1
|
Reeß LG, Salih H, Delikaya M, Paul F, Oertel FC. Barriers in Healthcare to the Use of Optical Coherence Tomography Angiography in Multiple Sclerosis. Neurol Ther 2025; 14:45-56. [PMID: 39500829 PMCID: PMC11762043 DOI: 10.1007/s40120-024-00670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 01/27/2025] Open
Abstract
Optical coherence tomography angiography (OCT-A) is a state-of-the-art imaging technique for the retinal vasculature to accurately segment the capillary network and assign it to retinal layers. OCT-A is a promising technique to better understand neurological diseases with visual system manifestations, such as multiple sclerosis (MS), and to identify and characterize vascular biomarkers. Initial studies suggested vascular changes in MS and its differential diagnoses such as myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) and neuromyelitis optica spectrum disorder (NMOSD). Here we review clinical and technical aspects of OCT-A imaging and discuss the potential for the MS field as well as barriers that need to be overcome before OCT-A can be established in clinical application.
Collapse
Affiliation(s)
- Lukas G Reeß
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hadi Salih
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Murat Delikaya
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Jeyanathan B, Micieli J. Acute Myelin Oligodendrocyte Glycoprotein-IgG Optic Neuritis without Optic Nerve Enhancement. Case Rep Ophthalmol 2025; 16:7-11. [PMID: 39981528 PMCID: PMC11703545 DOI: 10.1159/000542889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 02/22/2025] Open
Abstract
Introduction Optic neuritis (ON) is a common neuro-ophthalmological condition and remains a significant indicator of inflammatory conditions affecting the central nervous system. Varying etiologies exist for ON including multiple sclerosis, NMOSD, and MOGAD. Differential diagnosis is achieved using both radiological and serological testing. MRI characteristics of MOG-ON include T2 hypersensitive lesions, nerve swelling, and gadolinium enhancement of the affected optic nerve. While acute MOG-ON usually presents with optic nerve enhancement, recognizing atypical presentations is critical in accurate diagnosis and effective management. Case Presentation We herein present a case of a 67-year-old woman presenting with sudden decrease in vision in the right eye. The patient underwent a 3T MRI of the orbits and brain 5 days post vision loss which returned normal right optic nerve appearance at presentation (no edema, enhancement or increased T2 signal). Further serological testing of the MOG antibody returned positive (1:100) while APQ4 antibodies were negative. This yielded a diagnosis of MOG-IgG-ON. Subsequently, the patient was treated with IV methylprednisolone 1 g daily for 5 days followed by prednisone 1 mg/kg, resulting in marked improvement in vision. Conclusion This case highlights the complexity involved in diagnosing ON, especially in the context of MOGAD. Absence of optic nerve enhancement in this patient calls attention to the possibility of subclinical inflammation and/or detectable enhancement later in clinical course. Our findings, along with existing literature, highlight the need for clinicians to consider atypical MRI presentations in MOG-ON cases. Recognizing that normal MRI does not exclude MOG-ON is important for optimizing diagnostic accuracy and effective treatment interventions.
Collapse
Affiliation(s)
- Bava Jeyanathan
- Kensington Vision and Research Centre, Kensington Research Institute, Toronto, ON, Canada
| | - Jonathan Micieli
- Kensington Vision and Research Centre, Kensington Research Institute, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, Unity Health, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Dunseath C, Bova EJ, Wilson E, Care M, Cecil KM. Pediatric Neuroimaging of Multiple Sclerosis and Neuroinflammatory Diseases. Tomography 2024; 10:2100-2127. [PMID: 39728911 DOI: 10.3390/tomography10120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful for evaluating disease features and monitoring treatment responses in patients by characterizing lesion involvement in the central nervous system and tracking temporal features with blood-brain barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and neuroinflammatory diseases. This work also highlights findings from advanced MRI techniques, often infrequently employed due to the challenges involved in acquisition, post-processing, and interpretation, and identifies the need for future studies to extract the unique information, such as alterations in neurochemistry, disruptions of structural organization, or atypical functional connectivity, that may be relevant for the diagnosis and management of disease.
Collapse
Affiliation(s)
- Chloe Dunseath
- Medical School, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Emma J Bova
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth Wilson
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Marguerite Care
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
4
|
Carnero Contentti E, Pestchanker C, Ciampi E, Castro Suarez S, Caparo Zamalloa C, Daccach Marques V, Messias K, Gortari JI, Tkachuk V, Silva B, Mainella C, Reyes S, Toro J, Rodriguez J, Correa‐Diaz E, Rojas JI, Paul F. The real-world applicability of the 2023 international myelin oligodendrocyte glycoprotein antibody-associated disease criteria in a Latin American cohort. Eur J Neurol 2024; 31:e16445. [PMID: 39287067 PMCID: PMC11554853 DOI: 10.1111/ene.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND AND PURPOSE The diagnostic criteria for myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disease (MOGAD) were published in 2023. We aimed to determine the performance of the new criteria in Latin American (LATAM) patients compared with the 2018 criteria and explore the significance of MOG-IgG titers in diagnosis. METHODS We retrospectively reviewed the medical records of LATAM (Argentina, Chile, Brazil, Peru, Ecuador, and Colombia) adult patients with one clinical MOGAD event and MOG-IgG positivity confirmed by cell-based assay. Both 2018 and 2023 MOGAD criteria were applied, calculating diagnostic performance indicators. RESULTS Among 171 patients (predominantly females, mean age at first attack = 34.1 years, mean disease duration = 4.5 years), 98.2% patients met the 2018 criteria, and of those who did not fulfill diagnostic criteria (n = 3), all tested positive for MOG-IgG (one low-positive and two without reported titer). Additionally, 144 (84.2%) patients met the 2023 criteria, of whom 57 (39.5%) had MOG-IgG+ titer information (19 clearly positive and 38 low-positive), whereas 87 (60.5%) patients had no MOG-IgG titer. All 144 patients met diagnostic supporting criteria. The remaining 27 patients did not meet the 2023 MOGAD criteria due to low MOG-IgG (n = 12) or lack of titer antibody access (n = 15), associated with the absence of supporting criteria. The 2023 MOGAD criteria showed a sensitivity of 86% (95% confidence interval = 0.80-0.91) and specificity of 100% compared to the 2018 criteria. CONCLUSIONS These findings support the diagnostic utility of the 2023 MOGAD criteria in an LATAM cohort in real-world practice, despite limited access to MOG-IgG titration.
Collapse
Affiliation(s)
| | | | - Ethel Ciampi
- Neurology DepartmentHospital Dr. Sótero del Río y Universidad Católica de ChileSantiagoChile
| | - Sheila Castro Suarez
- Basic Research Center in Dementia and Central Nervous System Demyelinating DiseasesInstituto Nacional de Ciencias NeurológicasLimaPeru
| | - Cesar Caparo Zamalloa
- Basic Research Center in Dementia and Central Nervous System Demyelinating DiseasesInstituto Nacional de Ciencias NeurológicasLimaPeru
| | - Vanesa Daccach Marques
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloSão PauloBrazil
| | - Katharina Messias
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloSão PauloBrazil
| | | | | | - Berenice Silva
- Neurology DepartmentHospital Italiano de Buenos AiresBuenos AiresArgentina
| | | | - Saúl Reyes
- Neurology DepartmentFundación Santa Fe de BogotáBogotáColombia
- School of MedicineUniversidad de los AndesBogotáColombia
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Jaime Toro
- Neurology DepartmentFundación Santa Fe de BogotáBogotáColombia
- School of MedicineUniversidad de los AndesBogotáColombia
| | - Juan Rodriguez
- Neurology DepartmentFundación Santa Fe de BogotáBogotáColombia
- School of MedicineUniversidad de los AndesBogotáColombia
| | - Edgar Correa‐Diaz
- Department of NeurologyHospital Carlos Andrade MarínQuitoEcuador
- Pontificia Universidad Católica del EcuadorQuitoEcuador
| | - Juan I. Rojas
- Neurology DepartmentCentro de Esclerosis Múltiple de Buenos AiresBuenos AiresArgentina
| | - Friedemann Paul
- NeuroCure Clinical Research CenterCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Experimental and Clinical Research CenterMax Delbrueck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
5
|
Griffiths-King D, Billaud C, Makusha L, Looi LL, Wassmer E, Wright S, Wood AG. Impact of autoantibodies against myelin oligodendrocyte glycoprotein in paediatric acquired demyelinating disease: Intellectual functioning and academic performance. Eur J Paediatr Neurol 2024; 53:8-17. [PMID: 39243465 DOI: 10.1016/j.ejpn.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Paediatric acquired demyelinating syndromes (pADS) attack white matter pathways in the brain during an important period of development. Affected children can experience poor functional outcomes, including deficits in specific cognitive domains. Understanding risk factors for poor outcome will guide clinical management of these children. One clinical phenotype which may differentially impact cognitive outcomes is the presence of autoantibodies to myelin oligodendrocyte glycoprotein (MOG). Preliminary research has suggested that cognitive difficulties exist in paediatric patients who test positive for MOG antibodies or MOGAD (Myelin Oligodendrocyte Glycoprotein Associated Disease) however, they experience a less severe profile compared to seronegative counterparts. The current study assesses children diagnosed with pADS who tested positive or negative for MOG-ab using standardised assessments of both intellectual functioning and academic ability. The results show that a subset of MOGAD patients experience clinically significant sequalae in intellectual functioning and academic ability. The neuropsychological profile also differed between children with and without MOG-ab positivity, with seronegative patients more likely to show a clinically relevant difficulties at the individual patient level. Whilst no differences existed at the group-level; the current study demonstrates the relative additional risk of intellectual/academic difficulty associated with MOG-ab seronegativity. This research further supports the growing perspective that MOG-positivity confers a more favourable neuropsychological outlook than is the case for their seronegative counterparts. This broadening consensus offers reassurance for clinicians, families, and patients.
Collapse
Affiliation(s)
- Daniel Griffiths-King
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Charly Billaud
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK; Nanyang Technological University, Singapore, Singapore
| | - Lydiah Makusha
- Department of Neurology, Birmingham Children's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Ling Lynette Looi
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK; Nanyang Technological University, Singapore, Singapore
| | - Evangeline Wassmer
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK; Department of Neurology, Birmingham Children's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Sukhvir Wright
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK; Department of Neurology, Birmingham Children's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Amanda G Wood
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK; School of Psychology, Faculty of Health, Melbourne Burwood Campus, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Amanollahi M, Mozafar M, Rezaei S, Rafati A, Ashourizadeh H, Moheb N, Jameie M, Shobeiri P, Chen JJ. Optical coherence tomography angiography measurements in neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody disease: A systematic review and meta-analysis. Mult Scler Relat Disord 2024; 91:105864. [PMID: 39265270 DOI: 10.1016/j.msard.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE Neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) are immune-mediated disorders that can often manifest with optic neuritis (ON) among other symptoms. Optical coherence tomography angiography (OCTA) is an emerging diagnostic method that can quantify retinal capillary blood flow and vessel density (VD), which have been shown to be affected in NMOSD and MOGAD. Hence, we aimed to systematically review the studies addressing retinal microvasculature using OCTA in these diseases. DESIGN Systematic review and meta-analysis. METHODS PubMed, EMBASE, and Web of Sciences were systematically searched to identify articles addressing OCTA measurements in patients with NMOSD or MOGAD. Following the data extraction, a meta-analysis was performed on the study population and OCTA types amongst at least two homogenous studies. RESULTS Twenty-two studies on NMOSD, MOGAD, or both were included. Parafoveal superficial retinal capillary plexus (SRCP) VD and radial peripapillary capillary (RPC) VD were diminished in NMOSD ON+ and NMOSD ON- groups compared to healthy controls (HCs). In addition, both the SRCP VD and RPC VD were significantly reduced in NMOSD ON+ compared to NMOSD ON-. However, meta-analysis for deep retinal capillary plexus (DRCP) did not show a significant difference between NMOSD patients and HCs, or among ON+ and ON- patients. Furthermore, there was no significant difference in foveal avascular zone (FAZ) area size between NMOSD patients and HCs. Regarding MOGAD, the meta-analysis showed decreased parafoveal SRCP VD and RPC VD in MOGAD ON+ patients compared to HCs. Comparing NMOSD ON+ and MOGAD ON+, a meta-analysis was conducted for RPC VD, which showed no significant difference between the two groups. CONCLUSIONS This systematic review and meta-analysis confirmed reduced VD in the macular and peripapillary areas in NMOSD and MOGAD eyes, particularly in the parafoveal SRCP and RPC, which is further impacted by prior ON.
Collapse
Affiliation(s)
- Mobina Amanollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mozafar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Rezaei
- Eye and Skull Base Research Centers, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Science, Tehran, Iran
| | - Ali Rafati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Helia Ashourizadeh
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Negar Moheb
- Department of Neurology, Lehigh Valley Fleming Neuroscience Institute, Allentown, PA, USA
| | - Melika Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Shobeiri
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - John J Chen
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Pakeerathan T, Havla J, Schwake C, Salmen A, Ringelstein M, Aktas O, Weise M, Gernert JA, Kornek B, Bsteh G, Pröbstel AK, Papadopoulou A, Kulsvehagen L, Ayroza Galvão Ribeiro Gomes AB, Cerdá-Fuertes N, Oertel FC, Duchow AS, Paul F, Stellmann JP, Stolowy N, Hellwig K, Schneider-Gold C, Kümpfel T, Gold R, Albrecht P, Ayzenberg I. Rapid differentiation of MOGAD and MS after a single optic neuritis. J Neurol 2024; 271:7222-7231. [PMID: 39249105 PMCID: PMC11561115 DOI: 10.1007/s00415-024-12666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Optic neuritis (ON) is a common manifestation of multiple sclerosis (MS) and myelin-oligodendrocyte-glycoprotein IgG-associated disease (MOGAD). This study evaluated the applicability of optical coherence tomography (OCT) for differentiating between both diseases in two independent cohorts. METHODS One hundred sixty two patients from seven sites underwent standard OCT and high-contrast visual acuity (HCVA) testing at least 6 months after first ON. Of these, 100 patients (32 MOGAD, 68 MS) comprised the primary investigational cohort, while 62 patients (31 MOGAD, 31 MS) formed a validation cohort. A composite score distinguishing between MOGAD and MS was developed using multivariate logistic regression. RESULTS Bilateral simultaneous ON occurred more frequently in MOGAD compared to MS (46.9 vs. 11.8%, p < 0.001). OCT revealed more peripapillary retinal nerve fiber layer (pRNFL) atrophy in all segments in MOGAD compared to predominantly temporal pRNFL atrophy in MS (p < 0.001). HCVA was better preserved in MS (p = 0.007). pRNFL thickness in all except for temporal segments was suitable for differentiating MOGAD and MS. Simultaneous bilateral ON and critical atrophy in nasal (< 58.5 µm) and temporal superior (< 105.5 µm) segments were included into the composite score as three independent predictors for MOGAD. The composite score distinguished MOGAD from MS with 75% sensitivity and 90% specificity in the investigational cohort, and 68% sensitivity and 87% specificity in the validation cohort. CONCLUSION Following a single ON-episode, MOGAD exhibits more pronounced global pRNFL atrophy and lower visual acuity after ON compared to MS. The introduced OCT-based composite score enabled differentiation between the two entities across both cohorts.
Collapse
Affiliation(s)
- T Pakeerathan
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - J Havla
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians Universität München, Munich, Germany
| | - C Schwake
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - A Salmen
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - M Ringelstein
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - O Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - M Weise
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - J A Gernert
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians Universität München, Munich, Germany
| | - B Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - G Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - A-K Pröbstel
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center of Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - A Papadopoulou
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center of Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - L Kulsvehagen
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center of Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - A B Ayroza Galvão Ribeiro Gomes
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center of Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - N Cerdá-Fuertes
- Department of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center of Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - F C Oertel
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A S Duchow
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - F Paul
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - J P Stellmann
- APHM, Hopital de La Timone, CEMEREM, Marseille, France
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - N Stolowy
- Department of Ophthalmology, Centre Hospitalier Universitaire de La Timone, Marseille, France
| | - K Hellwig
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - C Schneider-Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - T Kümpfel
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians Universität München, Munich, Germany
| | - R Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - P Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Kliniken Maria Hilf Mönchengladbach, Mönchengladbach, Germany
| | - I Ayzenberg
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany.
| |
Collapse
|
8
|
Uzawa A, Oertel FC, Mori M, Paul F, Kuwabara S. NMOSD and MOGAD: an evolving disease spectrum. Nat Rev Neurol 2024; 20:602-619. [PMID: 39271964 DOI: 10.1038/s41582-024-01014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
Neuromyelitis optica (NMO) spectrum disorder (NMOSD) is a relapsing inflammatory disease of the CNS, characterized by the presence of serum aquaporin 4 (AQP4) autoantibodies (AQP4-IgGs) and core clinical manifestations such as optic neuritis, myelitis, and brain or brainstem syndromes. Some people exhibit clinical characteristics of NMOSD but test negative for AQP4-IgG, and a subset of these individuals are now recognized to have serum autoantibodies against myelin oligodendrocyte glycoprotein (MOG) - a condition termed MOG antibody-associated disease (MOGAD). Therefore, the concept of NMOSD is changing, with a disease spectrum emerging that includes AQP4-IgG-seropositive NMOSD, MOGAD and double-seronegative NMOSD. MOGAD shares features with NMOSD, including optic neuritis and myelitis, but has distinct pathophysiology, clinical profiles, neuroimaging findings (including acute disseminated encephalomyelitis and/or cortical encephalitis) and biomarkers. AQP4-IgG-seronegative NMOSD seems to be a heterogeneous condition and requires further study. MOGAD can manifest as either a monophasic or a relapsing disease, whereas NMOSD is usually relapsing. This Review summarizes the history and current concepts of NMOSD and MOGAD, comparing epidemiology, clinical features, neuroimaging, pathology and immunology. In addition, we discuss new monoclonal antibody therapies for AQP4-IgG-seropositive NMOSD that target complement, B cells or IL-6 receptors, which might be applied to MOGAD in the near future.
Collapse
Affiliation(s)
- Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Frederike Cosima Oertel
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Stefan KA, Ciotti JR. MOG Antibody Disease: Nuances in Presentation, Diagnosis, and Management. Curr Neurol Neurosci Rep 2024; 24:219-232. [PMID: 38805147 DOI: 10.1007/s11910-024-01344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW Myelin oligodendrocyte glycoprotein antibody disease (MOGAD) is a distinct neuroinflammatory condition characterized by attacks of optic neuritis, transverse myelitis, and other demyelinating events. Though it can mimic multiple sclerosis and neuromyelitis optica spectrum disorder, distinct clinical and radiologic features which can discriminate these conditions are now recognized. This review highlights recent advances in our understanding of clinical manifestations, diagnosis, and treatment of MOGAD. RECENT FINDINGS Studies have identified subtleties of common clinical attacks and identified more rare phenotypes, including cerebral cortical encephalitis, which have broadened our understanding of the clinicoradiologic spectrum of MOGAD and culminated in the recent publication of proposed diagnostic criteria with a familiar construction to those diagnosing other neuroinflammatory conditions. These criteria, in combination with advances in antibody testing, should simultaneously lead to wider recognition and reduced incidence of misdiagnosis. In addition, recent observational studies have raised new questions about when to treat MOGAD chronically, and with which agent. MOGAD pathophysiology informs some of the relatively unique clinical and radiologic features which have come to define this condition, and similarly has implications for diagnosis and management. Further prospective studies and the first clinical trials of therapeutic options will answer several remaining questions about the peculiarities of this condition.
Collapse
Affiliation(s)
- Kelsey A Stefan
- Department of Neurology, University of South Florida, 13330 USF Laurel Drive, Tampa, FL, 33612, USA
| | - John R Ciotti
- Department of Neurology, University of South Florida, 13330 USF Laurel Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
10
|
Cagol A, Tsagkas C, Granziera C. Advanced Brain Imaging in Central Nervous System Demyelinating Diseases. Neuroimaging Clin N Am 2024; 34:335-357. [PMID: 38942520 DOI: 10.1016/j.nic.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In recent decades, advances in neuroimaging have profoundly transformed our comprehension of central nervous system demyelinating diseases. Remarkable technological progress has enabled the integration of cutting-edge acquisition and postprocessing techniques, proving instrumental in characterizing subtle focal changes, diffuse microstructural alterations, and macroscopic pathologic processes. This review delves into state-of-the-art modalities applied to multiple sclerosis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody-associated disease. Furthermore, it explores how this dynamic landscape holds significant promise for the development of effective and personalized clinical management strategies, encompassing support for differential diagnosis, prognosis, monitoring treatment response, and patient stratification.
Collapse
Affiliation(s)
- Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland; Department of Health Sciences, University of Genova, Via A. Pastore, 1 16132 Genova, Italy. https://twitter.com/CagolAlessandr0
| | - Charidimos Tsagkas
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland.
| |
Collapse
|
11
|
Cejvanovic S, Sheikh Z, Hamann S, Subramanian PS. Imaging the brain: diagnosis aided by structural features on neuroimaging studies. Eye (Lond) 2024; 38:2380-2391. [PMID: 38783084 PMCID: PMC11306573 DOI: 10.1038/s41433-024-03142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The use of neuroimaging allows the ophthalmologist to identify structural lesions in the orbit or along the neuroaxis that allow for more accurate diagnosis and treatment of patients with neuro-ophthalmic diseases. The primary imaging tools include computed tomography (CT) and magnetic resonance imaging (MRI), both of which can be used to evaluate the brain, spinal cord and canal, and orbits. Neurovascular structures, both arterial and venous, also can be imaged in high resolution with modern CT and MR angiography and CT and MR venography. In many cases, invasive procedures such as catheter angiography can be avoided with these studies, and angiography is often reserved for confirmation of vascular lesions combined with endovascular treatment. In this article, we illustrate how the evaluation of patients presenting with neuro-ophthalmic diseases involving the afferent and efferent visual pathways can be optimized with the use of appropriate diagnostic imaging studies. The complementary value of ophthalmic imaging is also demonstrated, and the advantages and disadvantages of both CT and MRI as well as their use in longitudinal patient follow up is demonstrated.
Collapse
Affiliation(s)
| | - Zahir Sheikh
- Department of Neurology, Sue Anschutz-Rodgers University of Colorado Eye Center and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Steffen Hamann
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Prem S Subramanian
- Department of Neurology, Sue Anschutz-Rodgers University of Colorado Eye Center and University of Colorado School of Medicine, Aurora, Colorado, USA.
- Department of Ophthalmology, Sue Anschutz-Rodgers University of Colorado Eye Center and University of Colorado School of Medicine, Aurora, Colorado, USA.
- Department of Neurosurgery, Sue Anschutz-Rodgers University of Colorado Eye Center and University of Colorado School of Medicine, Aurora, Colorado, USA.
- Department of Surgery (Division of Ophthalmology), Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
12
|
Rechtman A, Freidman-Korn T, Zveik O, Shweiki L, Hoichman G, Vaknin-Dembinsky A. Assessing the applicability of the 2023 international MOGAD panel criteria in real-world clinical settings. J Neurol 2024; 271:5102-5108. [PMID: 38809270 PMCID: PMC11319595 DOI: 10.1007/s00415-024-12438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a recently identified demyelinating disorder with a diverse clinical spectrum. Diagnosing MOGAD traditionally relies on clinical judgment, highlighting the necessity for precise diagnostic criteria. Banwell et al. proposed criteria, aiming to refine the diagnostic spectrum. This study evaluates these criteria in a real-life cohort, comparing their performance with clinical judgment and describe the cohort of MOGAD patients. METHODS This retrospective study, conducted at Hadassah Medical Center, included 88 patients with MOG-IgG antibodies. Patients with a positive or borderline MOG-IgG antibodies by cell-based assay were included. Demographics, clinical and MRI data were recorded. Cases were divided into definite MOGAD and Non-MOGAD groups as determined by the treating physician. We assessed the sensitivity and specificity of the new criteria in comparison to treating physicians' evaluations. Additionally, we examined clinical differences between the MOGAD and Non-MOGAD groups. RESULTS We observed a strong concordance (98%) between the new MOGAD criteria and treating physicians' diagnoses. Clinical disparities between MOGAD and Non-MOGAD groups included lower EDSS scores, normal MRI scans, preserved brain volume, negative OCB results, and distinct relapse patterns. Also, compared to relapsing patients, monophasic MOGAD patients have greater brain volume and a lower age at onset. CONCLUSION The study demonstrates robust accuracy of new MOGAD criteria, emphasizing their potential to enhance diagnostic precision. Treatment response integration into the MOGAD diagnosis is crucial, as it could aid in distinguishing MOGAD from other demyelinating disorders. Distinct clinical profiles highlight the importance of informed decisions in managing MOGAD and similar disorders.
Collapse
Affiliation(s)
- Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Germany
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Freidman-Korn
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Germany
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Germany
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lyne Shweiki
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Germany
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Garrick Hoichman
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Germany
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Military Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Germany.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Neurology Department, Multiple Sclerosis and Immunobiology Research, Hadassah Medical Center, Ein-Kerem, POB 12000, 91120, Jerusalem, Israel.
| |
Collapse
|
13
|
Wang MM, Huang T, Li JX, Yao Y, Chen Y, Fu KK, Miao WR, Han Y. Optic Neuritis Leading to Vision Loss: A Case of MOG-Associated Disease with Successful Immunotherapy. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e943112. [PMID: 39054886 PMCID: PMC11315620 DOI: 10.12659/ajcr.943112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/05/2024] [Accepted: 04/05/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein (MOG)-associated disease (MOGAD) is a recently described inflammatory demyelinating disease of the central nervous system (CNS), which needs to be distinguished from aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD) and multiple sclerosis (MS). CASE REPORT A 42-year-old woman presenting with loss of vision due to optic neuritis was admitted to the Naval Medical Center in October 2022. She had optic disc edema, blurred visual margins, optic disc pallor, and deficient visual field in both eyes. Cranial magnetic resonance imaging (MRI) showed bilateral optic nerve thickening, tortuosity, and swelling, especially on the right side. Orbital MRI T2 sequence showed the typical "double track sign" change. The titers of MOG-IgG in CSF and serum were 1: 1 (+) and 1: 32 (+) separately, so MOGAD was diagnosed. The primary treatment was intravenous methylprednisolone for 2 weeks, after which the blurred vision improved and MRI showed the optic nerve lesions disappeared. She was discharged and oral corticosteroids were tapered gradually, and 1 month later, the symptom had vanished without recurrence, cranial MRI was normal, and MOG-IgG in CSF and serum were negative. Low-dose oral corticosteroids were continued for 6 months, with no relapse and normal cranial MRI, so we stopped corticosteroid therapy. At 1-year follow-up, the symptoms had not recurred. CONCLUSIONS A 42-year-old woman presented with loss of vision due to optic neuritis and positive antibody testing for MOG. MOGAD was diagnosed, and timely immunotherapy was effective.
Collapse
Affiliation(s)
- Meng-meng Wang
- Department of Hyperbaric Oxygen and Neurology, Naval Medical Center, Shanghai, PR China
| | - Tao Huang
- Department of Hyperbaric Oxygen and Neurology, Naval Medical Center, Shanghai, PR China
| | - Jia-xun Li
- College of Basic Medicine, Naval Medical University, Shanghai, PR China
| | - Yang Yao
- Department of Hyperbaric Oxygen and Neurology, Naval Medical Center, Shanghai, PR China
| | - Ying Chen
- Department of Hyperbaric Oxygen and Neurology, Naval Medical Center, Shanghai, PR China
| | - Kai-kai Fu
- Department of Hyperbaric Oxygen and Neurology, Naval Medical Center, Shanghai, PR China
| | - Wen-rong Miao
- Department of Hyperbaric Oxygen and Neurology, Naval Medical Center, Shanghai, PR China
| | - Yi Han
- Department of Hyperbaric Oxygen and Neurology, Naval Medical Center, Shanghai, PR China
| |
Collapse
|
14
|
Biddle G, Beck RT, Raslan O, Ebinu J, Jenner Z, Hamer J, Hacein-Bey L, Apperson M, Ivanovic V. Autoimmune diseases of the spine and spinal cord. Neuroradiol J 2024; 37:285-303. [PMID: 37394950 PMCID: PMC11138326 DOI: 10.1177/19714009231187340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Magnetic resonance imaging (MRI) and clinicopathological tools have led to the identification of a wide spectrum of autoimmune entities that involve the spine. A clearer understanding of the unique imaging features of these disorders, along with their clinical presentations, will prove invaluable to clinicians and potentially limit the need for more invasive procedures such as tissue biopsies. Here, we review various autoimmune diseases affecting the spine and highlight salient imaging features that distinguish them radiologically from other disease entities.
Collapse
Affiliation(s)
- Garrick Biddle
- Radiology Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ryan T Beck
- Neuroradiology, Radiology Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Osama Raslan
- Radiology Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Julius Ebinu
- Neurosurgery Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Zach Jenner
- Radiology Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - John Hamer
- Neuroradiology, Radiology Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lotfi Hacein-Bey
- Radiology Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Michelle Apperson
- Neurology Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Vladimir Ivanovic
- Neuroradiology, Radiology Department, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Abbas H, Kumar P, Abdullah, Quamar R, Mani UA. Unravelling the Complexity of Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. Cureus 2024; 16:e59840. [PMID: 38854354 PMCID: PMC11157157 DOI: 10.7759/cureus.59840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare autoimmune disorder characterized by recurrent episodes of demyelination affecting the central nervous system. The following case report showcases a thorough analysis of a 21-year-old female patient presenting with MOGAD, outlining her clinical presentation, diagnostic workup, treatment protocol, and long-term management outcomes. Through a multidisciplinary approach, we aim to augment the understanding of this complex neurological entity and steer optimal therapeutic interventions.
Collapse
Affiliation(s)
- Husain Abbas
- Internal Medicine, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, IND
| | - Prakhar Kumar
- Internal Medicine, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, IND
| | - Abdullah
- Internal Medicine, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, IND
| | - Razi Quamar
- Internal Medicine, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, IND
| | - Utsav Anand Mani
- Emergency Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| |
Collapse
|
16
|
Bollo L, Arrambide G, Cobo-Calvo A, Alvarez JV, Alberich M, Cabello S, Castilló J, Galan I, Midaglia LS, Acevedo BR, Zabalza A, Pappolla A, Mongay Ochoa N, Tintore M, Rio J, Comabella M, Tur C, Auger C, Sastre-Garriga J, Rovira A, Montalban X, Pareto D, Vidal-Jordana A. Trans-Synaptic Degeneration in the Visual Pathway in Patients With Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. Neurology 2024; 102:e209156. [PMID: 38447105 DOI: 10.1212/wnl.0000000000209156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/27/2023] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND AND OBJECTIVES We aimed to assess the presence of retinal neurodegeneration independent of optic neuritis (ON) in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) and to investigate the development of trans-synaptic anterograde degeneration in these patients after ON. METHODS Cross-sectional, retrospective study of 34 adult patients with MOGAD and 23 healthy controls (HC). Clinical, optical coherence tomography (OCT), and MRI data were collected. Peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell inner plexiform layer (GCIPL) were obtained using Heidelberg Spectralis. FreeSurfer7 was used to obtain the lateral geniculate nucleus (LGN), occipital volume fractions (to total estimated intracranial volume), and occipital cortical thickness. For the anterior visual pathway, the analysis was conducted using eyes, classified based on the history of ON (Eye-ON and Eye-NON) and compared with Eye-HC. The analysis of OCT and brain volumetric measures was conducted comparing MOGAD-ON, MOGAD-NON, and HC groups. The analysis of covariance with a Bonferroni-adjusted post hoc test was used to test differences between groups and linear regression analysis to evaluate OCT/MRI associations; age and sex were considered as covariates. RESULTS 24 (70.5%) patients had a prior ON. Median pRNFL and GCIPL thickness (um) was significantly reduced in Eye-ON vs EyeNON and HC (pRNFL: 69.4 (17.3), 89.6 (13.7), 98.2 (11.7), p < 0.001; GCIPL: 55.8 (8.7), 67.39 (8.7), 72.6 (4.5), p < 0.001). pRNFL and GCIPL thickness had a negative correlation with the number of ON episodes (p = 0.025 and p = 0.031, respectively). LGN volume fraction was significantly lower in patients with MOGAD-ON than in HC (0.33 (0.05) vs 0.39 (0.04), p = 0.002). The occipital cortical thickness was lower in MOGAD-ON compared with MOGAD-NON and HC (p = 0.010). In patients with MOGAD-ON, pRNFL correlated with LGN volume (p = 0.006), occipital thickness (p = 0.002), and the medial occipital cortex (p = 0.002), but not the lateral occipital lobe. DISCUSSION Compared with HC, MOGAD-ON exhibits reduced retinal thickness, primarily influenced by the presence and the number of prior ON episodes. Moreover, MOGAD-ON demonstrates significant atrophy in the retinal, subcortical, and cortical regions of the visual pathway, distinguishing them from MOGAD-NON and HC. These findings suggest that in patients with MOGAD neurodegeneration is tightly correlated with damage to the involved pathway.
Collapse
Affiliation(s)
- Luca Bollo
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Georgina Arrambide
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Alvaro Cobo-Calvo
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Javier V Alvarez
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Manel Alberich
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Sergio Cabello
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Joaquín Castilló
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Ingrid Galan
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Luciana S Midaglia
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Breogan Rodriguez Acevedo
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Ana Zabalza
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Agustin Pappolla
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Neus Mongay Ochoa
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Mar Tintore
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Jordi Rio
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Manuel Comabella
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Carmen Tur
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Cristina Auger
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Jaume Sastre-Garriga
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Alex Rovira
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Xavier Montalban
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Deborah Pareto
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Angela Vidal-Jordana
- From the Neurology Department (L.B., G.A., A.C.-C., J.V.A., S.C., J.C., I.G., L.S.M., B.R.A., A.Z., A.P., N.M.O., M.T., J.R., M.C., C.T., J.S.-G., X.M., A.V.-J.), Centro d'Esclerosi Múltiple de Catalunya (Cemcat); and Secció de Neuroradiologia (M.A., C.A., A.R., D.P.), Servei de Radiologia (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
17
|
Wei X, Zhao C, Wang D, Han J. Myelin oligodendrocyte glycoprotein antibody-associated disease with clinical presentation as multiple episodes of isolated meningeal involvement: a case report. J Int Med Res 2024; 52:3000605241233157. [PMID: 38546265 PMCID: PMC10981245 DOI: 10.1177/03000605241233157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 04/01/2024] Open
Abstract
Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) constitutes a group of autoimmune neuroinflammatory conditions that are characterized by positive serum MOG-immunoglobulin G antibodies. The relationship between MOGAD and immune factors remains unclear. Herein, we report a man in his early 30s who initially presented symptoms of headache and low-grade fever persisting for 20 days. The patient experienced isolated meningitis onset and had recurrent meningitis as the primary clinical feature, which manifested as low-grade fever, headache, and neck rigidity. Although cranial magnetic resonance imaging showed no abnormalities, immunotherapy was promptly administered upon diagnosing MOGAD through positive MOG-specific antibody testing of cerebrospinal and serum fluids. Notably, the patient's symptoms exhibited rapid improvement following treatment. Although meningitis is traditionally associated with infectious diseases, it can also occur in antibody-related autoimmune diseases that affect the central nervous system. Consequently, MOGAD should be considered in cases of aseptic meningitis with an unknown etiology, to facilitate definitive diagnosis and enhance patient prognosis.
Collapse
Affiliation(s)
- Xiaojie Wei
- Department of Oncology, Hengshui People’s Hospital, Hengshui, China
| | - Chentong Zhao
- Department of Respiratory, Hengshui People’s Hospital, Hengshui, China
| | - Daqing Wang
- Department of Oncology, Hengshui People’s Hospital, Hengshui, China
| | - Jingzhe Han
- Department of Neurology, Hengshui People’s Hospital, Hengshui, China
| |
Collapse
|
18
|
Siriratnam P, Huda S, Butzkueven H, van der Walt A, Jokubaitis V, Monif M. A comprehensive review of the advances in neuromyelitis optica spectrum disorder. Autoimmun Rev 2023; 22:103465. [PMID: 37852514 DOI: 10.1016/j.autrev.2023.103465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare relapsing neuroinflammatory autoimmune astrocytopathy, with a predilection for the optic nerves and spinal cord. Most cases are characterised by aquaporin-4-antibody positivity and have a relapsing disease course, which is associated with accrual of disability. Although the prognosis in NMOSD has improved markedly over the past few years owing to advances in diagnosis and therapeutics, it remains a severe disease. In this article, we review the evolution of our understanding of NMOSD, its pathogenesis, clinical features, disease course, treatment options and associated symptoms. We also address the gaps in knowledge and areas for future research focus.
Collapse
Affiliation(s)
- Pakeeran Siriratnam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Saif Huda
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Prairie ML, Gencturk M, Lindgren BR, McClelland CM, Lee MS. MRI Signal Intensity Varies Along the Course of the Normal Optic Nerve. J Neuroophthalmol 2023; 43:509-513. [PMID: 36877578 PMCID: PMC10480332 DOI: 10.1097/wno.0000000000001823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND MRI can help distinguish various causes of optic neuropathy including optic neuritis. Importantly, neuromyelitis optica spectrum disorder (NMOSD) has a propensity to cause enhancement of the prechiasmatic optic nerves. To determine whether the prechiasmatic optic nerve (PC-ON) demonstrates a different intensity from the midorbital optic nerve (MO-ON) on MRI among patients without optic neuropathy. METHODS Data were retrospectively obtained from 75 patients who underwent brain MRI for an ocular motor nerve palsy between January 2005 and April 2021. Inclusion criteria were patients aged 18 years or older with visual acuities of at least 20/25 and no evidence of optic neuropathy on neuro-ophthalmic examination. A total of 67 right eyes and 68 left eyes were assessed. A neuroradiologist performed quantitative intensity measurements of the MO-ON and PC-ON on precontrast and postcontrast T1 axial images. Normal-appearing temporalis muscle intensity was also measured and used as a reference to calculate an intensity ratio to calibrate across images. RESULTS The mean PC-ON intensity ratio was significantly higher than the MO-ON intensity ratio on both precontrast (19.6%, P < 0.01) and postcontrast images (14.2%, P < 0.01). Age, gender, and laterality did not independently affect measurements. CONCLUSIONS The prechiasmatic optic nerve shows brighter intensity ratios on both precontrast and postcontrast T1 images than the midorbital optic nerve among normal optic nerves. Clinicians should recognize this subtle signal discrepancy when assessing patients with presumed optic neuropathy.
Collapse
Affiliation(s)
- Michael L Prairie
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN
| | - Mehmet Gencturk
- Department of Neuroradiology, University of Minnesota, Minneapolis, MN
| | - Bruce R Lindgren
- Department of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Collin M McClelland
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN
| | - Michael S Lee
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN
| |
Collapse
|
20
|
Fu Q, Wang G, Che F, Li D, Wang S. FLAIR-hyperintense lesions in anti-MOG-associated encephalitis with seizures overlaying anti-N-methyl-D-aspartate receptor encephalitis: A case report. Medicine (Baltimore) 2023; 102:e35948. [PMID: 37960781 PMCID: PMC10637516 DOI: 10.1097/md.0000000000035948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
RATIONALE FLAIR-hyperintense lesions in anti-myelin oligodendrocyte glycoprotein (MOG)-associated encephalitis with seizures (FLAMES) is a rare clinical phenotype of anti-MOG; immunoglobulin G-associated disease is often misdiagnosed as viral encephalitis in the early stages. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune encephalitis caused by antibodies targeting the GluN1 subunit of the NMDAR. The coexistence of anti-NMDAR encephalitis and FLAMES is very rare. PATIENT CONCERNS A 20-year-old female patient initially presented with seizures accompanied by daytime sleepiness. DIAGNOSES Magnetic resonance imaging revealed FLAIR-hyperintense lesions in unilateral cerebral cortex. NMDAR antibodies was positive in the cerebrospinal fluid and MOG antibodies in the serum. INTERVENTIONS Steroid therapy was administrated. OUTCOMES The symptoms completely relieved. At 6-month follow-up, the patient's condition remained stable. Magnetic resonance imaging showed no abnormalities in the unilateral cerebral cortex. CONCLUSION When a patient with anti-NMDAR encephalitis or FLAMES is encountered in clinical practice, the coexistence of these diseases with double-positive anti-NMDAR and MOG antibodies should be considered and adopt appropriate evaluation and treatment.
Collapse
Affiliation(s)
- Qingxi Fu
- Department of Neurology, Linyi People’s Hospital, Linyi, China
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Guangying Wang
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Fengyuan Che
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Dong Li
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Shougang Wang
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| |
Collapse
|
21
|
Carnero Contentti E, Okuda DT, Rojas JI, Chien C, Paul F, Alonso R. MRI to differentiate multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. J Neuroimaging 2023; 33:688-702. [PMID: 37322542 DOI: 10.1111/jon.13137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Differentiating multiple sclerosis (MS) from other relapsing inflammatory autoimmune diseases of the central nervous system such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is crucial in clinical practice. The differential diagnosis may be challenging but making the correct ultimate diagnosis is critical, since prognosis and treatments differ, and inappropriate therapy may promote disability. In the last two decades, significant advances have been made in MS, NMOSD, and MOGAD including new diagnostic criteria with better characterization of typical clinical symptoms and suggestive imaging (magnetic resonance imaging [MRI]) lesions. MRI is invaluable in making the ultimate diagnosis. An increasing amount of new evidence with respect to the specificity of observed lesions as well as the associated dynamic changes in the acute and follow-up phase in each condition has been reported in distinct studies recently published. Additionally, differences in brain (including the optic nerve) and spinal cord lesion patterns between MS, aquaporin4-antibody-positive NMOSD, and MOGAD have been described. We therefore present a narrative review on the most relevant findings in brain, spinal cord, and optic nerve lesions on conventional MRI for distinguishing adult patients with MS from NMOSD and MOGAD in clinical practice. In this context, cortical and central vein sign lesions, brain and spinal cord lesions characteristic of MS, NMOSD, and MOGAD, optic nerve involvement, role of MRI at follow-up, and new proposed diagnostic criteria to differentiate MS from NMOSD and MOGAD were discussed.
Collapse
Affiliation(s)
| | - Darin T Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juan I Rojas
- Centro de esclerosis múltiple de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemman Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital Ramos Mejía, Buenos Aires, Argentina
| |
Collapse
|
22
|
Huda S, Palace J. It's not multiple sclerosis, what is it?! Pract Neurol 2023; 23:270-272. [PMID: 37100592 DOI: 10.1136/pn-2022-003677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Saif Huda
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | |
Collapse
|
23
|
Moheb N, Chen JJ. The neuro-ophthalmological manifestations of NMOSD and MOGAD-a comprehensive review. Eye (Lond) 2023; 37:2391-2398. [PMID: 36928226 PMCID: PMC10397275 DOI: 10.1038/s41433-023-02477-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/07/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Optic neuritis (ON) is one of the most frequently seen neuro-ophthalmic causes of vision loss worldwide. Typical ON is often idiopathic or seen in patients with multiple sclerosis, which is well described in the landmark clinical trial, the Optic Neuritis Treatment Trial (ONTT). However, since the completion of the ONTT, there has been the discovery of aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) antibodies, which are biomarkers for neuromyelitis optica spectrum disorder (NMOSD) and MOG antibody-associated disease (MOGAD), respectively. These disorders are associated with atypical ON that was not well characterised in the ONTT. The severity, rate of recurrence and overall outcome differs in these two entities requiring prompt and accurate diagnosis and management. This review will summarise the characteristic neuro-ophthalmological signs in NMOSD and MOGAD, serological markers and radiographic findings, as well as acute and long-term therapies used for these disorders.
Collapse
Affiliation(s)
- Negar Moheb
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN, USA
| | - John J Chen
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
24
|
Ichimiya Y, Chong PF, Sonoda Y, Tocan V, Watanabe M, Torisu H, Kira R, Takahashi T, Kira JI, Isobe N, Sakai Y, Ohga S. Long-lasting pain and somatosensory disturbances in children with myelin oligodendrocyte glycoprotein antibody-associated disease. Eur J Pediatr 2023:10.1007/s00431-023-04989-z. [PMID: 37119299 DOI: 10.1007/s00431-023-04989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
Myelin oligodendrocyte glycoprotein antibody (MOG-Ab) is an autoantibody associated with acquired demyelinating syndrome (ADS) in childhood and adults. The pathogenic roles of MOG-Ab and long-term outcomes of children with MOG-Ab-associated disease (MOGAD) remain elusive. We investigated the clinical features of children with ADS during follow-up in our institute. Clinical data were retrospectively analyzed using medical charts of patients managed in Kyushu University Hospital from January 1st, 2001, to March 31st, 2022. Participants were children of < 18 years of age when they received a diagnosis of ADS in our hospital. Cell-based assays were used to detect MOG-Ab in serum or cerebrospinal fluid at the onset or recurrence of ADS. The clinical and neuroimaging data of MOG-Ab-positive and MOG-Ab-negative patients were statistically analyzed. Among 31 patients enrolled in this study, 22 (13 females, 59%) received tests for MOG antibodies. Thirteen cases (59%) were MOG-Ab-positive and were therefore defined as MOGAD; 9 (41%) were MOG-Ab-negative. There were no differences between MOGAD and MOG-Ab-negative patients in age at onset, sex, diagnostic subcategories, or duration of follow-up. MOGAD patients experienced headache and/or somatosensory symptoms more frequently than MOG-Ab-negative patients (12/13 (92%) vs. 3/9 (22%); p = 0.0066). Somatosensory problems included persistent pain with hyperesthesia in the left toe, perineal dysesthesia, and facial hypesthesia. No specific neuroimaging findings were associated with MOGAD or the presence of somatosensory symptoms. CONCLUSIONS Long-lasting somatosensory disturbances are prominent comorbidities in children with MOGAD. Prospective cohorts are required to identify molecular and immunogenetic profiles associated with somatosensory problems in MOGAD. WHAT IS KNOWN • Recurrence of demyelinating events occurs in a group of children with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). WHAT IS NEW • Long-lasting headache and somatosensory problems are frequent comorbidities with pediatric MOGAD. Pain and somatosensory problems may persist for more than 5 years. • Neuroimaging data do not indicate specific findings in children with somatic disturbances.
Collapse
Affiliation(s)
- Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Vlad Tocan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Torisu
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization, Yonezawa National Hospital, Yonezawa, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
25
|
Lerch M, Bauer A, Reindl M. The Potential Pathogenicity of Myelin Oligodendrocyte Glycoprotein Antibodies in the Optic Pathway. J Neuroophthalmol 2023; 43:5-16. [PMID: 36729854 PMCID: PMC9924971 DOI: 10.1097/wno.0000000000001772] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an acquired inflammatory demyelinating disease with optic neuritis (ON) as the most frequent clinical symptom. The hallmark of the disease is the presence of autoantibodies against MOG (MOG-IgG) in the serum of patients. Whereas the role of MOG in the experimental autoimmune encephalomyelitis animal model is well-established, the pathogenesis of the human disease and the role of human MOG-IgG is still not fully clear. EVIDENCE ACQUISITION PubMed was searched for the terms "MOGAD," "optic neuritis," "MOG antibodies," and "experimental autoimmune encephalomyelitis" alone or in combination, to find articles of interest for this review. Only articles written in English language were included and reference lists were searched for further relevant papers. RESULTS B and T cells play a role in the pathogenesis of human MOGAD. The distribution of lesions and their development toward the optic pathway is influenced by the genetic background in animal models. Moreover, MOGAD-associated ON is frequently bilateral and often relapsing with generally favorable visual outcome. Activated T-cell subsets create an inflammatory environment and B cells are necessary to produce autoantibodies directed against the MOG protein. Here, pathologic mechanisms of MOG-IgG are discussed, and histopathologic findings are presented. CONCLUSIONS MOGAD patients often present with ON and harbor antibodies against MOG. Furthermore, pathogenesis is most likely a synergy between encephalitogenic T and antibody producing B cells. However, to which extent MOG-IgG are pathogenic and the exact pathologic mechanism is still not well understood.
Collapse
|
26
|
Bartels F, Baumgartner B, Aigner A, Cooper G, Blaschek A, Wendel EM, Bertolini A, Karenfort M, Baumann M, Cleaveland R, Wegener-Panzer A, Leiz S, Salandin M, Krieg P, Reindl T, Reindl M, Finke C, Rostásy K. Impaired Brain Growth in Myelin Oligodendrocyte Glycoprotein Antibody-Associated Acute Disseminated Encephalomyelitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/2/e200066. [PMID: 36754833 PMCID: PMC9909582 DOI: 10.1212/nxi.0000000000200066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/10/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Acute disseminated encephalomyelitis (ADEM) is the most common phenotype in pediatric myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease. A previous study demonstrated impaired brain growth in ADEM. However, the effect of MOG antibodies on brain growth remains unknown. Here, we performed brain volume analyses in MOG-positive and MOG-negative ADEM at onset and over time. METHODS In this observational cohort study, we included a total of 62 MRI scans from 24 patients with ADEM (54.2% female; median age 5 years), of which 16 (66.7%) were MOG positive. Patients were compared with healthy controls from the NIH pediatric MRI data repository and a matched local cohort. Mixed-effect models were applied to assess group differences and other relevant factors, including relapses. RESULTS At baseline and before any steroid treatment, patients with ADEM, irrespective of MOG antibody status, showed reduced brain volume compared with matched controls (median [interquartile range] 1,741.9 cm3 [1,645.1-1,805.2] vs 1,810.4 cm3 [1,786.5-1,836.2]). Longitudinal analysis revealed reduced brain growth for both MOG-positive and MOG-negative patients with ADEM. However, MOG-negative patients showed a stronger reduction (-138.3 cm3 [95% CI -193.6 to -82.9]) than MOG-positive patients (-50.0 cm3 [-126.5 to -5.2]), independent of age, sex, and treatment. Relapsing patients (all MOG positive) showed additional brain volume loss (-15.8 cm3 [-68.9 to 37.3]). DISCUSSION Patients with ADEM exhibit brain volume loss and failure of age-expected brain growth. Importantly, MOG-negative status was associated with a more pronounced brain volume loss compared with MOG-positive patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kevin Rostásy
- From the Department of Neurology (F.B., G.C., C.F.), Charité-Universitätsmedizin Berlin; Berlin Institute of Health at Charité-Universitätsmedizin Berlin (F.B.); Berlin School of Mind and Brain (F.B., C.F.), Humboldt-Universität zu Berlin; Witten/Herdecke University (B.B., Annikki Bertolini, K.R.), Department of Pediatric Neurology, Children's Hospital Datteln; Charité-Universitätsmedizin Berlin (A.A.), Institute of Biometry and Clinical Epidemiology; Department of Pediatric Neurology and Developmental Medicine (Astrid Blaschek), LMU, Dr. von Hauner Children's Hospital, Munich; Department of Pediatric Neurology (E.M.W.), Olgahospital/Klinikum Stuttgart; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty (M.K.), Heinrich-Heine-University Düsseldorf, Germany; Department of Pediatric I, Pediatric Neurology (M.B.), Medical University of Innsbruck, Austria; Department of Radiology (R.C., A.W.-P.), Children's Hospital Datteln, Witten/Herdecke University, Germany; Department of Pediatrics and Adolescent Medicine (S.L.), Hospital Dritter Orden, Munich, Germany; Department Neuropediatrics (M.S.), Regional Hospital of Bolzano, Italy; Department of Pediatrics (P.K.), Städtisches Klinikum Karlsruhe, Germany; Department of Pediatrics, Brandenburg (T.R.), Helios Klinik Hohenstücken, Germany; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
27
|
Mewes D, Kuchling J, Schindler P, Khalil AAA, Jarius S, Paul F, Chien C. Diagnostik der Neuromyelitis-optica-Spektrum-Erkrankung (NMOSD) und der MOG-Antikörper-assoziierten Erkrankung (MOGAD). Klin Monbl Augenheilkd 2022; 239:1315-1324. [DOI: 10.1055/a-1918-1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ZusammenfassungDie Aquaporin-4-Antikörper-positive Neuromyelitis-optica-Spektrum-Erkrankung (engl. NMOSD) und die Myelin-Oligodendrozyten-Glykoprotein-Antikörper-assoziierte Erkrankung (engl. MOGAD) sind
Autoimmunerkrankungen des zentralen Nervensystems. Typische Erstmanifestationen sind bei Erwachsenen Optikusneuritis und Myelitis. Eine Beteiligung auch von Hirn und Hirnstamm, spätestens im
weiteren Verlauf, ist häufig. Während die NMOSD nahezu immer schubförmig verläuft, nimmt die MOGAD gelegentlich einen monophasischen Verlauf. Die Differenzialdiagnostik ist anspruchsvoll und
stützt sich auf u. a. auf radiologische und serologische Befunde. Die Abgrenzung von der häufigeren neuroinflammatorischen Erkrankung, Multiple Sklerose (MS), ist von erheblicher Bedeutung,
da sich Behandlung und langfristige Prognose von NMOSD, MOGAD und MS wesentlich unterscheiden. Die vielfältigen Symptome und die umfangreiche Diagnostik machen eine enge Zusammenarbeit
zwischen Ophthalmologie, Neurologie und Radiologie erforderlich. Dieser Artikel gibt einen Überblick über typische MRT-Befunde und die serologische Antikörperdiagnostik bei NMOSD und MOGAD.
Zwei illustrative Fallberichte aus der ärztlichen Praxis ergänzen die Darstellung.
Collapse
Affiliation(s)
- Darius Mewes
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Biomedical Innovation Academy, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Biomedical Innovation Academy, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Patrick Schindler
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Ahmed Abdelrahim Ahmed Khalil
- Centrum für Schlaganfallforschung, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Abteilung Neurologie, Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig, Deutschland
- Mind Brain Body Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Sven Jarius
- AG Molekulare Neuroimmunologie, Neurologische Klinik, Universität Heidelberg, Heidelberg, Deutschland
| | - Friedemann Paul
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Claudia Chien
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| |
Collapse
|
28
|
Optical Coherence Tomography in Chronic Relapsing Inflammatory Optic Neuropathy, Neuromyelitis Optica and Multiple Sclerosis: A Comparative Study. Brain Sci 2022; 12:brainsci12091140. [PMID: 36138876 PMCID: PMC9497092 DOI: 10.3390/brainsci12091140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: To examine the optical coherence tomography (OCT) features of the retina in patients with chronic relapsing inflammatory optic neuropathy (CRION) and compare them with those of neuromyelitis optica spectrum disorder (NMOSD), relapsing-remitting multiple sclerosis (RRMS) with and without optic neuritis (ON), and healthy controls (HC). Methods: In this retrospective cross-sectional study, we used spectral domain OCT to evaluate the retinal structure of 14 participants with CRION, 22 with NMOSD, 40 with RRMS with unilateral ON, and 20 HC. The peripapillary retinal nerve fiber layer (pRNFL), total macular volume (TMV), and papillomacular bundle (PMB) were measured, and intra-retinal segmentation was performed to obtain the retinal nerve fiber (RNFL), ganglion cell (GCL), inner plexiform (IPL), inner nuclear (INL), outer plexiform (OPL) and outer nuclear (ONL) layer volumes. Results: The global pRNFL [39.33(±1.8) µm] and all its quadrants are significantly thinner in CRION compared with all other groups (p < 0.05). CRION patients have decreased volumes of TMV, RNFL, GCL, and IPL compared with all other groups (p < 0.05). Conclusion: Severe thinning in pRNFL and thinning in intra-retinal segments of IPL, GCL, RNFL, and TMV could be helpful in differentiating CRION from NMOSD and RRMS.
Collapse
|
29
|
Russo C, Muto G, Giordano F, Masala S, Muto M. Imaging of Common Spinal Cord Diseases. Semin Musculoskelet Radiol 2022; 26:510-520. [PMID: 36103892 DOI: 10.1055/s-0042-1755345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Spinal cord evaluation is an integral part of spine assessment, and its reliable imaging work-up is mandatory because even localized lesions may produce serious effects with potentially irreversible sequelae. Spinal cord alterations are found both incidentally during spine evaluation in otherwise neurologically asymptomatic patients or during neurologic/neuroradiologic assessment in myelopathic patients. Myelopathy (an umbrella term for any neurologic deficit that refers to spinal cord impairment) can be caused by intrinsic lesions or extrinsic mechanical compression, and its etiology may be both traumatic and/or nontraumatic. The symptoms largely depend on the size/extension of lesions, ranging from incontinence to ataxia, from spasticity to hyperreflexia, from numbness to weakness. Magnetic resonance imaging is the reference imaging modality in spinal cord evaluation, ensuring the best signal and spatial resolution. We provide an overview of the most common spinal cord disorders encountered by radiologists and describe the technical measures that offer optimal spinal cord visualization.
Collapse
Affiliation(s)
- Camilla Russo
- Diagnostic and Interventional Neuroradiology Unit, Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari, A.O.R.N. Cardarelli, Naples, Italy.,Department of Electrical Engineering and Information Technology (DIETI), Università Degli Studi di Napoli Federico II, Naples, Italy
| | - Gianluca Muto
- Service de Radiologie, Hôpitaux Universitaires de Genève (HUG), Geneva, Switzerland
| | - Flavio Giordano
- Diagnostic and Interventional Neuroradiology Unit, Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari, A.O.R.N. Cardarelli, Naples, Italy
| | - Salvatore Masala
- Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology and Radiation Therapy, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Mario Muto
- Diagnostic and Interventional Neuroradiology Unit, Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari, A.O.R.N. Cardarelli, Naples, Italy
| |
Collapse
|
30
|
Yepes-Calderon F, McComb JG. Accurate image-based CSF volume calculation of the lateral ventricles. Sci Rep 2022; 12:12115. [PMID: 35840587 PMCID: PMC9287564 DOI: 10.1038/s41598-022-15995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
The size/volume of the brain’s ventricles is essential in diagnosing and treating many neurological disorders, with various forms of hydrocephalus being some of the most common. Initial ventricular size and changes, if any, in response to disease progression or therapeutic intervention are monitored by serial imaging methods. Significant variance in ventricular size is readily noted, but small incremental changes can be challenging to appreciate. We have previously reported using artificial intelligence to determine ventricular volume. The values obtained were compared with those calculated using the inaccurate manual segmentation as the “gold standard”. This document introduces a strategy to measure ventricular volumes where manual segmentation is not employed to validate the estimations. Instead, we created 3D printed models that mimic the lateral ventricles and measured those 3D models’ volume with a tuned water displacement device. The 3D models are placed in a gel and taken to the magnetic resonance scanner. Images extracted from the phantoms are fed to an artificial intelligence-based algorithm. The volumes yielded by the automation must equal those yielded by water displacement to assert validation. Then, we provide certified volumes for subjects in the age range (1–114) months old and two hydrocephalus patients.
Collapse
Affiliation(s)
- Fernando Yepes-Calderon
- Science Based Platforms LLC, R&D, 604 Beach CT, Fort Pierce, 34950, USA. .,GYM Group SA, R&D, Carrera 78A 6-58, Cali, Valle del Cauca, 76001, Colombia.
| | - J Gordon McComb
- Division of Neurosurgery, Children Hospital Los Angeles, Los Angeles , 90027, USA.,Keck School of Medicine, University of Southern California, Los Angeles, 90033, USA
| |
Collapse
|
31
|
Sechi E, Cacciaguerra L, Chen JJ, Mariotto S, Fadda G, Dinoto A, Lopez-Chiriboga AS, Pittock SJ, Flanagan EP. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): A Review of Clinical and MRI Features, Diagnosis, and Management. Front Neurol 2022; 13:885218. [PMID: 35785363 PMCID: PMC9247462 DOI: 10.3389/fneur.2022.885218] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/06/2022] [Indexed: 01/02/2023] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is the most recently defined inflammatory demyelinating disease of the central nervous system (CNS). Over the last decade, several studies have helped delineate the characteristic clinical-MRI phenotypes of the disease, allowing distinction from aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD) and multiple sclerosis (MS). The clinical manifestations of MOGAD are heterogeneous, ranging from isolated optic neuritis or myelitis to multifocal CNS demyelination often in the form of acute disseminated encephalomyelitis (ADEM), or cortical encephalitis. A relapsing course is observed in approximately 50% of patients. Characteristic MRI features have been described that increase the diagnostic suspicion (e.g., perineural optic nerve enhancement, spinal cord H-sign, T2-lesion resolution over time) and help discriminate from MS and AQP4+NMOSD, despite some overlap. The detection of MOG-IgG in the serum (and sometimes CSF) confirms the diagnosis in patients with compatible clinical-MRI phenotypes, but false positive results are occasionally encountered, especially with indiscriminate testing of large unselected populations. The type of cell-based assay used to evaluate for MOG-IgG (fixed vs. live) and antibody end-titer (low vs. high) can influence the likelihood of MOGAD diagnosis. International consensus diagnostic criteria for MOGAD are currently being compiled and will assist in clinical diagnosis and be useful for enrolment in clinical trials. Although randomized controlled trials are lacking, MOGAD acute attacks appear to be very responsive to high dose steroids and plasma exchange may be considered in refractory cases. Attack-prevention treatments also lack class-I data and empiric maintenance treatment is generally reserved for relapsing cases or patients with severe residual disability after the presenting attack. A variety of empiric steroid-sparing immunosuppressants can be considered and may be efficacious based on retrospective or prospective observational studies but prospective randomized placebo-controlled trials are needed to better guide treatment. In summary, this article will review our rapidly evolving understanding of MOGAD diagnosis and management.
Collapse
Affiliation(s)
- Elia Sechi
- Neurology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
| | - John J. Chen
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States
| | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Fadda
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Alessandro Dinoto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | | | - Sean J. Pittock
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Eoin P. Flanagan
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Eoin P. Flanagan
| |
Collapse
|
32
|
Mărginean CO, Meliț LE, Cucuiet MT, Cucuiet M, Rațiu M, Săsăran MO. COVID-19 Vaccine-A Potential Trigger for MOGAD Transverse Myelitis in a Teenager-A Case Report and a Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:674. [PMID: 35626851 PMCID: PMC9139812 DOI: 10.3390/children9050674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
MOGAD-transverse myelitis is a rare disorder in children and adults, but with a higher incidence in pediatric patients. We report a case of MOGAD-transverse myelitis in a boy who was admitted to hospital with bilateral motor deficit of the lower limbs associated with the impossibility of defecating and urinating. The symptoms progressively developed with severe fatigue within the week prior to admission, with the impossibility to stand occurring 36 h before admission. The anamnesis found that he was vaccinated for COVID-19 approximately 6 weeks before admission to our clinic. The laboratory tests revealed a normal complete cellular blood count, without any signs of inflammation or infection, except for both cryoglobulins and IgG anti-MOG antibodies. MRI showed a T2 hypersignal on vertebral segments C2-C5, Th2-Th5 and Th7-Th11, confirming the diagnosis of longitudinally extensive transverse myelitis. The patient received intravenous high-dose methylprednisolone (1 g) for 5 days, associated with prophylactic antibiotic treatment, subcutaneous low-molecular-weight heparin and other supportive treatment. The patient was discharged on the 12th day of admission, able to walk without support and with no bladder or bowel dysfunction. We can conclude that an early diagnosis was essential for improving the patient's long-term outcome.
Collapse
Affiliation(s)
- Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| | - Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| | - Maria Teodora Cucuiet
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| | - Monica Cucuiet
- Pediatric Neuropsychiatry County Emergency Hospital Târgu Mureș, Gheorghe Marinescu Street No. 50, 540136 Târgu Mureș, Romania;
| | - Mihaela Rațiu
- Department of Radiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
33
|
Seneviratne SO, Marriott M, Ramanathan S, Yeh W, Brilot-Turville F, Butzkueven H, Monif M. Failure of alemtuzumab therapy in three patients with MOG antibody associated disease. BMC Neurol 2022; 22:84. [PMID: 35264149 PMCID: PMC8905766 DOI: 10.1186/s12883-022-02612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Myelin Oligodendrocyte Glycoprotein antibody-associated disease (MOGAD) is most classically associated in both children and adults with phenotypes including bilateral and recurrent optic neuritis (ON) and transverse myelitis (TM), with the absence of brain lesions characteristic of multiple sclerosis (MS). ADEM phenotype is the most common presentation of MOGAD in children. However, the presence of clinical phenotypes including unilateral ON and short TM in some patients with MOGAD may lead to their misdiagnosis as MS. Thus, clinically and radiologically, MOGAD can mimic MS and clinical vigilance is required for accurate diagnostic workup. CASE PRESENTATION We present three cases initially diagnosed as MS and then treated with alemtuzumab. Unexpectedly, all three patients did quite poorly on this medication, with a decline in their clinical status with worsening of expanded disability status scale (EDSS) and an increasing lesion load on magnetic resonance imaging of the brain. Subsequently, all three cases were found to have anti-MOG antibody in their serum. CONCLUSIONS These cases highlight that if a patient suspected to have MS does not respond to conventional treatments such as alemtuzumab, a search for alternative diagnoses such as MOG antibody disease may be warranted.
Collapse
Affiliation(s)
- Sinali O Seneviratne
- Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
- Department of Neurology, Royal Melbourne Hospital, 300 Grattan Street, Parkville VIC 3050, Australia
| | - Mark Marriott
- Department of Neurology, Royal Melbourne Hospital, 300 Grattan Street, Parkville VIC 3050, Australia
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Kids Neuroscience Centre, The Kids Research Institute at the Children's Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Concord Hospital, Sydney, Australia
| | - Wei Yeh
- Department of Neurology, Alfred Hospital, 55 Commercial Rd, Melbourne, VIC, 3004, Australia
- Department of Neurology, Eastern Health, Box Hill, Victoria, Australia
- Department of Neuroscience, Monash University, Clayton, VIC, Australia
| | - Fabienne Brilot-Turville
- Translational Neuroimmunology Group, Kids Neuroscience Centre, The Kids Research Institute at the Children's Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Helmut Butzkueven
- Department of Neurology, Alfred Hospital, 55 Commercial Rd, Melbourne, VIC, 3004, Australia
- Department of Neuroscience, Monash University, Clayton, VIC, Australia
| | - Mastura Monif
- Department of Neurology, Royal Melbourne Hospital, 300 Grattan Street, Parkville VIC 3050, Australia.
- Department of Neurology, Alfred Hospital, 55 Commercial Rd, Melbourne, VIC, 3004, Australia.
- Department of Neuroscience, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
34
|
Zhang X. Myelin oligodendrocyte glycoprotein antibody-associated disease following DTaP vaccination: A case report. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100025. [PMID: 37846324 PMCID: PMC10577830 DOI: 10.1016/j.aopr.2022.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 10/18/2023]
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
35
|
Abstract
Innate and adaptive immune responses in the central nervous system (CNS) play critical roles in the pathogenesis of neurological diseases. In the first of a two-part special issue, leading researchers discuss how imaging modalities are used to monitor immune responses in several neurodegenerative diseases and glioblastoma and brain metastases. While comparative studies in humans between imaging and pathology are biased towards the end stage of disease, animal models can inform regarding how immune responses change with disease progression and as a result of treatment regimens. Magnetic resonance imaging (MRI) and positron emission tomography (PET) are frequently used to image disease progression, and the articles indicate how one or more of these modalities have been applied to specific neuroimmune diseases. In addition, advanced microscopical imaging using two-dimensional photon microscopy and in vitro live cell imaging have also been applied to animal models. In this special issue (Parts 1 and 2), as well as the imaging modalities mentioned, several articles discuss biomarkers of disease and microscopical studies that have enabled characterization of immune responses. Future developments of imaging modalities should enable tracking of specific subsets of immune cells during disease allowing longitudinal monitoring of immune responses. These new approaches will be critical to more effectively monitor and thus target specific cell subsets for therapeutic interventions which may be applicable to a range of neurological diseases.
Collapse
Affiliation(s)
- Sandra Amor
- Department of PathologyAmsterdam UMC Location VUmcAmsterdamthe Netherlands
- Department of Neuroscience and TraumaBlizard InstituteBarts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Erik Nutma
- Department of PathologyAmsterdam UMC Location VUmcAmsterdamthe Netherlands
| | - David Owen
- Department of Brain SciencesImperial College LondonLondonUK
| |
Collapse
|
36
|
Sánchez P, Chan F, Hardy TA. Tumefactive demyelination: updated perspectives on diagnosis and management. Expert Rev Neurother 2021; 21:1005-1017. [PMID: 34424129 DOI: 10.1080/14737175.2021.1971077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Tumefactive demyelination (TD) can be a challenging scenario for clinicians due to difficulties distinguishing it from other conditions, such as neoplasm or infection; or with managing the consequences of acute lesions, and then deciding upon the most appropriate longer term treatment strategy. AREAS COVERED The authors review the literature regarding TD covering its clinic-radiological features, association with multiple sclerosis (MS), and its differential diagnosis with other neuroinflammatory and non-inflammatory mimicking disorders with an emphasis on atypical forms of demyelination including acute disseminated encephalomyelitis (ADEM), MOG antibody-associated demyelination (MOGAD) and neuromyelitis spectrum disorders (NMOSD). We also review the latest in the acute and long-term treatment of TD. EXPERT OPINION It is important that the underlying cause of TD be determined whenever possible to guide the management approach which differs between different demyelinating and other inflammatory conditions. Improved neuroimaging and advances in serum and CSF biomarkers should one day allow early and accurate diagnosis of TD leading to better outcomes for patients.
Collapse
Affiliation(s)
- Pedro Sánchez
- Department of Neurology, Alexianer St. Josefs-Krankenhaus, Potsdam, Germany
| | - Fiona Chan
- Department of Neurology, Concord Hospital, University of Sydney, NSW, Australia
| | - Todd A Hardy
- Department of Neurology, Concord Hospital, University of Sydney, NSW, Australia.,Brain & Mind Centre, University of Sydney, Nsw, Australia
| |
Collapse
|