1
|
Damiani BAM, Pinto KP, Ferreira CMA, Sarmento EB, de Lima CO, Cassimiro CS, Sassone LM, da Silva EJNL. Apical periodontitis as an aggravating factor for the severity of rheumatoid arthritis: An animal study. Int Endod J 2024; 57:1669-1681. [PMID: 39080736 DOI: 10.1111/iej.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 10/11/2024]
Abstract
AIM The present study investigated the influence of apical periodontitis (AP) on the severity of rheumatoid arthritis (RA) using a Wistar rat model. METHODOLOGY Forty male Wistar rats were distributed across four groups (n = 10) based on the induction of RA and AP: Control, RA, AP, and RA + AP. RA was induced through two immunisations with type II collagen emulsified in incomplete Freund's adjuvant, followed by one immunisation with complete Freund's adjuvant. After 21 days of RA induction, AP was induced by exposing the pulp of four molars. Animals were euthanized after 28 days of pulp exposure. Through the experiment, visual and behavioural assessments tracked RA development and the knees and hind paw joints were measured. Micro-computed tomography scans of knees and hind paws, as well as mandibles and maxillae, were conducted to evaluate RA severity and the presence of AP, respectively. Serum samples were collected to analyse proinflammatory cytokines (IL-1β, IL-2, IL-17, and TNF-α). Non-parametric data were analysed using the Kruskal-Wallis test followed by Student-Newman-Keuls test, while one-way anova followed by Tukey's test was performed for parametric data. A significance level of 5% was employed. RESULTS All molars submitted to access cavity developed AP. All joints subjected to arthritis induction developed the disease, with AP + RA demonstrating a higher arthritis severity when compared to the RA group (p < .05). RA + AP group displayed a significantly larger hind paw and knee circumference compared to the RA group (p < .05). Micro-CT images of RA and RA + AP groups revealed joints with erosions and bone deformities, with a significantly lower bone surface density, lower trabecular number and higher trabecular separation in the hind paw and a significantly lower percent bone volume and higher trabecular separation in the knees of RA + AP group compared to RA group (p < .05). RA + AP group exhibited a significantly higher level of TNF-α and a lower level of IL-2 compared to all other groups (p < .05). Both RA and RA + AP groups had significantly higher IL-17 levels (p < .05), while there was no significant difference in IL-1β levels among the groups (p > .05). CONCLUSION The findings from this study underscore a possible relationship between apical periodontitis and the exacerbation of rheumatoid arthritis.
Collapse
Affiliation(s)
- Bianca Araújo Magalhães Damiani
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Karem Paula Pinto
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Cláudio Malizia Alves Ferreira
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Estéfano Borgo Sarmento
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Carolina Oliveira de Lima
- Department of Dentistry, Federal University of Juiz de Fora, Campus Governador Valadares, Minas Gerais, Brazil
| | - Caroline Silva Cassimiro
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Luciana Moura Sassone
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Emmanuel João Nogueira Leal da Silva
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
- Departament of Endodontics, Grande Rio University (UNIGRANRIO), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Kawataka M, Ouhara K, Kobayashi E, Shinoda K, Tobe K, Fujimori R, Mizuno N, Sugiyama E, Ozawa T, Kishi H. N-glycan in the variable region of monoclonal ACPA (CCP-Ab1) promotes the exacerbation of experimental arthritis. Rheumatology (Oxford) 2023; 62:3968-3977. [PMID: 36944270 DOI: 10.1093/rheumatology/kead130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVES The variable region of most ACPA IgG molecules in the serum of RA patients carries N-glycan (N-glycanV). To analyse the pathogenicity of N-glycanV of ACPAs, we analysed the pathogenicity of a monoclonal ACPA, CCP-Ab1, with or without N-glycanV, which had been isolated from a patient with RA. METHODS CCP-Ab1 with no N-glycosylation site in the variable region (CCP-Ab1 N-rev) was generated, and antigen binding, the effect on in vitro differentiation of osteoclasts from bone marrow mononuclear cells of autoimmune arthritis-prone SKG mice (the cell size of TRAP+ cells and bone resorption capacity) and the in vivo effect on the onset or exacerbation of autoimmune arthritis in SKG mice were evaluated in comparison with glycosylated CCP-Ab1. RESULTS Amino acid residues in citrullinated peptide (cfc1), which are essential for binding to CCP-Ab1 N-rev and original CCP-Ab1, were almost identical. The size of TRAP+ cells was significantly larger and osteoclast bone resorption capacity was enhanced in the presence of CCP-Ab1, but not with CCP-Ab1 N-rev. This enhancing activity required the sialic acid of the N-glycan and Fc region of CCP-Ab1. CCP-Ab1, but not CCP-Ab1 N-rev, induced the exacerbation of experimental arthritis in the SKG mouse model. CONCLUSIONS These data showed that N-glycanV was required for promoting osteoclast differentiation and bone resorption activity in both in vitro and in vivo assays. The present study demonstrated the important role of N-glycanV in the exacerbation of experimental arthritis by ACPAs.
Collapse
Affiliation(s)
- Masatoshi Kawataka
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- The First Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiji Kobayashi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Koichiro Shinoda
- The First Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Kazuyuki Tobe
- The First Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Ryousuke Fujimori
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, Hiroshima, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- Advanced Antibody Drug Development Center, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- Advanced Antibody Drug Development Center, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Kobayashi T, Bartold PM. Periodontitis and periodontopathic bacteria as risk factors for rheumatoid arthritis: A review of the last 10 years. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:263-272. [PMID: 37674898 PMCID: PMC10477376 DOI: 10.1016/j.jdsr.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammatory destruction of joint tissue and is caused by an abnormal autoimmune response triggered by interactions between genetics, environmental factors, and epigenetic and posttranslational modifications. RA has been suggested to be interrelated with periodontitis, a serious form or stage of chronic inflammatory periodontal disease associated with periodontopathic bacterial infections, genetic predisposition, environmental factors, and epigenetic influences. Over the last decade, a number of animal and clinical studies have been conducted to assess whether or not periodontitis and associated periodontopathic bacteria constitute risk factors for RA. The present review introduces recent accumulating evidence to support the associations of periodontitis and periodontopathic bacteria with the risk of RA or the outcome of RA pharmacological treatment with disease-modifying antirheumatic drugs. In addition, the results from intervention studies have suggested an improvement in RA clinical parameters after nonsurgical periodontal treatment. Furthermore, the potential causal mechanisms underlying the link between periodontitis and periodontopathic bacteria and RA are summarized.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- General Dentistry and Clinical Education Unit, Faculty of Dentistry & Medical and Dental Hospital, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Peter Mark Bartold
- Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
4
|
Yamazaki S, Hayashi R, Mutoh N, Ohshima H, Tani-Ishii N. Effects of Rheumatoid Arthritis on the Progression of Pulpitis and Apical Periodontitis in SKG Mice. J Endod 2023; 49:1501-1507. [PMID: 37595682 DOI: 10.1016/j.joen.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disease that involves joint inflammation. Although periodontal disease reportedly contributes to RA onset, the associations of RA with pulpitis and apical periodontitis have not been described. The purpose of this study was to examine the effects of immune response disruption of RA for pulpitis and apical periodontitis with SKG mice. METHODS SKG and BALB/c (control) mice were used to establish models of pulp infection. Histologic studies of pulp and apical periodontal tissue were performed at 3, 5, 7, 14, and 28 days; odontoblast dynamics were analyzed by antinestin staining, and apoptotic cells were examined by TdT-mediated digoxygenin (biotin)-dUTP nick end labeling staining. RESULTS Inflammatory cell infiltration into the exposed pulp was observed at 3 days in the SKG and control group groups; the infiltration extended to the apical pulp area at 14 days after surgery. Inflammatory cell infiltration and bone resorption in the apical pulp area were observed from 14-28 days in the SKG and control groups; there were significant increases in inflammatory cell infiltration and bone resorption in the control group at 28 days. The numbers of apoptotic cells in pulp and apical periodontal tissue were higher in the SKG group than in the control group at 14 and 28 days. The number of odontoblasts decreased in the SKG and control groups until 14 days and then disappeared in the SKG and control groups at 28 days. CONCLUSIONS This study suggested that immune response disruption in RA is involved in prolonging the inflammatory state of pulpitis and apical periodontitis.
Collapse
Affiliation(s)
- Shiori Yamazaki
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan
| | - Reona Hayashi
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan
| | - Noriko Mutoh
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nobuyuki Tani-Ishii
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan.
| |
Collapse
|
5
|
Zhang C, Hong X, Yu H, Xu H, Qiu X, Cai W, Hocher B, Dai W, Tang D, Liu D, Dai Y. Gene regulatory network study of rheumatoid arthritis in single-cell chromatin landscapes of peripheral blood mononuclear cells. Mod Rheumatol 2023; 33:739-750. [PMID: 35796437 DOI: 10.1093/mr/roac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Assays for transposase-accessible chromatin with single-cell sequencing (scATAC-seq) contribute to the progress in epigenetic studies. The purpose of our project was to discover the transcription factors (TFs) that were involved in the pathogenesis of rheumatoid arthritis (RA) at a single-cell resolution using epigenetic technology. METHODS Peripheral blood mononuclear cells of seven RA patients and seven natural controls were extracted nuclei suspensions for library construction. Subsequently, scATAC-seq was performed to generate a high-resolution map of active regulatory DNA for bioinformatics analysis. RESULTS We obtained 22 accessible chromatin patterns. Then, 10 key TFs were involved in RA pathogenesis by regulating the activity of mitogen-activated protein kinase. Consequently, two genes (PTPRC and SPAG9) regulated by 10 key TFs were found, which may be associated with RA disease pathogenesis, and these TFs were obviously enriched in RA patients (P < .05, fold change value > 1.2). With further quantitative polymerase chain reaction validation on PTPRC and SPAG9 in monocytes, we found differential expression of these two genes, which were regulated by eight TFs [ZNF384, HNF1B, DMRTA2, MEF2A, NFE2L1, CREB3L4 (var. 2), FOSL2::JUNB (var. 2), and MEF2B], showing highly accessible binding sites in RA patients. CONCLUSIONS These findings demonstrate the value of using scATAC-seq to reveal transcriptional regulatory variation in RA-derived peripheral blood mononuclear cells, providing insights into therapy from an epigenetic perspective.
Collapse
Affiliation(s)
- Cantong Zhang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Xiaoping Hong
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Haiyan Yu
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Huixuan Xu
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Xiaofen Qiu
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Wanxia Cai
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX, USA
| | - Donge Tang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Dongzhou Liu
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Yong Dai
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Tan X, Wang Y, Gong T. The interplay between oral microbiota, gut microbiota and systematic diseases. J Oral Microbiol 2023; 15:2213112. [PMID: 37200866 PMCID: PMC10187086 DOI: 10.1080/20002297.2023.2213112] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
Over the past two decades, the importance of microbiota in health and disease has become evident. The human gut microbiota and oral microbiota are the largest and second-largest microbiome in the human body, respectively, and they are physically connected as the oral cavity is the beginning of the digestive system. Emerging and exciting evidence has shown complex and important connections between gut microbiota and oral microbiota. The interplay of the two microbiomes may contribute to the pathological processes of many diseases, including diabetes, rheumatoid arthritis, nonalcoholic fatty liver disease, inflammatory bowel disease, pancreatic cancer, colorectal cancer, and so on. In this review, we discuss possible routes and factors of oral microbiota to affect gut microbiota, and the contribution of this interplay between oral and gut microbiota to systemic diseases. Although most studies are association studies, recently, there have been increasing mechanistic investigations. This review aims to enhance the interest in the connection between oral and gut microbiota, and shows the tangible impact of this connection on human health.
Collapse
Affiliation(s)
- Xiujun Tan
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical CO. LTD, Taizhou, China
| | - Ting Gong
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
7
|
Liu L, Geng Y, Xiong C. Impact of Porphyromonas gingivalis-odontogenic infection on the pathogenesis of non-alcoholic fatty liver disease. Ann Med 2023; 55:2255825. [PMID: 37708866 PMCID: PMC10503456 DOI: 10.1080/07853890.2023.2255825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Aim: Non-alcoholic fatty liver disease is characterized by diffuse hepatic steatosis and has quickly risen to become the most prevalent chronic liver disease. Its incidence is increasing yearly, but the pathogenesis is still not fully understood. Porphyromonas gingivalis (P. gingivalis) is a major pathogen widely prevalent in periodontitis patients. Its infection has been reported to be a risk factor for developing insulin resistance, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and metabolic syndrome. The aim of this review is to evaluate the association between P. gingivalis infection and NAFLD, identify the possible etiopathogenetic mechanisms, and raise public awareness of oral health to prevent and improve NAFLD.Methods: After searching in PubMed and Web of Science databases using 'Porphyromonas gingivalis', 'non-alcoholic fatty liver disease', and 'hepatic steatosis' as keywords, studies related were compiled and examined.Results: P. gingivalis infection is a direct risk factor for NAFLD based on clinical and basic research. Moreover, it induces systematic changes and systemic abnormalities by disrupting metabolic, inflammatory, and immunologic homeostasis.Conclusion: P. gingivalis-odontogenic infection promotes the occurrence and development of NAFLD. Further concerns are needed to emphasize oral health and maintain good oral hygiene for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Linbo Liu
- Department of Clinical Laboratory, Yulin No.2 Hospital, Yulin, Shaanxi, China
| | - Yan Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chaoliang Xiong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Tamura T, Zhai R, Takemura T, Ouhara K, Taniguchi Y, Hamamoto Y, Fujimori R, Kajiya M, Matsuda S, Munenaga S, Fujita T, Mizuno N. Anti-Inflammatory Effects of Geniposidic Acid on Porphyromonas gingivalis-Induced Periodontitis in Mice. Biomedicines 2022; 10:biomedicines10123096. [PMID: 36551860 PMCID: PMC9775215 DOI: 10.3390/biomedicines10123096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Periodontal disease is predominantly caused by the pathogenic bacterium Porphyromonas gingivalis that produces inflammation-inducing factors in the host. Eucommia ulmoides is a plant native to China that has been reported to reduce blood pressure, promote weight loss, and exhibit anti-inflammatory effects. Geniposidic acid (GPA) is the major component of E. ulmoides. Herein, we investigated the effects of GPA on P. gingivalis-induced periodontitis by measuring the inflammatory responses in human gingival epithelial cells (HGECs) after P. gingivalis stimulation and GPA addition in a P. gingivalis-induced periodontitis mouse model. We found that GPA addition suppressed interleukin (IL)-6 mRNA induction (33.8% suppression), IL-6 production (69.2% suppression), toll-like receptor (TLR) 2 induction, and mitogen-activated protein kinase (MAPK) phosphorylation in HGECs stimulated by P. gingivalis. Inoculation of mice with GPA inhibited P. gingivalis-induced alveolar bone resorption (25.6% suppression) by suppressing IL-6 and TLR2 production in the serum and gingiva. GPA suppressed osteoclast differentiation of bone marrow cells induced by M-CSF and sRANKL in mice (56.7% suppression). GPA also suppressed the mRNA expression of OSCAR, NFATc1, c-Fos, cathepsin K, and DC-STAMP. In summary, GPA exerts an anti-inflammatory effect on periodontal tissue and may be effective in preventing periodontal disease.
Collapse
Affiliation(s)
- Tetsuya Tamura
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ruoqi Zhai
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tasuku Takemura
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Correspondence: ; Tel.: +81-82-257-5663; Fax: +81-82-257-5664
| | - Yuri Taniguchi
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yuta Hamamoto
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryousuke Fujimori
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mikihito Kajiya
- Department of Innovation and Precision Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Syuichi Munenaga
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
9
|
Chow YC, Yam HC, Gunasekaran B, Lai WY, Wo WY, Agarwal T, Ong YY, Cheong SL, Tan SA. Implications of Porphyromonas gingivalis peptidyl arginine deiminase and gingipain R in human health and diseases. Front Cell Infect Microbiol 2022; 12:987683. [PMID: 36250046 PMCID: PMC9559808 DOI: 10.3389/fcimb.2022.987683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis is a major pathogenic bacterium involved in the pathogenesis of periodontitis. Citrullination has been reported as the underlying mechanism of the pathogenesis, which relies on the interplay between two virulence factors of the bacterium, namely gingipain R and the bacterial peptidyl arginine deiminase. Gingipain R cleaves host proteins to expose the C-terminal arginines for peptidyl arginine deiminase to citrullinate and generate citrullinated proteins. Apart from carrying out citrullination in the periodontium, the bacterium is found capable of citrullinating proteins present in the host synovial tissues, atherosclerotic plaques and neurons. Studies have suggested that both virulence factors are the key factors that trigger distal effects mediated by citrullination, leading to the development of some non-communicable diseases, such as rheumatoid arthritis, atherosclerosis, and Alzheimer’s disease. Thus, inhibition of these virulence factors not only can mitigate periodontitis, but also can provide new therapeutic solutions for systematic diseases involving bacterial citrullination. Herein, we described both these proteins in terms of their unique structural conformations and biological relevance to different human diseases. Moreover, investigations of inhibitory actions on the enzymes are also enumerated. New approaches for identifying inhibitors for peptidyl arginine deiminase through drug repurposing and virtual screening are also discussed.
Collapse
Affiliation(s)
- Yoke Chan Chow
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Weng Yeen Lai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Weng Yue Wo
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Tarun Agarwal
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Yien Yien Ong
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Siew Lee Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Sheri-Ann Tan, ; Siew Lee Cheong,
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
- *Correspondence: Sheri-Ann Tan, ; Siew Lee Cheong,
| |
Collapse
|
10
|
Koziel J, Potempa J. Pros and cons of causative association between periodontitis and rheumatoid arthritis. Periodontol 2000 2022; 89:83-98. [PMID: 35262966 PMCID: PMC9935644 DOI: 10.1111/prd.12432] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 02/05/2023]
Abstract
Research in recent decades has brought significant advancements in understanding of the molecular basis of the etiology of autoimmune diseases, including rheumatoid arthritis, a common systemic disease in which an inappropriate or inadequate immune response to environmental challenges leads to joint destruction. Recent studies have indicated that the classical viewpoint of the immunological processes underpinning the pathobiology of rheumatoid arthritis is restricted and needs to be expanded to include a more holistic and interdisciplinary approach incorporating bacteria-induced inflammatory reactions as an important pathway in rheumatoid arthritis etiology. Here, we discuss in detail data showing the clinical and molecular association of rheumatoid arthritis development with periodontal diseases. We also describe the unique role of periopathogens, which have been proposed to be crucial in the initiation and progression of this autoimmune pathological disorder.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Chen Y, Weng L, Liu W, Deng C, Xuan J, Ma Y, Li C, Jiang J, Chen J, Ge S. Characterization of Monoclonal Antibodies Recognizing Citrulline-Modified Residues. Front Immunol 2022; 13:849779. [PMID: 35359951 PMCID: PMC8961739 DOI: 10.3389/fimmu.2022.849779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCitrullination is a post-translational protein modification linked to the occurrence and development of a variety of diseases. The detection of citrullinated proteins is predominately based on antibody detection although currently available reagents demonstrate detection bias according to the environmental context of the citrullinated residues. This study aimed to develop improved antibody reagents capable of detecting citrullinated residues in proteins in an unbiased manner.MethodsBALB/c mice were sequentially immunized using citrulline conjugates with different carrier proteins, and specific monoclonal antibodies (mAbs) identified by primary screening using citrulline-conjugated proteins unrelated to the immunogen. Secondary screening was performed to identify mAbs whose reactivity could be specifically blocked by free citrulline, followed by identification and performance assessment.ResultsTwo mAbs, 22F1 and 30G2, specifically recognizing a single citrulline residue were screened from 22 mAbs reacting with citrulline conjugates. Compared with commercially available anti-citrulline antibodies (AB6464, AB100932 and MABN328), 22F1 and 30G2 demonstrated significantly higher reactivity as well as a broader detection spectrum against different citrullinated proteins. 22F1 and 30G2 also had higher specificity than commercial antibodies and overall better applicability to a range of different immunoassays.ConclusionTwo mAbs specifically recognizing a single citrulline residue were successfully produced, each possessing good specificity against different citrullinated proteins. The improved utility of these reagents is expected to make a strong contribution to protein citrullination-related research.
Collapse
Affiliation(s)
- Yaqiong Chen
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Weng
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China
| | - Chenxi Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China
| | - Jinxiu Xuan
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuan Ma
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Cao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China
| | - Jinlu Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China
| | - Juan Chen
- Department of Rheumatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Juan Chen, ; Shengxiang Ge,
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China
- *Correspondence: Juan Chen, ; Shengxiang Ge,
| |
Collapse
|
12
|
Jasemi S, Erre GL, Cadoni ML, Bo M, Sechi LA. Humoral Response to Microbial Biomarkers in Rheumatoid Arthritis Patients. J Clin Med 2021; 10:jcm10215153. [PMID: 34768672 PMCID: PMC8584451 DOI: 10.3390/jcm10215153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background/Objective: Chronic humoral immune response against multiple microbial antigens may play a crucial role in the etiopathogenesis of rheumatoid arthritis (RA). We aimed to assess the prevalence and magnitude of antibody response against various bacterial and viral immunogen peptides in the sera of RA patients compared with the general population. Methods: Polyclonal IgG antibodies (Abs) specific for peptides derived from Porphyromonas gingivalis (RgpA, Kpg), Aggregatibacter actinomycetemcomitans (LtxA1, LtxA2), Mycobacterium avium subsp. paratuberculosis (MAP4027), Epstein–Barr virus (EBNA1, EBVBOLF), and human endogenous retrovirus (HERV-W env-su) were detected by ELISA in serum samples from 148 consecutive RA patients and 148 sex and age-matched healthy controls (HCs). In addition, the presence of a relationship between the positivity and the titer of antibodies and RA descriptors was explored by bivariate correlation analysis. Results: RA patients exhibit a higher prevalence of humoral immune response against all tested peptides compared to HCs with a statically significant difference for MAP4027 (30.4% vs. 10.1%), BOLF (25.7% vs. 8.1%), RgpA (24.3% vs. 9.4%), HERV W-env (20.3% vs. 9.4%), and EBNA1 (18.9% vs. 9.4%) peptides. Fifty-three (35.8%) out of 148 RA serum and 93 (62.8%) out of 148 HCs were negative for all pathogen-derived peptides. There was a significant correlation between OD values obtained by ELISA test against all peptides (p < 0.0001). We also found an increased titer and prevalence of Abs against LtxA1 and LtxA2 in seropositive vs. seronegative RF (p = 0.019, p = 0.018). Conclusion: This study demonstrates a significantly increased humoral response against multiple pathogens in patients with RA and implies that they could be an important factor in the pathogenesis of the disease. Therefore, the role of each individual pathogen in RA needs to be further investigated.
Collapse
Affiliation(s)
- Seyedesomaye Jasemi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (S.J.); (M.B.)
| | - Gian Luca Erre
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.L.E.); (M.L.C.)
- Dipartimento di Specialità Mediche, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
| | - Maria Luisa Cadoni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.L.E.); (M.L.C.)
- Dipartimento di Specialità Mediche, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
| | - Marco Bo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (S.J.); (M.B.)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (S.J.); (M.B.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079228462
| |
Collapse
|
13
|
González-Febles J, Sanz M. Periodontitis and rheumatoid arthritis: What have we learned about their connection and their treatment? Periodontol 2000 2021; 87:181-203. [PMID: 34463976 DOI: 10.1111/prd.12385] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis and periodontitis are chronic inflammatory diseases defined respectively by the destruction of the articular cartilage and tooth-supporting periodontal tissues. Although the epidemiologic evidence for an association between these two diseases is still scarce, there is emerging scientific information linking specific bacterial periodontal pathogens, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, in the citrullination process, leading to autoantibody formation and compromised immunotolerance of the susceptible patient to rheumatoid arthritis. In this review, we update the existing information on the evidence, not only regarding the epidemiologic association, but also the biologic mechanisms linking these two diseases. Finally, we review information emerging from intervention studies evaluating whether periodontal treatment could influence the initiation and progression of rheumatoid arthritis.
Collapse
Affiliation(s)
- Jerián González-Febles
- Departament of Dental Clinical Specialties, Faculty of Odontology, University Complutense, Madrid, Spain.,Research Group on the Aetiology and Treatment of Periodontal and Periimplant Diseases (ETEP), Faculty of Odontology, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Departament of Dental Clinical Specialties, Faculty of Odontology, University Complutense, Madrid, Spain.,Research Group on the Aetiology and Treatment of Periodontal and Periimplant Diseases (ETEP), Faculty of Odontology, University Complutense, Madrid, Spain
| |
Collapse
|
14
|
Catrina A, Krishnamurthy A, Rethi B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD Open 2021; 7:e001228. [PMID: 33771834 PMCID: PMC8006837 DOI: 10.1136/rmdopen-2020-001228] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Epidemiological findings suggest a potential role for anti-citrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA) pathogenesis. ACPA-positive RA is associated with unique genetical and environmental risk factors, in contrast to seronegative RA. ACPA-positive healthy individuals are at risk of developing RA and can develop joint pain and bone loss already before disease onset. ACPA injection triggered bone loss and pain-like behaviour in mice and, in the presence of additional arthritis inducers, exacerbated joint inflammation. In cell culture experiments, ACPAs could bind to and modulate a variety of cellular targets, such as macrophages, osteoclasts, synovial fibroblasts, neutrophil granulocytes, mast cells, dendritic cells and platelets, further underlying a potential role for these autoantibodies in triggering pathogenic pathways and providing clues for their mechanisms of action. Patient-derived ACPA clones have been characterised by unique cellular effects and multiple ways to act on the target cells. ACPAs might directly induce stimulatory signals by ligating key citrullinated cell surface molecules or, alternatively, act as immune complexes on Fc receptors and potentially other molecules that recognise carbohydrate moieties. On the contrary to experimentally manufactured ACPA clones, patient-derived ACPAs are highly promiscuous and cross-reactive, suggesting a simultaneous binding to a range of functionally relevant and irrelevant targets. Moreover, several ACPA clones recognise carbamylated or acetylated targets as well. These features complicate the identification and description of ACPA-induced pathogenic mechanisms. In the current review, we summarise recent data on the functional properties of patient-derived ACPAs and present mechanistic models on how these antibodies might contribute to RA pathogenesis.
Collapse
Affiliation(s)
- Anca Catrina
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Akilan Krishnamurthy
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bence Rethi
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Arleevskaya MI, Larionova RV, Brooks WH, Bettacchioli E, Renaudineau Y. Toll-Like Receptors, Infections, and Rheumatoid Arthritis. Clin Rev Allergy Immunol 2020; 58:172-181. [PMID: 31144208 DOI: 10.1007/s12016-019-08742-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Toll-like receptors (TLR) that belong to the group of protein recognition receptor (PPR) provide an innate immune response following the sensing of conserved pathogen-associated microbial patterns (PAMPs) and changes in danger-associated molecular patterns (DAMPs) that are generated as a consequence of cellular injury. Analysis of the TLR pathway has moreover offered new insights into the pathogenesis of rheumatoid arthritis (RA). Indeed, a dysfunctional TLR-mediated response characterizes RA patients and participates in establishment of a chronic inflammatory state. Such an inappropriate TLR response has been attributed (i) to the report of important alterations in the microbiota and abnormal responses to infectious agents as part of RA; (ii) to the abnormal presence of TLR-ligands in the serum and synovial fluid of RA patients; (iii) to the overexpression of TLR molecules; (iv) to the production of a large panel of pro-inflammatory cytokines downstream of the TLR pathway; and (v) to genetic variants and epigenetic factors in susceptible RA patients promoting a hyper TLR response. As a consequence, the development of promising therapeutic strategies targeting TLRs for the treatment and prevention of RA is emerging.
Collapse
Affiliation(s)
| | - R V Larionova
- Central Research Laboratory, Kazan Federal University, Kazan, Russia
| | - Wesley H Brooks
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Eléonore Bettacchioli
- Laboratory of Immunology and Immunotherapy, INSERM U1227, Hôpital Morvan, Centre Hospitalier Regional Universitaire (CHU) de Brest, Brest, France
| | - Yves Renaudineau
- Central Research Laboratory, Kazan Federal University, Kazan, Russia. .,Laboratory of Immunology and Immunotherapy, INSERM U1227, Hôpital Morvan, Centre Hospitalier Regional Universitaire (CHU) de Brest, Brest, France.
| |
Collapse
|
16
|
Hamamoto Y, Ouhara K, Munenaga S, Shoji M, Ozawa T, Hisatsune J, Kado I, Kajiya M, Matsuda S, Kawai T, Mizuno N, Fujita T, Hirata S, Tanimoto K, Nakayama K, Kishi H, Sugiyama E, Kurihara H. Effect of Porphyromonas gingivalis infection on gut dysbiosis and resultant arthritis exacerbation in mouse model. Arthritis Res Ther 2020; 22:249. [PMID: 33076980 PMCID: PMC7574451 DOI: 10.1186/s13075-020-02348-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis (Pg) infection causes periodontal disease and exacerbates rheumatoid arthritis (RA). It is reported that inoculation of periodontopathogenic bacteria (i.e., Pg) can alter gut microbiota composition in the animal models. Gut microbiota dysbiosis in human has shown strong associations with systemic diseases, including RA, diabetes mellitus, and inflammatory bowel disease. Therefore, this study investigated dysbiosis-mediated arthritis by Pg oral inoculation in an experimental arthritis model mouse. METHODS Pg inoculation in the oral cavity twice a week for 6 weeks was performed to induce periodontitis in SKG mice. Concomitantly, a single intraperitoneal (i.p.) injection of laminarin (LA) was administered to induce experimental arthritis (Pg-LA mouse). Citrullinated protein (CP) and IL-6 levels in serum as well as periodontal, intestinal, and joint tissues were measured by ELISA. Gut microbiota composition was determined by pyrosequencing the 16 s ribosomal RNA genes after DNA purification of mouse feces. Fecal microbiota transplantation (FMT) was performed by transferring Pg-LA-derived feces to normal SKG mice. The effects of Pg peptidylarginine deiminase (PgPAD) on the level of citrullinated proteins and arthritis progression were determined using a PgPAD knockout mutant. RESULTS Periodontal alveolar bone loss and IL-6 in gingival tissue were induced by Pg oral infection, as well as severe joint destruction, increased arthritis scores (AS), and both IL-6 and CP productions in serum, joint, and intestinal tissues. Distribution of Deferribacteres and S24-7 was decreased, while CP was significantly increased in gingiva, joint, and intestinal tissues of Pg-inoculated experimental arthritis mice compared to experimental arthritis mice without Pg inoculation. Further, FMT from Pg-inoculated experimental arthritis mice reproduced donor gut microbiota and resulted in severe joint destruction with increased IL-6 and CP production in joint and intestinal tissues. The average AS of FMT from Pg-inoculated experimental arthritis was much higher than that of donor mouse. However, inoculation of the PgPAD knockout mutant inhibited the elevation of arthritis scores and ACPA level in serum and reduced CP amount in gingival, joint, and intestinal tissues compared to Pg wild-type inoculation. CONCLUSION Pg oral infection affected gut microbiota dysbiosis and joint destruction via increased CP generation.
Collapse
Affiliation(s)
- Yuta Hamamoto
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Syuichi Munenaga
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jyunzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases (NIID), Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Isamu Kado
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Toshihisa Kawai
- Department of Periodontology, Nova Southeastern University College of Dental Medicine, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shintaro Hirata
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
17
|
Role of Infections in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria. Microorganisms 2020; 8:microorganisms8101459. [PMID: 32977590 PMCID: PMC7598258 DOI: 10.3390/microorganisms8101459] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by chronic erosive polyarthritis. A complex interaction between a favorable genetic background, and the presence of a specific immune response against a broad-spectrum of environmental factors seems to play a role in determining susceptibility to RA. Among different pathogens, mycobacteria (including Mycobacterium avium subspecies paratuberculosis, MAP), and Epstein–Barr virus (EBV), have extensively been proposed to promote specific cellular and humoral response in susceptible individuals, by activating pathways linked to RA development. In this review, we discuss the available experimental and clinical evidence on the interplay between mycobacterial and EBV infections, and the development of the immune dysregulation in RA.
Collapse
|
18
|
Effects of Porphyromonas gingivalis and Its Underlying Mechanisms on Alzheimer-Like Tau Hyperphosphorylation in Sprague-Dawley Rats. J Mol Neurosci 2020; 71:89-100. [DOI: 10.1007/s12031-020-01629-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 01/12/2023]
|
19
|
Wu CY, Yang HY, Lai JH. Anti-Citrullinated Protein Antibodies in Patients with Rheumatoid Arthritis: Biological Effects and Mechanisms of Immunopathogenesis. Int J Mol Sci 2020; 21:ijms21114015. [PMID: 32512739 PMCID: PMC7312469 DOI: 10.3390/ijms21114015] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals with high anti-citrullinated protein antibody (ACPA) titers have an increased risk of developing rheumatoid arthritis (RA). Although our knowledge of the generation and production of ACPAs has continuously advanced during the past decade, our understanding on the pathogenic mechanisms of how ACPAs interact with immune cells to trigger articular inflammation is relatively limited. Citrullination disorders drive the generation and maintenance of ACPAs, with profound clinical significance in patients with RA. The loss of tolerance to citrullinated proteins, however, is essential for ACPAs to exert their pathogenicity. N-linked glycosylation, cross-reactivity and the structural interactions of ACPAs with their citrullinated antigens further direct their biological functions. Although questions remain in the pathogenicity of ACPAs acting as agonists for a receptor-mediated response, immune complex (IC) formation, complement system activation, crystallizable fragment gamma receptor (FcγR) activation, cross-reactivity to joint cartilage and neutrophil extracellular trap (NET)-related mechanisms have all been suggested recently. This paper presents a critical review of the characteristics and possible biological effects and mechanisms of the immunopathogenesis of ACPAs in patients with RA.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
20
|
Möller B, Kollert F, Sculean A, Villiger PM. Infectious Triggers in Periodontitis and the Gut in Rheumatoid Arthritis (RA): A Complex Story About Association and Causality. Front Immunol 2020; 11:1108. [PMID: 32582191 PMCID: PMC7283532 DOI: 10.3389/fimmu.2020.01108] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune mediated inflammatory disease of unknown origin, which is predominantly affecting the joints. Antibodies against citrullinated peptides are a rather specific immunological hallmark of this heterogeneous entity. Furthermore, certain sequences of the third hypervariable region of human leukocyte antigen (HLA)-DR class II major histocompatibility (MHC) molecules, the so called "shared epitope" sequences, appear to promote autoantibody positive types of RA. However, MHC-II molecule and other genetic associations with RA could not be linked to immune responses against specific citrullinated peptides, nor do genetic factors fully explain the origin of RA. Consequently, non-genetic factors must play an important role in the complex interaction of endogenous and exogenous disease factors. Tobacco smoking was the first environmental factor that was associated with onset and severity of RA. Notably, smoking is also an established risk factor for oral diseases. Furthermore, smoking is associated with extra-articular RA manifestations such as interstitial lung disease in anatomical proximity to the airway mucosa, but also with subcutaneous rheumatoid nodules. In the mouth, Porphyromonas gingivalis is a periodontal pathogen with unique citrullinating capacity of foreign microbial antigens as well as candidate RA autoantigens. Although the original hypothesis that this single pathogen is causative for RA remained unproven, epidemiological as well as experimental evidence linking periodontitis (PD) with RA is rapidly accumulating. Other periopathogens such as Aggregatibacter actinomycetemcomitans and Prevotella intermedia were also proposed to play a specific immunodominant role in context of RA. However, demonstration of T cell reactivity against citrullinated, MHC-II presented autoantigens from RA synovium coinciding with immunity against Prevotella copri (Pc.), a gut microbe attracted attention to another mucosal site, the intestine. Pc. was accumulated in the feces of clinically healthy subjects with citrulline directed immune responses and was correlated with RA onset. In conclusion, we retrieved more than one line of evidence for mucosal sites and different microbial taxa to be potentially involved in the development of RA. This review gives an overview of infectious agents and mucosal pathologies, and discusses the current evidence for causality between different exogenous or mucosal factors and systemic inflammation in RA.
Collapse
Affiliation(s)
- Burkhard Möller
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Florian Kollert
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Peter M Villiger
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW To explore the pathogenic association between periodontal disease and rheumatoid arthritis focusing on the role of Porphyromonas gingivalis. RECENT FINDINGS In the last decades our knowledge about the pathogenesis of rheumatoid arthritis substantially changed. Several evidences demonstrated that the initial production of autoantibodies is not localized in the joint, rather in other immunological-active sites. A central role seems to be played by periodontal disease, in particular because of the ability of P. gingivalis to induce citrullination, the posttranslational modification leading to the production of anticitrullinated protein/peptide antibodies, the most sensitive and specific rheumatoid arthritis biomarker. SUMMARY The pathogenic role of P. gingivalis has been demonstrated in mouse models in which arthritis was either triggered or worsened in infected animals. P. gingivalis showed its detrimental role not only by inducing citrullination but also by means of other key mechanisms including induction of NETosis, osteoclastogenesis, and Th17 proinflammatory response leading to bone damage and systemic inflammation.
Collapse
|
22
|
Peng HY, Chen SY, Siao SH, Chang JT, Xue TY, Lee YH, Jan MS, Tsay GJ, Zouali M. Targeting a cysteine protease from a pathobiont alleviates experimental arthritis. Arthritis Res Ther 2020; 22:114. [PMID: 32410713 PMCID: PMC7222327 DOI: 10.1186/s13075-020-02205-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Background Several lines of evidence suggest that the pathobiont Porphyromonas gingivalis is involved in the development and/or progression of auto-inflammatory diseases. This bacterium produces cysteine proteases, such as gingipain RgpA, endowed with the potential to induce significant bone loss in model systems and in patients. Objective We sought to gain further insight into the role of this pathobiont in rheumatoid arthritis (RA) and to identify novel therapeutic targets for auto-inflammatory diseases. Methods We profiled the antibody response to RgPA-specific domains in patient sera. We also tested the potential protective effects of RgpA domains in an experimental arthritis model. Results Pre-immunization of rats with purified recombinant RgpA domains alleviated arthritis in the joints of the rodents and reduced bone erosion. Using a functional genomics approach at both the mRNA and protein levels, we report that the pre-immunizations reduced arthritis severity by impacting a matrix metalloprotease characteristic of articular injury, a chemokine known to be involved in recruiting inflammatory cells, and three inflammatory cytokines. Finally, we identified an amino acid motif in the RgpA catalytic domain of P. gingivalis that shares sequence homology with type II collagen. Conclusion We conclude that pre-immunization against gingipain domains can reduce the severity of experimentally induced arthritis. We suggest that targeting gingipain domains by pre-immunization, or, possibly, by small-molecule inhibitors, could reduce the potential of P. gingivalis to translocate to remote tissues and instigate and/or exacerbate pathology in RA, but also in other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Hsin-Yi Peng
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Yao Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shih-Hong Siao
- Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan
| | | | - Ting-Yin Xue
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsuan Lee
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology, Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Gregory J Tsay
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan. .,College of Medicine, China Medical University, Taichung, Taiwan.
| | - Moncef Zouali
- Inserm UMR 1132, F-75475, Paris, France. .,University Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
23
|
Bartold PM, Lopez‐Oliva I. Periodontitis and rheumatoid arthritis: An update 2012‐2017. Periodontol 2000 2020; 83:189-212. [DOI: 10.1111/prd.12300] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Mark Bartold
- Department of Dentistry University of Adelaide Adelaide South Australia Australia
| | | |
Collapse
|
24
|
Abstract
This study evaluated the arthritogenic effect of lipopolysaccharide (LPS) in a mouse model of periodontal disease. Periodontitis was induced in wild-type CD1 mice by nine LPS injections (10 or 50 ng) into the maxillary mucosa. Untreated mice or injected with LPS at the tail were used as controls. Two weeks after final inoculation, mice were sacrificed to collect blood, maxilla, and paw samples. Development and progression of periodontitis and arthritis were monitored using clinical assessment, micro-computed tomography (micro-CT), ultrasound (US), and histological analysis. CXCL1, IL-1β, IL-6, TNF-α, and anti-citrullinated peptide antibodies (ACPA) serum levels were determined by enzyme immunoassay. Ankle swelling and inflammation manifested after the 5th periodontal injection of 50 ng of LPS and progressed until the end of experiments. Periodontal injection of 10 ng of LPS and LPS tail injection did not induce paw changes. Therefore, the subsequent assessments were conducted only in mice periodontally injected with 50 ng of LPS. Maxillary micro-CT and histological analysis showed that LPS-induced alveolar bone resorption and vascular proliferation in periodontal tissue, but not inflammation. US and histology revealed increased joint space, leukocyte infiltration, synovial proliferation, and mild cartilage and bone destruction in the paws of mice orally injected. Cytokines and ACPA showed a trend towards an increase in LPS mice. This study shows that arthritis and periodontal disease can co-occur in wild-type mice after periodontal injection of LPS at optimal dose. Our model may be useful to improve the understanding of the mechanisms linking periodontitis and arthritis.
Collapse
|
25
|
Grevich S, Lee P, Leroux B, Ringold S, Darveau R, Henstorf G, Berg J, Kim A, Velan E, Kelly J, Baltuck C, Reeves A, Leahey H, Hager K, Brittnacher M, Hayden H, Miller S, McLean J, Stevens A. Oral health and plaque microbial profile in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2019; 17:81. [PMID: 31842923 PMCID: PMC6916162 DOI: 10.1186/s12969-019-0387-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The oral microbiota has been implicated in the pathogenesis of rheumatoid arthritis through activation of mucosal immunity. This study tested for associations between oral health, microbial communities and juvenile idiopathic arthritis (JIA). METHODS A cross-sectional exploratory study of subjects aged 10-18 years with oligoarticular, extended oligoarticular and polyarticular JIA was conducted. Control groups included pediatric dental clinic patients and healthy volunteers. The primary aim was to test for an association between dental health indices and JIA; the secondary aim was to characterize the microbial profile of supragingival plaque using 16S rRNA gene sequencing. RESULTS The study included 85 patients with JIA, 62 dental patients and 11 healthy child controls. JIA patients overall had significantly more gingival inflammation compared to dental patients, as evidenced by bleeding on probing of the gingiva, the most specific sign of active inflammation (p = 0.02). Overall, however, there was a trend towards better dental hygiene in the JIA patients compared to dental patients, based on indices for plaque, decay, and periodontitis. In the JIA patients, plaque microbiota analysis revealed bacteria belonging to genera Haemophilus or Kingella elevated, and Corynebacterium underrepresented. In poly JIA, bacteria belonging to the genus Porphyromonas was overrepresented and Prevotella was underrepresented. CONCLUSION Increased gingival inflammation in JIA was independent of general oral health, and thus cannot be attributed to poor dental hygiene secondary to disability. The variation of microbial profile in JIA patients could indicate a possible link between gingivitis and synovial inflammation.
Collapse
Affiliation(s)
- Sriharsha Grevich
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, 98105, USA. .,Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| | - Peggy Lee
- 0000000122986657grid.34477.33Department of Periodontics, School of Dentistry, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Brian Leroux
- 0000000122986657grid.34477.33Department of Periodontics, School of Dentistry, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Sarah Ringold
- 0000 0000 9026 4165grid.240741.4Seattle Children’s Hospital, 4800 Sand Point Way NE, Seattle, WA 98105 USA ,0000000122986657grid.34477.33Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA ,0000 0000 9026 4165grid.240741.4Center for Clinical and Translational Research, Seattle Children’s Research Institute, 1900 9th Ave, Seattle, WA 98101 USA
| | - Richard Darveau
- 0000000122986657grid.34477.33Department of Periodontics, School of Dentistry, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Gretchen Henstorf
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, 1900 9th Ave, Seattle, WA 98101 USA
| | - Joel Berg
- 0000000122986657grid.34477.33Department of Periodontics, School of Dentistry, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Amy Kim
- 0000000122986657grid.34477.33Department of Periodontics, School of Dentistry, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Elizabeth Velan
- 0000000122986657grid.34477.33Department of Periodontics, School of Dentistry, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Joseph Kelly
- 0000000122986657grid.34477.33Department of Periodontics, School of Dentistry, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Camille Baltuck
- 0000000122986657grid.34477.33Department of Periodontics, School of Dentistry, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Anne Reeves
- 0000000122986657grid.34477.33Department of Periodontics, School of Dentistry, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Hannah Leahey
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, 1900 9th Ave, Seattle, WA 98101 USA
| | - Kyle Hager
- 0000000122986657grid.34477.33Department of Microbiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Mitchell Brittnacher
- 0000000122986657grid.34477.33Department of Microbiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Hillary Hayden
- 0000000122986657grid.34477.33Department of Microbiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Samuel Miller
- 0000000122986657grid.34477.33Department of Microbiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA ,0000000122986657grid.34477.33Department of Genome Sciences, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA ,0000000122986657grid.34477.33Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Jeffrey McLean
- 0000000122986657grid.34477.33Department of Periodontics, School of Dentistry, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Anne Stevens
- 0000 0000 9026 4165grid.240741.4Seattle Children’s Hospital, 4800 Sand Point Way NE, Seattle, WA 98105 USA ,0000000122986657grid.34477.33Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA 98195 USA ,0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, 1900 9th Ave, Seattle, WA 98101 USA
| |
Collapse
|
26
|
Gómez-Bañuelos E, Mukherjee A, Darrah E, Andrade F. Rheumatoid Arthritis-Associated Mechanisms of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. J Clin Med 2019; 8:jcm8091309. [PMID: 31454946 PMCID: PMC6780899 DOI: 10.3390/jcm8091309] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology characterized by immune-mediated damage of synovial joints and antibodies to citrullinated antigens. Periodontal disease, a bacterial-induced inflammatory disease of the periodontium, is commonly observed in RA and has implicated periodontal pathogens as potential triggers of the disease. In particular, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans have gained interest as microbial candidates involved in RA pathogenesis by inducing the production of citrullinated antigens. Here, we will discuss the clinical and mechanistic evidence surrounding the role of these periodontal bacteria in RA pathogenesis, which highlights a key area for the treatment and preventive interventions in RA.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Amarshi Mukherjee
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
27
|
Sakaguchi W, To M, Yamamoto Y, Inaba K, Yakeishi M, Saruta J, Fuchida S, Hamada N, Tsukinoki K. Detection of anti-citrullinated protein antibody (ACPA) in saliva for rheumatoid arthritis using DBA mice infected with Porphyromonas gingivalis. Arch Oral Biol 2019; 108:104510. [PMID: 31446118 DOI: 10.1016/j.archoralbio.2019.104510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The anti-citrullinated protein antibody (ACPA), an autoantibody of rheumatoid arthritis (RA), is very specific in the diagnosis of RA and has been detected in early cases and several years before the onset of the disease. In this study, we focused on ACPA and examined whether it could be detected in saliva whether it is associated with periodontal disease. DESIGN Porphyromonas gingivalis (Pg) or Escherichia coli (Ec) was administered into the oral cavity of DBA/1JJmsSlc mice. The arthritis index was measured in foot bones, and collected saliva and serum. The amount of ACPA in serum and saliva was measured using ELISA, and antibodies in serum, saliva, and foot bones were detected and analysed by western blotting. RESULT Histopathological analysis of foot bones of the Pg/RA group detected greater inflammatory cell infiltration than in the RA group, and bone resorption was evident. Furthermore, ELISA results show that the amount of ACPA in serum was significantly higher in the Pg/RA group (P < 0.05), with a tendency to also increase in the saliva. In addition, western blotting results show a 55 kDa citrullinated protein in the serum and saliva of the RA and Pg/RA groups. CONCLUSIONS We conclude that Pg infection increases ACPA in the serum and is reflected in the saliva, and may be involved in the inflammatory progression of RA.
Collapse
Affiliation(s)
- Wakako Sakaguchi
- Department of Oral Science, Division of Environmental Pathology, Kanagawa Dental University, Graduate School of Dentistry, Kanagawa, Japan
| | - Masahiro To
- Department of Oral Science, Division of Dental Anatomy, Kanagawa Dental University, Graduate School of Dentistry, Kanagawa, Japan
| | - Yuko Yamamoto
- Department of Dental Hygiene, Kanagawa Dental University, Junior College, Kanagawa, Japan
| | - Keitaro Inaba
- Department of Microbiology and Infection, Kanagawa Dental University, Graduate School of Dentistry, Kanagawa, Japan
| | - Mayumi Yakeishi
- Department of Pathology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Juri Saruta
- Department of Oral Science, Division of Environmental Pathology, Kanagawa Dental University, Graduate School of Dentistry, Kanagawa, Japan
| | - Shinya Fuchida
- Department of Dental Sociology, Kanagawa Dental University, Graduate School of Dentistry, Kanagawa, Japan
| | - Nobushiro Hamada
- Department of Microbiology and Infection, Kanagawa Dental University, Graduate School of Dentistry, Kanagawa, Japan
| | - Keiichi Tsukinoki
- Department of Oral Science, Division of Environmental Pathology, Kanagawa Dental University, Graduate School of Dentistry, Kanagawa, Japan.
| |
Collapse
|
28
|
Ge C, Holmdahl R. The structure, specificity and function of anti-citrullinated protein antibodies. Nat Rev Rheumatol 2019; 15:503-508. [PMID: 31253945 DOI: 10.1038/s41584-019-0244-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 01/14/2023]
Abstract
In this Perspectives article, we outline a proposed model for understanding the specificity and function of anti-citrullinated protein antibodies (ACPAs). We suggest that ACPAs vary in specificity between two extremes: some are 'promiscuous' in that they are highly specific for the citrulline side chain, but cross-react with a range of citrullinated peptides, whereas others are 'private' in that their recognition of citrulline as well as proximal amino acid side chains enables protein-specific interactions. Promiscuous ACPAs tend to dominate in the sera both before and after the onset of rheumatoid arthritis, but their functional role has not been clarified. No firm evidence exists that these ACPAs are pathogenic. By contrast, private ACPAs encompass antibodies that specifically recognize citrullinated epitopes on joint proteins or that cross-react with joint proteins, thereby opening up the possibility that these private ACPAs are arthritogenic. These joint-reactive antibodies are more likely to target joints by binding to joint tissues and to promote the formation of local immune complexes leading to bone erosions, pain and arthritis.
Collapse
Affiliation(s)
- Changrong Ge
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
29
|
Munenaga S, Ouhara K, Hamamoto Y, Kajiya M, Takeda K, Yamasaki S, Kawai T, Mizuno N, Fujita T, Sugiyama E, Kurihara H. The involvement of C5a in the progression of experimental arthritis with Porphyromonas gingivalis infection in SKG mice. Arthritis Res Ther 2018; 20:247. [PMID: 30390695 PMCID: PMC6235227 DOI: 10.1186/s13075-018-1744-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
Background Epidemiological evidence to suggest that periodontal disease (PD) is involved in the progression of rheumatoid arthritis (RA) is increasing. The complement system plays a critical role in immune responses. C5a has been implicated in chronic inflammatory diseases, including PD and RA. Porphyromonas gingivalis is the major causative bacteria of PD and can produce C5a. Therefore, it is hypothesized that P. gingivalis infection is involved in the progression of RA by elevating C5a levels. In the present study, P. gingivalis–infected RA model mice were established to investigate the involvement of C5a. Methods SKG mice orally infected with P. gingivalis were immunized with intraperitoneal injection of laminarin (LA) to induce arthritis. Arthritis development was assessed by arthritis score (AS), bone destruction on the talus, histology, and serum markers of RA. In order to investigate the effects of serum C5a on bone destruction, osteoclast differentiation of bone marrow mononuclear cells was examined by using serum samples from each group of mice. The relationship between C5a levels and antibody titers to periodontal pathogens in patients with RA was investigated by enzyme-linked immunosorbent assay. Results P. gingivalis oral infection increased AS, infiltration of inflammatory cells, bone destruction on the talus, and serum markers of RA in mice immunized with LA. The addition of serum from LA-injected mice with the P. gingivalis oral infection promoted osteoclast differentiation, and the addition of a neutralization antibody against C5a suppressed osteoclast differentiation. C5a levels of serum in RA patients with positive P. gingivalis antibody were elevated compared with those in RA patients with negative P. gingivalis antibody. Conclusions These results suggest that P. gingivalis infection enhances the progression of RA via C5a.
Collapse
Affiliation(s)
- Syuichi Munenaga
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Yuta Hamamoto
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Satoshi Yamasaki
- Division of Rheumatology, Kurume University Medical Center, 155-1 Kokubu-machi, Kurume, 839-0863, Japan
| | - Toshihisa Kawai
- Department of Periodontology, Nova Southeastern University College of Dental Medicine, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
30
|
Interplay between P. gingivalis, F. nucleatum and A. actinomycetemcomitans in murine alveolar bone loss, arthritis onset and progression. Sci Rep 2018; 8:15129. [PMID: 30310087 PMCID: PMC6181973 DOI: 10.1038/s41598-018-33129-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence supports the association of periodontitis with rheumatoid arthritis. Even though a prominent role has been postulated for Porphyromonas gingivalis, many bacterial species contribute to the pathogenesis of periodontal disease. We therefore investigated the impact of Porphyromonas gingivalis as well as other major pathobionts on the development of both, periodontitis and arthritis in the mouse. Pathobionts used - either alone or in combination - were Porphyromonas gingivalis, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomintans. Periodontitis was induced via oral gavage in SKG, DBA/1 and F1 (DBA/1 × B10.Q) mice and collagen-induced arthritis was provoked via immunization and boost with bovine collagen type II. Alveolar bone loss was quantified via micro computed tomography, arthritis was evaluated macroscopically and histologically and serum antibodies were assessed. Among the strains tested, only F1 mice were susceptible to P. gingivalis induced periodontitis and showed significant alveolar bone loss. Bone loss was paralleled by antibody titers against P. gingivalis. Of note, mice inoculated with the mix of all three pathobionts showed less alveolar bone loss than mice inoculated with P. gingivalis alone. However, oral inoculation with either F. nucleatum or A. actinomycetemcomintans alone accelerated subsequent arthritis onset and progression. This is the first report of a triple oral inoculation of pathobionts combined with collagen-induced arthritis in the mouse. In this interplay and this particular genetic setting, F. nucleatum and A. actinomycetemcomitans exerted a protective impact on P. gingivalis induced alveolar bone loss. By themselves they did not induce periodontitis yet accelerated arthritis onset and progression.
Collapse
|
31
|
Reduction of Articular and Systemic Inflammation by Kava-241 in a Porphyromonas gingivalis-Induced Arthritis Murine Model. Infect Immun 2018; 86:IAI.00356-18. [PMID: 29914930 DOI: 10.1128/iai.00356-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that has been linked to several risk factors, including periodontitis. Identification of new anti-inflammatory compounds to treat arthritis is needed. We had previously demonstrated the beneficial effect of Kava-241, a kavain-derived compound, in the management of Porphyromonas gingivalis-induced periodontitis. The present study evaluated systemic and articular effects of Kava-241 in an infective arthritis murine model triggered by P. gingivalis bacterial inoculation and primed with a collagen antibody cocktail (CIA) to induce joint inflammation and tissular destruction. Clinical inflammation score and radiological analyses of the paws were performed continuously, while histological assessment was obtained at sacrifice. Mice exposed to P. gingivalis and a CIA cocktail and treated concomitantly with Kava-241 exhibited a reduced clinical inflammatory score and a decreased number of inflammatory cells and osteoclasts within joint. Kava-241 treatment also decreased significantly tumor necrosis factor alpha (TNF-α) in serum from mice injected with a Toll-like receptor 2 or 4 (TLR-2/4) ligand, P. gingivalis-lipopolysaccharide (LPS). Finally, bone marrow-derived macrophages infected with P. gingivalis and exposed to Kava-241 displayed reduced TLR-2/4, reduced mitogen-activated protein kinase (MAPK)-related signal elements, and reduced LPS-induced TNF-α factor (LITAF), all explaining the observed reduction of TNF-α secretion. Taken together, these results emphasized the novel properties of Kava-241 in the management of inflammatory conditions, especially TNF-α-related diseases such as infective RA.
Collapse
|
32
|
Ouhara K, Munenaga S, Kajiya M, Takeda K, Matsuda S, Sato Y, Hamamoto Y, Iwata T, Yamasaki S, Akutagawa K, Mizuno N, Fujita T, Sugiyama E, Kurihara H. The induced RNA-binding protein, HuR, targets 3'-UTR region of IL-6 mRNA and enhances its stabilization in periodontitis. Clin Exp Immunol 2018; 192:325-336. [PMID: 29393507 PMCID: PMC5980314 DOI: 10.1111/cei.13110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/19/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate mRNA stability by binding to the 3'-untranslated region (UTR) region of mRNA. Human antigen-R (HuR), one of the RBPs, is involved in the progression of diseases, such as rheumatoid arthritis, diabetes mellitus and some inflammatory diseases. Interleukin (IL)-6 is a major inflammatory cytokine regulated by HuR binding to mRNA. Periodontal disease (PD) is also an inflammatory disease caused by elevations in IL-6 following an infection by periodontopathogenic bacteria. The involvement of HuR in the progression of PD was assessed using in-vitro and in-vivo experiments. Immunohistochemistry of inflamed periodontal tissue showed strong staining of HuR in the epithelium and connective tissue. HuR mRNA and protein level was increased following stimulation with Porphyromonas gingivalis (Pg), one of the periodontopathogenic bacteria, lipopolysacchride (LPS)-derived from Pg (PgLPS) and tumour necrosis factor (TNF)-α in OBA-9, an immortalized human gingival epithelial cell. The luciferase activity of 3'-UTR of IL-6 mRNA was increased by TNF-α, Pg and PgLPS in OBA-9. Luciferase activity was also increased in HuR-over-expressing OBA-9 following a bacterial stimulation. Down-regulation of HuR by siRNA resulted in a decrease in mRNA expression and production of IL-6. In contrast, the over-expression of HuR increased IL-6 mRNA expression and production in OBA-9. The HuR inhibitor, quercetin, suppressed Pg-induced HuR mRNA expression and IL-6 production in OBA-9. An oral inoculation with quercetin also inhibited bone resorption in ligature-induced periodontitis model mice as a result of down-regulation of IL-6. These results show that HuR modulates inflammatory responses by regulating IL-6.
Collapse
Affiliation(s)
- K. Ouhara
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| | - S. Munenaga
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| | - M. Kajiya
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| | - K. Takeda
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| | - S. Matsuda
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| | - Y. Sato
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| | - Y. Hamamoto
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| | - T. Iwata
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| | - S. Yamasaki
- Kurume University Medical CenterFukuokaJapan
| | - K. Akutagawa
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| | - N. Mizuno
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| | - T. Fujita
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| | - E. Sugiyama
- Department of Clinical Immunology and RheumatologyHiroshima University HospitalHiroshimaJapan
| | - H. Kurihara
- Department of Periodontal MedicineGraduate School of Biomedical and Sciences, Hiroshima UniversityHiroshimaJapan
| |
Collapse
|
33
|
Benson RA, McInnes IB, Garside P, Brewer JM. Model answers: Rational application of murine models in arthritis research. Eur J Immunol 2017; 48:32-38. [PMID: 29193037 PMCID: PMC5814907 DOI: 10.1002/eji.201746938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022]
Abstract
Advances in targeted immune therapeutics have profoundly improved clinical outcomes for patients with inflammatory arthropathies particularly rheumatoid arthritis. The landscape of disease that is observed and the treatment outcomes desired for the future have also progressed. As such there is an increasing move away from traditional models of end‐stage, chronic disease with recognition of the need to consider the earliest phases of pathogenesis as a target for treatment leading to resolution and/or cure. In order to continue the discovery process and enhance our understanding of disease and treatment, we therefore need to continuously revisit the animal models we employ and assess their relevance and utility in the light of contemporary therapeutic goals. In this review, we highlight the areas where we consider new developments in animal models and their application are most required. Thus, we have contextualised the relevant mouse models and their use within the current concepts of human inflammatory arthritis pathogenesis and highlight areas of need.
Collapse
Affiliation(s)
- Robert A Benson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| | - Paul Garside
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| |
Collapse
|
34
|
Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol 2017; 13:606-620. [DOI: 10.1038/nrrheum.2017.132] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|