2019; 6:469-479. [PMID: 34691895 PMCID: PMC8291445 DOI: 10.1093/nsr/nwz006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/08/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Standard chemotherapy regimens for remission induction of pediatric acute myeloid leukemia (AML) are associated with significant morbidity and mortality. We performed a cohort study to determine the impact of reducing the intensity of remission induction chemotherapy on the outcomes of selected children with AML treated with a low-dose induction regimen plus granulocyte colony stimulating factor (G-CSF) (low-dose chemotherapy (LDC)/G-CSF). Complete response (CR) after two induction courses was attained in 87.0% (40/46) of patients receiving LDC/G-CSF. Post-remission therapy was offered to all patients, and included standard consolidation and/or stem cell transplantation. During the study period, an additional 94 consecutive children with AML treated with standard chemotherapy (SDC) for induction (80/94 (85.1%) of the patients attained CR after induction II, P = 0.953) and post-remission. In this non-randomized study, there were no significant differences in 4-year event-free (67.4 vs. 70.7%; P = 0.99) and overall (70.3 vs. 74.6%, P = 0.69) survival in the LDC/G-CSF and SDC cohorts, respectively. After the first course of induction, recovery of white blood cell (WBC) and platelet counts were significantly faster in patients receiving LDC/G-CSF than in those receiving SDC (11.5 vs. 18.5 d for WBCs (P < 0.001); 15.5 vs. 22.0 d for platelets (P < 0.001)). To examine the quality of molecular response, targeted deep sequencing was performed. Of 137 mutations detected at diagnosis in 20 children who attained hematological CR after two courses of LDC/G-CSF (n = 9) or SDC (n = 11), all of the mutations were below the reference value (variant allelic frequency <2.5%) after two courses, irrespective of the treatment group. In conclusion, children with AML receiving LDC/G-CSF appear to have similar outcomes and mutation clearance levels, but significantly lower toxicity than those receiving SDC. Thus, LDC/G-CSF should be further evaluated as an effective alternative to remission induction in pediatric AML.
Collapse
Affiliation(s)
- Yixin Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Aili Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinchang Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Hailong He
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Jin Yang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China.,Department of Pediatrics, Nothern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Ya Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pinpin Sui
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhong He
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Peifang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Xin Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis TN 38105, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis TN 38105, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis TN 38105, USA
| | - Raul C Ribeiro
- Department of Oncology and Global Medicine, International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Inhibition of Heme Oxygenase-1 Activity Enhances Wilms Tumor-1-Specific T-Cell Responses in Cancer Immunotherapy. Int J Mol Sci 2019; 20:ijms20030482. [PMID: 30678050 PMCID: PMC6387130 DOI: 10.3390/ijms20030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Wilms tumor protein-1 (WT1) is an attractive target for adoptive T-cell therapy due to its expression in solid tumors and hematologic malignancies. However, T cells recognizing WT1 occur in low frequencies in the peripheral blood of healthy donors, limiting potential therapeutic possibilities. Tin mesoporphyrin (SnMP) is known to inhibit heme oxygenase-1 (HO-1), which has been shown to boost the activation and proliferation of human virus-specific T cells. We analyzed the influence of this effect on the generation of WT1-specific T cells and developed strategies for generating quantities of these cells from healthy donors, sufficient for adoptive T-cell therapies. HO-1 inhibition with SnMP increased WT1-specific T-cell frequencies in 13 (26%) of 50 healthy donors. To assess clinical applicability, we measured the enrichment efficiency of SnMP-treated WT1-specific T cells in response to a WT1-specific peptide pool and a HLA-A*02:01-restricted WT1 peptide by cytokine secretion assay. SnMP treatment resulted in a 28-fold higher enrichment efficacy with equal functionality. In conclusion, pharmacological inhibition of HO-1 activity with SnMP results in more efficient generation of functionally active WT1-specific T cells. This study demonstrates the therapeutic potentials of inhibiting HO-1 with SnMP to enhance antigen-specific T-cell responses in the treatment of cancer patients with WT1-positive disease.
Collapse
|
16
|
Bak S, Tischer S, Dragon A, Ravens S, Pape L, Koenecke C, Oelke M, Blasczyk R, Maecker-Kolhoff B, Eiz-Vesper B. Selective Effects of mTOR Inhibitor Sirolimus on Naïve and CMV-Specific T Cells Extending Its Applicable Range Beyond Immunosuppression. Front Immunol 2018; 9:2953. [PMID: 30619313 PMCID: PMC6304429 DOI: 10.3389/fimmu.2018.02953] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Cytomegalovirus (CMV) infection/reactivation remains among the most important complications of immunosuppression after transplantation. However, recent clinical observations indicate that mammalian target of rapamycin (mTOR) inhibition with sirolimus may improve the outcome of CMV complications. Underlying mechanisms of this observation, particularly the effect of sirolimus on naïve- and CMV-specific cytotoxic CD8+ T-cell (CMV-CTL) functionality is still undiscovered. Here, the influence of sirolimus on naïve and memory CMV-CTLs was determined by CD3/CD28 crosslinking and alloreactivity assays. After stimulating CMV-CTL with HLA-A*02:01-restricted CMVpp65-peptide loaded artificial antigen-presenting cells (aAPCs), we measured the effect of sirolimus on T-cell proliferation, phenotype, and functionality. Sirolimus significantly improved CMV-specific effector memory T-cell function and negatively influenced naïve T cells. This unique mechanism of action was further characterized by increased secretion of interferon-gamma (IFN-γ), granzyme B (GzB) and enhanced target-cell-dependent cytotoxic capacity of activated CMV-CTLs. Next-generation-sequencing (NGS) was applied to monitor T-cell receptor (TCR)-repertoire dynamics and to verify, that the increased functionality was not related to sirolimus-resistant CTL-clones. Instead, modulation of environmental cues during CMV-CTL development via IL-2 receptor (IL-2R)-driven signal transducer and activator of transcription-5 (STAT-5) signaling under mTOR inhibition allowed fine-tuning of T-cell programming for enhanced antiviral response with stable TCR-repertoire dynamics. We show for the first time that sirolimus acts selectively on human naïve and memory T cells and improves CMV-specific T-cell function via modulation of the environmental milieu. The data emphasize the importance to extend immune monitoring including cytokine levels and T-cell functionality which will help to identify patients who may benefit from individually tailored immunosuppression.
Collapse
Affiliation(s)
- Szilvia Bak
- Hannover Medical School, Institute for Transfusion Medicine, Hannover, Germany
| | - Sabine Tischer
- Hannover Medical School, Institute for Transfusion Medicine, Hannover, Germany
| | - Anna Dragon
- Hannover Medical School, Institute for Transfusion Medicine, Hannover, Germany
| | - Sarina Ravens
- Hannover Medical School, Institute of Immunology, Hannover, Germany
| | - Lars Pape
- Department of Pediatric Nephrology, Hannover Medical School, Hannover, Germany
| | - Christian Koenecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Mathias Oelke
- Department of Pathology, John Hopkins School of Medicine, Baltimore, MD, United States.,NexImmune Inc., Gaithersburg, MD, United States
| | - Rainer Blasczyk
- Hannover Medical School, Institute for Transfusion Medicine, Hannover, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Hannover Medical School, Institute for Transfusion Medicine, Hannover, Germany
| |
Collapse
|
17
|
Li Y, He L, Dong H, Liu Y, Wang K, Li A, Ren T, Shi D, Li Y. Fever-Inspired Immunotherapy Based on Photothermal CpG Nanotherapeutics: The Critical Role of Mild Heat in Regulating Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700805. [PMID: 29938166 PMCID: PMC6010888 DOI: 10.1002/advs.201700805] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/06/2017] [Indexed: 05/13/2023]
Abstract
Although there have been more than 100 clinical trials, CpG-based immunotherapy has been seriously hindered by complications in the immunosuppressive microenvironment of established tumors. Inspired by the decisive role of fever upon systemic immunity, a photothermal CpG nanotherapeutics (PCN) method with the capability to induce an immunofavorable tumor microenvironment by casting a fever-relevant heat (43 °C) in the tumor region is developed. High-throughput gene profile analysis identifies nine differentially expressed genes that are closely immune-related upon mild heat, accompanied by IL-6 upregulation, a pyrogenic cytokine usually found during fever. When treated with intratumor PCN injection enabling mild heating in the tumor region, the 4T1 tumor-bearing mice exhibit significantly improved antitumor immune effects compared with the control group. Superb efficacy is evident from pronounced apoptotic cell death, activated innate immune cells, enhanced tumor perfusion, and intensified innate and adaptive immune responses. This work highlights the crucial role of mild heat in modulating the microenvironment in optimum for improved immunotherapy, by converting the tumor into an in situ vaccine.
Collapse
Affiliation(s)
- Yan Li
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
| | - Lianghua He
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
| | - Haiqing Dong
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
| | - Yiqiong Liu
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
| | - Kun Wang
- School of Materials Science and EngineeringTongji University4800 Caoan RoadShanghai201804P. R. China
| | - Ang Li
- School of Life Science and TechnologyTongji University1239 Siping RoadShanghai200092P. R. China
| | - Tianbin Ren
- School of Materials Science and EngineeringTongji University4800 Caoan RoadShanghai201804P. R. China
| | - Donglu Shi
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
- The Materials Science and Engineering ProgramDepartment of Mechanical and Materials EngineeringCollege of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiOH45221USA
| | - Yongyong Li
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
| |
Collapse
|
18
|
Kwoczek J, Riese SB, Tischer S, Bak S, Lahrberg J, Oelke M, Maul H, Blasczyk R, Sauer M, Eiz-Vesper B. Cord blood-derived T cells allow the generation of a more naïve tumor-reactive cytotoxic T-cell phenotype. Transfusion 2017; 58:88-99. [PMID: 29023759 DOI: 10.1111/trf.14365] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Transplantation of hematopoietic stem cells (HSCs) from peripheral blood (PB) or cord blood (CB) is well established. HSCs from CB are associated with a lower risk of graft-versus-host disease (GVHD), but antigen-independent expanded CB- and PB-derived T cells can induce GVHD in allo-HSC recipients. CB-derived cells might be more suitable for adoptive immunotherapy as they have unique T-cell characteristics. Here, we describe functional differences between CB and PB T cells stimulated with different cytokine combinations involved in central T-cell activation. STUDY DESIGN AND METHODS Isolated CD8+ T cells from CB and PB were stimulated antigen independently with anti-CD3/CD28 stimulator beads or in an antigen-dependent manner with artificial antigen-presenting cells loaded with the HLA-A*02:01-restricted peptide of tumor-associated melanoma antigen recognized by T cells 1 (MART1). CB and PB T cells cultured in the presence of interleukin (IL)-7, IL-15, IL-12, and IL-21 were characterized for T-cell phenotype and specificity, that is, by CD107a, interferon-γ, tumor necrosis factor-α, and IL-2 expression. RESULTS After antigen-independent stimulation, activated CD8+ CB T cells exhibited stronger proliferation and function than those from PB. After antigenic stimulation, MART1-reactive CB T cells were naïve (CD45RA+CCR7+), cytotoxic, and highly variable in expressing homing marker CD62L. Addition of IL-21 resulted in increased T-cell proliferation, whereas supplementation with IL-12 decreased IL-21-induced expansion, but increased the functionality and cytotoxicity of CB and PB T cells. CONCLUSION MART1-reactive CB T cells with a more naïve phenotype and improved properties for homing can be generated. The results contribute to better understanding the effects on GVHD and graft versus tumor.
Collapse
Affiliation(s)
- Julian Kwoczek
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Sebastian B Riese
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Sabine Tischer
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Szilvia Bak
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Julia Lahrberg
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Mathias Oelke
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland.,NexImmune, Inc, Gaithersburg, Maryland
| | - Holger Maul
- Department of Gynecology and Obstetrics, Marienkrankenhaus, Hamburg, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Martin Sauer
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany.,Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Zhao S, Gu Z, Wang L, Guan L, Wang F, Yang N, Luo L, Gao Z, Song Y, Wang L, Liu D, Gao C. G-CSF inhibits LFA-1-mediated CD4 + T cell functions by inhibiting Lck and ZAP-70. Oncotarget 2017; 8:51578-51590. [PMID: 28881670 PMCID: PMC5584271 DOI: 10.18632/oncotarget.18194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 05/06/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, we showed that G-CSF mobilization increased the frequency of T cells, specifically CD3+CD4+ T cells. G-CSF mobilization decreased the secretion of inflammatory cytokines of CD4+ T cells through the LFA-1/ICAM-1 signaling pathway, whereas it did not alter the TH1/TH2 ratio. We found that G-CSF mobilization inhibited LFA-1-mediated CD4+ T cell polarization and motility. In vitro, G-CSF stimulation also attenuated the polarization and adhesiveness of CD4+ T cells through the LFA-1/ICAM-1 interaction. Further investigation revealed that G-CSF mobilization suppressed LFA-1 signaling by down-regulating Lck and ZAP-70 expression in CD4+ T cells, similar results was also confirmed by in-vitro studies. These findings suggested that G-CSF directly suppressed LFA-1-mediated CD4+ T cell functions through the down-regulation of Lck and ZAP-70. The immunosuppressive effect of G-CSF mobilization deepened our understanding about peripheral blood hematopoietic stem cell transplantation. LFA-1/ICMA-1 pathway may become a potential target for graft-versus-host disease prophylaxis.
Collapse
Affiliation(s)
- Shasha Zhao
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China.,Medical School, Nankai University, Tianjin 300071, China
| | - Zhenyang Gu
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Li Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology and Oncology, Laoshan Branch, No. 401 Hospital of Chinese PLA, Qingdao 266101, China
| | - Lixun Guan
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Feiyan Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Nan Yang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Lan Luo
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhe Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingwei Song
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Daihong Liu
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chunji Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
20
|
Li Pira G, Di Cecca S, Biagini S, Girolami E, Cicchetti E, Bertaina V, Quintarelli C, Caruana I, Lucarelli B, Merli P, Pagliara D, Brescia LP, Bertaina A, Montanari M, Locatelli F. Preservation of Antigen-Specific Functions of αβ T Cells and B Cells Removed from Hematopoietic Stem Cell Transplants Suggests Their Use As an Alternative Cell Source for Advanced Manipulation and Adoptive Immunotherapy. Front Immunol 2017; 8:332. [PMID: 28386262 PMCID: PMC5362590 DOI: 10.3389/fimmu.2017.00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cell transplantation is standard therapy for numerous hematological diseases. The use of haploidentical donors, sharing half of the HLA alleles with the recipient, has facilitated the use of this procedure as patients can rely on availability of a haploidentical donor within their family. Since HLA disparity increases the risk of graft-versus-host disease, T-cell depletion has been used to remove alloreactive lymphocytes from the graft. Selective removal of αβ T cells, which encompass the alloreactive repertoire, combined with removal of B cells to prevent EBV-related lymphoproliferative disease, proved safe and effective in clinical studies. Depleted αβ T cells and B cells are generally discarded as by-products. Considering the possible use of donor T cells for donor lymphocyte infusions or for generation of pathogen-specific T cells as mediators of graft-versus-infection effect, we tested whether cells in the discarded fractions were functionally intact. Response to alloantigens and to viral antigens comparable to that of unmanipulated cells indicated a functional integrity of αβ T cells, in spite of the manipulation used for their depletion. Furthermore, B cells proved to be efficient antigen-presenting cells, indicating that antigen uptake, processing, and presentation were fully preserved. Therefore, we propose that separated αβ T lymphocytes could be employed for obtaining pathogen-specific T cells, applying available methods for positive selection, which eventually leads to indirect allodepletion. In addition, these functional T cells could undergo additional manipulation, such as direct allodepletion or genetic modification.
Collapse
Affiliation(s)
- Giuseppina Li Pira
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Stefano Di Cecca
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Simone Biagini
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Elia Girolami
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Elisabetta Cicchetti
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy; Department of "Medicina Clinica e Chirurgia", University of Naples Federico II, Naples, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Barbarella Lucarelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Pietro Merli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Daria Pagliara
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Letizia Pomponia Brescia
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Alice Bertaina
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Mauro Montanari
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy; Department of Pediatrics, University of Pavia, Pavia, Italy
| |
Collapse
|