1
|
Buonfiglio F, Böhm EW, Tang Q, Daiber A, Gericke A. Revisiting the renin-angiotensin-aldosterone system in the eye: Mechanistic insights and pharmacological targets. Pharmacol Res 2025; 216:107771. [PMID: 40348100 DOI: 10.1016/j.phrs.2025.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/22/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a fundamental role in regulating blood pressure and fluid homeostasis through key effectors such as angiotensin II and aldosterone. These agents and their receptors have become crucial molecular targets in several cardiovascular and renal diseases. Over the past few decades, a growing body of evidence has revealed the presence of RAAS components in ocular structures, suggesting a tissue-specific RAAS within the eye. Building on this knowledge, studies have indicated that the ocular RAAS plays a significant role in the pathogenesis of various eye diseases. An impaired and overactivated RAAS contributes to the development of severe and widespread disorders affecting both the anterior and posterior segments of the eye. In this context, the current work aims to delve into the pivotal molecular pathways involving the RAAS, with an in-depth exploration of the ocular pathophysiology. It focuses on the relationship between overactivation of the RAAS and oxidative stress, as well as the exacerbation of neovascularization and inflammatory processes. The objective is to provide an updated and comprehensive understanding of the role of the RAAS in ophthalmological diseases, highlighting the therapeutic potential of RAAS modulators and discussing the controversies and challenges in this area of research.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg, University, Langenbeckstr.1, Mainz 55131, Germany.
| | - Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg, University, Langenbeckstr.1, Mainz 55131, Germany.
| | - Qi Tang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg, University, Langenbeckstr.1, Mainz 55131, Germany.
| | - Andreas Daiber
- Department of Cardiology I, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz 55131, Germany.
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg, University, Langenbeckstr.1, Mainz 55131, Germany.
| |
Collapse
|
2
|
Pircher A, Berberat J, Remonda L, Roberts CJ, Neutzner A, Killer HE. Incidence of optic nerve kinking in a cohort of patients with Normal tension glaucoma. Eye (Lond) 2025; 39:1270-1275. [PMID: 39827239 PMCID: PMC12043848 DOI: 10.1038/s41433-025-03608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVES To report on the incidence of optic nerve kinking in a series of patients diagnosed with normal-tension glaucoma (NTG) compared to an age- and gender matched control group without known optic nerve diseases. SUBJECTS AND METHODS All patients with NTG who underwent imaging (computed tomography cysternography (CTC) or magnetic resonance imaging (MRI)) of the orbits and cranium between 2012 and 2022 were included, totalling 57 patients (27 females and 30 males; 57 eyes; mean age 69 ± 10 years). 57 age- and gender matched subjects without known optic nerve diseases who underwent MRI of the orbits and cranium served as controls. Radiographic images of the orbits were analysed for the presence of optic nerve kinking. RESULTS In the axial plane at least one optic nerve kink was found in 49 of 57 (86%) optic nerves in patients with NTG and in 10 of 57 (18%) optic nerves in controls (p < 0.0001) while in the sagittal plane in 28 of 57 (49%) optic nerves in patients with NTG and in 1 of 57 (2%) optic nerves in controls (p < 0.0001) (Fisher's two-tailed exact test). CONCLUSIONS This study demonstrates a high statistically significant incidence of optic nerve kinking in patients with NTG compared to controls without known optic nerve diseases. Its possible role involved in the pathophysiology of NTG needs to be evaluated.
Collapse
Affiliation(s)
- Achmed Pircher
- Department of Neuroscience/Ophthalmology, Uppsala University, Uppsala, Sweden.
| | - Jatta Berberat
- Cantonal Hospital, Institute of Neuroradiology, Aarau, AG, Switzerland
| | - Luca Remonda
- Cantonal Hospital, Institute of Neuroradiology, Aarau, AG, Switzerland
| | - Cynthia J Roberts
- Departments of Ophthalmology & Visual Sciences; and Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Albert Neutzner
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
3
|
Takahashi N, Shiga Y, Kiyota N, Yasuda M, Takahashi N, Sato K, Arita R, Kikuchi A, Takayama S, Ishii T, Nakazawa T. Risk Score Predicting Primary Open-Angle Glaucoma Patients With Vascular Predisposition. Transl Vis Sci Technol 2025; 14:9. [PMID: 40192618 PMCID: PMC11980953 DOI: 10.1167/tvst.14.4.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/17/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose We tested the hypothesis that a questionnaire-based risk score predicts the prevalence of patients with primary open-angle glaucoma (POAG) with vascular predisposition. Methods The Flammer Syndrome Questionnaire (FSQ) was used to determine vascular risk scores in 823 healthy subjects and 512 patients with POAG. Next, we characterized blood flow pulsatility changes within the optic nerve head (ONH) in Flammer syndrome (FS) using laser speckle flowgraphy (LSFG) in 358 eyes of 206 patients with normal-tension glaucoma (NTG). Last, we examined the association between changes in Mean blur rate (MBRAve), an LSFG-derived ONH blood flow measurement, during cold provocation and the FSQ risk score in 56 eyes of 56 patients with NTG. Results Five FSQ-related symptoms were significantly associated in patients with POAG patients; cold hands/feet (odds ratio [OR] = 1.82), low blood pressure (BP; OR = 3.29), increased response to drugs (OR = 2.27), underweight (OR = 1.99), and tendency toward perfectionism (OR = 1.88). The vascular risk score showed the best discriminative accuracy in differentiating healthy subjects from patients with NTG (area under the curve [AUC] = 0.73). In the NTG eyes, ONH pulsatile blood flow in the FS group was characterized by greater pulsatility. Moreover, the negative correlation between the high FSQ risk score and the cold-induced ONH blood flow reduction was pronounced in eyes with NTG (correlation coefficient = -0.41). Conclusions The FSQ risk score can be a screening tool to identify patients with POAG with increased vascular stiffness and further reduced ONH blood flow during cold stress. Translational Relevance The vascular risk score may help tailor individual glaucoma care.
Collapse
Affiliation(s)
- Nana Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Neuroscience Division, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Naoki Kiyota
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Naoki Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryutaro Arita
- Department of Education and Support for Regional Medicine (General and Kampo Medicine), Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Akiko Kikuchi
- Department of Education and Support for Regional Medicine (General and Kampo Medicine), Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shin Takayama
- Department of Education and Support for Regional Medicine (General and Kampo Medicine), Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine (General and Kampo Medicine), Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
4
|
Wang X, Sun L, Han X, Li Z, Xing Y, Chen X, Xi R, Sun Y, Wang G, Zhao P. The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review). Int J Mol Med 2025; 55:63. [PMID: 39950327 PMCID: PMC11878485 DOI: 10.3892/ijmm.2025.5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by progressive and irreversible necrosis and apoptosis of retinal ganglion cells (RGCs). Deformation of the lamina cribrosa (LC) has been identified as a factor leading to damage to the optic nerve and capillaries passing through the LC, ultimately causing visual field defects and glaucoma development. Recent advancements in molecular biology, both domestically and internationally, have enabled a more comprehensive and in‑depth understanding of glaucoma pathogenesis. In the present review, the role of molecular signaling pathways associated with RGCs apoptosis, optic nerve protection and regeneration, and LC damage and remodeling in the development of glaucoma, are summarized and discussed. The insights provided herein may offer new targets and ideas for interventions and treatment strategies for glaucoma.
Collapse
Affiliation(s)
- Xiaotong Wang
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xudong Han
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Zhanglong Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuqing Xing
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xinyue Chen
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Ruofan Xi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuecong Sun
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Guilong Wang
- Shandong Provincial Education Department, Jinan, Shandong 250012, P.R. China
| | - Ping Zhao
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
5
|
Gatea FK, Hussein ZA, Kadhim HM, Abu-Raghif AR. Effect of ophthalmic preparation of methyldopa on induced ocular hypertension in rabbits. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4409-4417. [PMID: 39476246 DOI: 10.1007/s00210-024-03570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 04/10/2025]
Abstract
Glaucoma is a type of ocular disorder with multifaceted etiologies characterized by progressive optic nerve damage and ultimately loss of visual field. This study aimed to evaluate the possible intraocular pressure (IOP) lowering effect of an ophthalmic preparation of methyldopa (MD) in corticosteroid-induced ocular hypertension in rabbits. Forty New Zealand white male rabbits were assigned to the experiment and then randomly divided into five groups (n = 8). Ocular hypertension was induced by weekly subconjunctival injection of betamethasone suspension in both eyes. Animal groups included the control (healthy) group, which received the ophthalmic vehicle only; the standard (timolol) group, which received 0.5% timolol eye drops (ED); and the MD groups, which received 0.5%, 1%, and 2% of methyldopa ophthalmic preparation. Treatments were applied to the right eye twice daily for 7 days, whereas the left eye served as a control and was given only distilled water. IOP was recorded and ocular reflexes were observed. Weekly subconjunctival injections of betamethasone resulted in a significant elevation in the IOP (P ≤ 0.001) that was reduced after treatments with timolol 0.5% and MD at different concentrations. Timolol showed the highest reduction (P ≤ 0.001) in the mean IOP with a 30% reduction. MD showed a concentration-dependent reduction with the highest reduction (P ≤ 0.01) observed at 2% compared to the induced/distilled water (DW) eyes and no significant difference compared to the timolol 0.5% (P ≥ 0.05) with a 24.2% reduction in the mean IOP. Methyldopa managed to reduce the IOP in the chronic model of glaucoma, making MD a promising addition to the anti-glaucoma medications.
Collapse
Affiliation(s)
- Fouad Kadhim Gatea
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Zeena Ayad Hussein
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| | - Haitham Mahmood Kadhim
- Department of Pharmacology & Toxicology, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
6
|
Pham VQ, Nishida T, Moghimi S, Girkin CA, Fazio MA, Liebmann JM, Zangwill LM, Weinreb RN. Long-Term Blood Pressure Variability and Visual Field Progression in Glaucoma. JAMA Ophthalmol 2025; 143:25-32. [PMID: 39541129 PMCID: PMC11565290 DOI: 10.1001/jamaophthalmol.2024.4868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Importance Long-term variability of blood pressure may be associated with visual field (VF) progression in patients with glaucoma. Objectives To investigate the association between blood pressure parameters and VF progression over time in patients with glaucoma. Design, Setting, and Participants This retrospective cohort study of longitudinal data included patients with suspected or confirmed glaucoma who were selected from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. Patients underwent blood pressure and VF testing from November 2000 to December 2022, and data were analyzed in October 2023. Exposure Suspected or confirmed glaucoma. Main Outcomes and Measures Mean and SD values of blood pressure variables were calculated for systolic and diastolic arterial pressures. These parameters were incorporated into multivariable mixed-effect models to investigate the association between blood pressure parameters and mean intraocular pressure with rates of VF mean deviation loss. Interaction terms between blood pressure parameters and mean intraocular pressure were also included in the models. Results A total of 1674 eyes from 985 patients were assessed (mean [SD] age, 61.2 [0.4] years; 563 female [57.2%]). The mean rate of VF mean deviation change was -0.13 (95% CI, -0.16 to -0.10) dB/y over a mean follow-up of 8.0 (95% CI, 7.7-8.2) years. The interaction terms of higher mean blood pressure and higher SD of blood pressure were associated with faster annual mean deviation changes for both mean arterial pressure (0.02 [95% CI, 0.01-0.04] dB/y per 1-mm Hg higher; P = .001) and diastolic arterial pressure (0.02 [95% CI, 0.01-0.03] dB/y per 1-mm Hg higher; P < .001). The interaction term of higher SD of blood pressure and higher mean intraocular pressure was associated with faster annual mean deviation changes for both mean arterial pressure (0.01 [95% CI, 0.00-0.02] μm per 1-mm Hg higher; P = .003) and diastolic arterial pressure (0.01 [95% CI, 0.00-0.01] μm per 1-mm Hg higher; P = .001). Conclusions and Relevance In this cohort study, higher mean blood pressure and higher SD of blood pressure were associated with faster VF progression. These findings suggest that long-term variability of blood pressure may be a modifier of the association between intraocular pressure and VF progression in glaucoma.
Collapse
Affiliation(s)
- Vincent Q. Pham
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla
| | - Takashi Nishida
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla
| | - Sasan Moghimi
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla
| | - Christopher A. Girkin
- Department of Ophthalmology and Visual Science, Heersink School of Medicine, University of Alabama-Birmingham
| | - Massimo A. Fazio
- Department of Ophthalmology and Visual Science, Heersink School of Medicine, University of Alabama-Birmingham
| | - Jeffrey M. Liebmann
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, New York
| | - Linda M. Zangwill
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla
| | - Robert N. Weinreb
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla
| |
Collapse
|
7
|
Li F, Luo Y, Li X, Dai Y, Xiang Q. Association between metabolic syndrome and the risk of glaucoma: a meta-analysis of observational studies. Diabetol Metab Syndr 2024; 16:300. [PMID: 39696489 DOI: 10.1186/s13098-024-01532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The potential link between metabolic syndrome (MetS) and the risk of glaucoma has been proposed but remains inconclusive. This meta-analysis aimed to systematically evaluate the association between MetS and the risk of glaucoma. METHODS We conducted a comprehensive search of PubMed, Embase, and Web of Science from inception to August 12, 2024, for observational studies assessing the relationship between MetS and glaucoma risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the association. Heterogeneity was assessed using I² statistics, and a random-effects model was applied. RESULTS Nine studies involving 2,258,797 participants were included. The pooled results showed that MetS was significantly associated with an increased risk of glaucoma (OR: 1.34, 95% CI 1.15-1.55, p < 0.001; I² = 75%). Subgroup analyses according to the individual component of MetS suggested that hypertension and hyperglycemia were significantly associated with glaucoma, but not for obesity or dyslipidemia, although the difference among subgroups was not significant (p = 0.05). Further subgroup and meta-regression analyses suggested that the results were not significantly affected by study design, average age, sex, method of glaucoma diagnosis, or glaucoma subtype (primary open-angle glaucoma or normal-tension glaucoma). Sensitivity analysis confirmed the robustness of the findings. CONCLUSIONS This meta-analysis suggests that MetS is significantly associated with an increased risk of glaucoma. These findings highlight the need for heightened awareness and potential screening strategies for glaucoma in individuals with MetS. Further studies are required to elucidate underlying mechanisms and causality.
Collapse
Affiliation(s)
- Fei Li
- Department of ophthalmology, Chengdu Fifth People's Hospital, No. 33 Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, China
| | - Yanjun Luo
- Department of ophthalmology, Chengdu Fifth People's Hospital, No. 33 Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, China
| | - Xin Li
- Department of ophthalmology, Chengdu Fifth People's Hospital, No. 33 Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, China
| | - Yan Dai
- Department of ophthalmology, Chengdu Fifth People's Hospital, No. 33 Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, China
| | - Qingping Xiang
- Department of ophthalmology, Chengdu Fifth People's Hospital, No. 33 Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
8
|
Kilbile JT, Sapkal SB, Renzi G, D'Agostino I, Boudjelal M, Tamboli Y, Cutarella L, Mori M, Sgambellone S, Villano S, Marri S, Lucarini L, Carradori S, Carta F, Supuran CT. Lasamide Containing Sulfonylpiperazines as Effective Agents for the Management of Glaucoma Associated Symptoms. ChemMedChem 2024; 19:e202400601. [PMID: 39319579 DOI: 10.1002/cmdc.202400601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
A series of 2,4-dichloro-5-{[4-(phenylsulfonyl)piperazin-1-yl]carbonyl}benzenesulfonamides were designed and synthesized through amidation of Lasamide 1 with substituted piperazines. The newly obtained compounds demonstrated remarkable inhibition potency and selectivity for the human (h) expressed Carbonic Anhydrase (CA; EC 4.2.1.1) II isoform. Selected compounds 7 and 9 were investigated in an in vivo model of glaucoma and showed relevant performances, with the latter being able to last the effect up to 4 hours. The results herein reported are in sustainment of Lasamide derivatives as a new class of compounds potentially exploitable for the management of uncontrolled intra ocular pressure (IOP).
Collapse
Affiliation(s)
- Jaydeo T Kilbile
- Department of Chemistry, School of Basic and Applied Sciences, MGM University, Chhatrapati Sambhajinagar, 431003, MS, India
| | - Suryakant B Sapkal
- Department of Chemistry, School of Basic and Applied Sciences, MGM University, Chhatrapati Sambhajinagar, 431003, MS, India
| | - Gioele Renzi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Ilaria D'Agostino
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Mohamed Boudjelal
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, 14811, Saudi Arabia
| | - Yasinalli Tamboli
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, 14811, Saudi Arabia
| | - Luigi Cutarella
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Silvia Sgambellone
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Serafina Villano
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Silvia Marri
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Laura Lucarini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
9
|
Kang T, Zhou Y, Fan C, Zhang Y, Yang Y, Jiang J. Genetic association of lipid traits and lipid-related drug targets with normal tension glaucoma: a Mendelian randomization study for predictive preventive and personalized medicine. EPMA J 2024; 15:511-524. [PMID: 39239107 PMCID: PMC11371969 DOI: 10.1007/s13167-024-00373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024]
Abstract
Background Glaucoma is the leading cause of irreversible blindness worldwide. Normal tension glaucoma (NTG) is a distinct subtype characterized by intraocular pressures (IOP) within the normal range (< 21 mm Hg). Due to its insidious onset and optic nerve damage, patients often present with advanced conditions upon diagnosis. NTG poses an additional challenge as it is difficult to identify with normal IOP, complicating its prediction, prevention, and treatment. Observational studies suggest a potential association between NTG and abnormal lipid metabolism, yet conclusive evidence establishing a direct causal relationship is lacking. This study aims to explore the causal link between serum lipids and NTG, while identifying lipid-related therapeutic targets. From the perspective of predictive, preventive, and personalized medicine (PPPM), clarifying the role of dyslipidemia in the development of NTG could provide a new strategy for primary prediction, targeted prevention, and personalized treatment of the disease. Working hypothesis and methods In our study, we hypothesized that individuals with dyslipidemia may be more susceptible to NTG due to a dysregulation of microvasculature in optic nerve head. To verify the working hypothesis, univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) were utilized to estimate the causal effects of lipid traits on NTG. Drug target MR was used to explore possible target genes for NTG treatment. Genetic variants associated with lipid traits and variants of genes encoding seven lipid-related drug targets were extracted from the Global Lipids Genetics Consortium genome-wide association study (GWAS). GWAS data for NTG, primary open angle glaucoma (POAG), and suspected glaucoma (GLAUSUSP) were obtained from FinnGen Consortium. For apolipoproteins, we used summary statistics from a GWAS study by Kettunen et al. in 2016. For metabolic syndrome, summary statistics were extracted from UK Biobank participants. In the end, these findings could help identify individuals at risk of NTG by screening for lipid dyslipidemia, potentially leading to new targeted prevention and personalized treatment approaches. Results Genetically assessed high-density cholesterol (HDL) was negatively associated with NTG risk (inverse-variance weighted [IVW] model: OR per SD change of HDL level = 0.64; 95% CI, 0.49-0.85; P = 1.84 × 10-3), and the causal effect was independent of apolipoproteins and metabolic syndrome (IVW model: OR = 0.29; 95% CI, 0.14-0.60; P = 0.001 adjusted by ApoB and ApoA1; OR = 0.70; 95% CI, 0.52-0.95; P = 0.023 adjusted by BMI, HTN, and T2DM). Triglyceride (TG) was positively associated with NTG risk (IVW model: OR = 1.62; 95% CI, 1.15-2.29; P = 6.31 × 10-3), and the causal effect was independent of metabolic syndrome (IVW model: OR = 1.66; 95% CI, 1.18-2.34; P = 0.003 adjusted by BMI, HTN, and T2DM), but not apolipoproteins (IVW model: OR = 1.71; 95% CI, 0.99-2.95; P = 0.050 adjusted by ApoB and ApoA1). Genetic mimicry of apolipoprotein B (APOB) enhancement was associated with lower NTG risks (IVW model: OR = 0.09; 95% CI, 0.03-0.26; P = 9.32 × 10-6). Conclusions Our findings supported dyslipidemia as a predictive causal factor for NTG, independent of other factors such as metabolic comorbidities. Among seven lipid-related drug targets, APOB is a potential candidate drug target for preventing NTG. Personalized health profiles can be developed by integrating lipid metabolism with life styles, visual quality of life such as reading, driving, and walking. This comprehensive approach will aid in shifting from reactive medical services to PPPM in the management of NTG. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00373-5.
Collapse
Affiliation(s)
- Tianyi Kang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yi Zhou
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Cong Fan
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yue Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yu Yang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
10
|
Erb C, Erb C, Kazakov A, Kapanova G, Weisser B. Lifestyle Changes in Aging and their Potential Impact on POAG. Klin Monbl Augenheilkd 2024. [PMID: 39191386 DOI: 10.1055/a-2372-3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Primary open angle glaucoma is a primary mitochondrial disease with oxidative stress triggering neuroinflammation, eventually resulting in neurodegeneration. This affects many other areas of the brain in addition to the visual system. Aging also leads to inflammaging - a low-grade chronic inflammatory reaction in mitochondrial dysfunction, so these inflammatory processes overlap in the aging process and intensify pathophysiological processes associated with glaucoma. Actively counteracting these inflammatory events involves optimising treatment for any manifest systemic diseases while maintaining chronobiology and improving the microbiome. Physical and mental activity also provides support. This requires a holistic approach towards optimising neurodegeneration treatment in primary open angle glaucoma in addition to reducing intraocular pressure according personalised patient targets.
Collapse
Affiliation(s)
- Carl Erb
- Augenklinik am Wittenbergplatz, Berlin, Deutschland
| | | | - Avaz Kazakov
- External Relations and Development, Salymbekov University, Bishkek, Kyrgyzstan
| | - Gulnara Kapanova
- Medical Faculty of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | |
Collapse
|
11
|
Xu SL, Li JH, Zhang WM, Fu MJ, Xing HM, Ma H, Gong XH, Wu RH, Liang YB, Cui RZ, Chi ZL. Transcriptomic analysis of plasma-derived small extracellular vesicles reveals the pathological characteristics of normal tension glaucoma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:438-454. [PMID: 39697633 PMCID: PMC11648459 DOI: 10.20517/evcna.2024.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 12/20/2024]
Abstract
Aim Normal tension glaucoma (NTG) is a common optic neuropathy that can be challenging to diagnose due to the intraocular pressure remaining within the normal range. Early diagnosis and intervention are crucial for the effective lifelong management of patients. Methods This study recruited a total of 225 participants. Small extracellular vesicles (sEVs) RNA from circulating plasma was analyzed via transcriptomic sequencing, and its expression levels were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Logistic regression, linear regression, and receiver operating characteristic (ROC) curve analyses were performed to examine the association of biomarkers with clinicopathological characteristics. Results Analysis of sEVs mRNAs in NTG patients revealed mitochondrial dysfunction and enrichment of central nervous system degenerative pathways, reflecting the pathological features of NTG. Compared with those in the controls, the expression levels of sEVs let-7b-5p in the plasma of NTG patients were significantly lower, with an area under the curve (AUC) of 0.870 (95%CI: 0.797-0.943) (P < 0.0001), and the AUC combined with age was 0.923 (95%CI: 0.851-0.996) (P < 0.0001). In addition, we found that let-7b-5p levels were significantly correlated with the severity and visual field defects of NTG patients and had good specificity compared with other ophthalmic diseases. Conclusion The sEVs RNA signatures in circulating plasma from NTG revealed mitochondrial dysfunction and that sEVs let-7b-5p can be a useful noninvasive biomarker for NTG.
Collapse
Affiliation(s)
- Sheng-Lan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Authors contributed equally
| | - Jun-Hua Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Authors contributed equally
| | - Wen-Meng Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Meng-Jun Fu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Hui-Min Xing
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Hua Ma
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xian-Hui Gong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Rong-Han Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuan-Bo Liang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ren-Zhe Cui
- Department of Ophthalmology, Affiliated Hospital of Yanbian University, Yanji 133001, Jilin, China
| | - Zai-Long Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
12
|
Chen DF, Wang C, Zhou W, Si Y, Chu X, Hu C, Shang X, Wang X, Zuo J, Huang Q, Lu X, Cheng G, Leung DYL, Liang Y. Progressive peripapillary capillary vessel density loss and long-term visual field progression in Normal tension glaucoma. Acta Ophthalmol 2024; 102:e746-e753. [PMID: 38259141 DOI: 10.1111/aos.16638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
PURPOSE To explore the association between progressive peripapillary capillary vessel density (pcVD) reduction and the progression of visual field (VF) impairment in individuals with normal tension glaucoma (NTG). DESIGN Prospective cohort study. METHODS The study enrolled 110 participants with one eye each, totalling 110 NTG eyes. VF defects were evaluated using standard automated perimetry mean deviation (MD), while pcVD measurements were obtained using optical coherence tomography angiography throughout the follow-up period. Estimates of VF progression were determined by event-based and trend-based analyses. Fast VF progression was defined as an MD slope steeper than -0.5 dB/year, while the slow progression or stable VF was defined as an MD slope better or equal to -0.25 dB/year. Linear mixed-effects models were employed to analyse the rates of change in pcVD reduction and VF MD decline over time. Additionally, univariable and multivariable linear models were used to examine the relationship between pcVD changes and VF loss rates in NTG. RESULTS Slow VF progression or stable VF was observed in 45% of subjects, while 25% had moderate progression and 30% showed fast progression. Patients with VF progression exhibited faster rate of pcVD reduction in peripapillary global region (-0.73 ± 0.40%/year vs. -0.56 ± 0.35%/year, p = 0.022). Moreover, this rate positively correlated with VF MD decline in NTG (estimate 0.278, 95% CI 0.122-0.433, p = 0.001). CONCLUSION In individuals with NTG, faster VF progression was linked to a quicker reduction in pcVD, suggesting a positive correlation between pcVD decline and VF deterioration.
Collapse
Affiliation(s)
- De-Fu Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Chenmin Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Weihe Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuqing Si
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Xizhong Chu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Chengju Hu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Xiao Shang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Zuo
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Qiangjie Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaonan Lu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Gangwei Cheng
- Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dexter Y L Leung
- Department of Ophthalmology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Yuanbo Liang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Nasyrov E, Gassel CJ, Merle DA, Neubauer J, Voykov B. Long-term efficacy and safety of XEN-45 gel stent implantation in patients with normal-tension glaucoma. BMC Ophthalmol 2024; 24:264. [PMID: 38902667 PMCID: PMC11191175 DOI: 10.1186/s12886-024-03522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Minimally invasive bleb surgery using the XEN-45 gel stent has not been established for the treatment of normal-tension glaucoma (NTG). The main objective of this study was to evaluate the long-term treatment efficacy and safety of XEN-45 in eyes with uncontrolled NTG. METHODS A retrospective analysis of patients with NTG who underwent XEN-45 gel stent implantation at university hospital Tuebingen between 2016 and 2021. The primary outcome measure was surgical success after three years defined as lowering of intraocular pressure (IOP) of ≥ 20%, with target IOP between 6 and 15 mmHg. Success was complete without and qualified irrespective of topical antiglaucoma medication use. The need for further glaucoma surgery, except for needling, was regarded as a failure. The secondary outcome measures included changes in mean IOP, number of antiglaucoma medications, and needling and complication rates. RESULTS Twenty-eight eyes from 23 patients were included in the final analysis. Complete and qualified success rates were 56.5% and 75% after three years, respectively. Mean postoperative IOP ± standard deviation decreased significantly after three years from 19.3 ± 2.0 mmHg at baseline to 13.7 ± 4.2 mmHg (n = 22; p < 0.0001). The median number of antiglaucoma medications decreased from 2 (range 0-4) to 0 after three years (range 0-3; p < 0.0001). Sixteen eyes (57%) required a median of 1 (range 1-3) needling procedures. One eye required further glaucoma surgery. No sight-threatening complications were observed. CONCLUSION The XEN-45 stent is effective and safe for the long-term treatment of NTG. However, needling was frequently required to improve outcomes.
Collapse
Affiliation(s)
- Emil Nasyrov
- Centre for Ophthalmology, University Hospital Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany.
| | - Caroline J Gassel
- Centre for Ophthalmology, University Hospital Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany
| | - David A Merle
- Centre for Ophthalmology, University Hospital Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany
| | - Jonas Neubauer
- Centre for Ophthalmology, University Hospital Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany
| | - Bogomil Voykov
- Centre for Ophthalmology, University Hospital Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany
| |
Collapse
|
14
|
Ashok S, Pilling A, Lee-Kwen P, Guterman LR, Weiner A. Normal-Tension Glaucoma Complicated by a Giant Internal Carotid-Ophthalmic Artery Aneurysm. Case Rep Ophthalmol Med 2024; 2024:3878152. [PMID: 38765219 PMCID: PMC11101248 DOI: 10.1155/2024/3878152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 05/21/2024] Open
Abstract
Purpose. We describe a patient with normal tension glaucoma (NTG) of several years whose management was complicated by the presence of a giant internal carotid-ophthalmic artery aneurysm. Observations. A 72-year-old woman presented to our glaucoma clinic with accelerated deterioration of her vision in her left eye (OS) over a 1-month period. Her ophthalmic history was most notable for bilateral NTG diagnosed 3 years prior which had been treated with several laser trabeculoplasty OS and topical bimatoprost 0.01% eye drops in both eyes (OU). Upon evaluation, her visual acuity OS had worsened, and visual field (VF) testing showed extensive progressive losses temporally and pericentrally OS over a year with stable IOP measurements and no neurological complaints. Given her atypical NTG progression, she was referred for an urgent neurological evaluation which revealed an unruptured giant left internal carotid-ophthalmic aneurysm. Following the successful treatment of the aneurysm with platinum coils, she continued to demonstrate additional bilateral ophthalmic changes including further progression of VF loss and RNFL thinning OS > OD on follow-up. Conclusion and Importance. Overall, this report describes a unique complication in the management of a patient with chronic bilateral NTG in the form of a giant internal carotid-ophthalmic aneurysm. Moreover, it highlights the need for clinicians to maintain a degree of suspicion for compressive lesions of the optic nerve when presented with atypical progression of VFs and/or visual acuity loss in glaucomatous patients.
Collapse
Affiliation(s)
- Sudhat Ashok
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/State University of New York (SUNY), 955 Main St., Buffalo, NY 14203, USA
| | - Andrew Pilling
- Department of Ophthalmology, Ross Eye Institute, University at Buffalo/State University of New York (SUNY), 1176 Main St., Buffalo, NY 14209, USA
| | - Peterkin Lee-Kwen
- Department of Neurosciences, Buffalo Mercy Hospital Catholic Health System, 565 Abbott Rd., Buffalo, NY 14220, USA
| | - Lee R. Guterman
- Department of Neurosciences, Buffalo Mercy Hospital Catholic Health System, 565 Abbott Rd., Buffalo, NY 14220, USA
| | - Asher Weiner
- Department of Ophthalmology, Ross Eye Institute, University at Buffalo/State University of New York (SUNY), 1176 Main St., Buffalo, NY 14209, USA
| |
Collapse
|
15
|
Iannucci V, Bruscolini A, Iannella G, Visioli G, Alisi L, Salducci M, Greco A, Lambiase A. Olfactory Dysfunction and Glaucoma. Biomedicines 2024; 12:1002. [PMID: 38790964 PMCID: PMC11117544 DOI: 10.3390/biomedicines12051002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Olfactory dysfunction is a well-known phenomenon in neurological diseases with anosmia and hyposmia serving as clinical or preclinical indicators of Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Since glaucoma is a neurodegenerative disease of the visual system, it may also entail alterations in olfactory function, warranting investigation into potential sensory interconnections. METHODS A review of the current literature of the last 15 years (from 1 April 2008 to 1 April 2023) was conducted by two different authors searching for topics related to olfaction and glaucoma. RESULTS three papers met the selection criteria. According to these findings, patients with POAG appear to have worse olfaction than healthy subjects. Furthermore, certain predisposing conditions to glaucoma, such as pseudoexfoliation syndrome and primary vascular dysregulation, could possibly induce olfactory changes that can be measured with the Sniffin Stick test. CONCLUSIONS the scientific literature on this topic is very limited, and the pathogenesis of olfactory changes in glaucoma is not clear. However, if the results of these studies are confirmed by further research, olfactory testing may be a non-invasive tool to assist clinicians in the early diagnosis of glaucoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alessandro Lambiase
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (V.I.); (A.B.); (G.I.); (G.V.); (L.A.); (M.S.); (A.G.)
| |
Collapse
|
16
|
Pan L, Wu J, Wang N. Association of Gene Polymorphisms with Normal Tension Glaucoma: A Systematic Review and Meta-Analysis. Genes (Basel) 2024; 15:491. [PMID: 38674425 PMCID: PMC11050218 DOI: 10.3390/genes15040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Normal tension glaucoma (NTG) is becoming a more and more serious problem, especially in Asia. But the pathological mechanisms are still not illustrated clearly. We carried out this research to uncover the gene polymorphisms with NTG. METHODS We searched in Web of Science, Embase, Pubmed and Cochrane databases for qualified case-control studies investigating the association between single nucleotide polymorphisms (SNPs) and NTG risk. Odds ratios (ORs) and 95% confidence intervals (CIs) for each SNP were estimated by fixed- or random-effect models. Sensitivity analysis was also performed to strengthen the reliability of the results. RESULTS Fifty-six studies involving 33 candidate SNPs in 14 genetic loci were verified to be eligible for our meta-analysis. Significant associations were found between 16 SNPs (rs166850 of OPA1; rs10451941 of OPA1; rs735860 of ELOVL5; rs678350 of HK2; c.603T>A/Met98Lys of OPTN; c.412G>A/Thr34Thr of OPTN; rs10759930 of TLR4; rs1927914 of TLR4; rs1927911 of TLR4; c.*70C>G of EDNRA; rs1042522/-Arg72Pro of P53; rs10483727 of SIX1-SIX6; rs33912345 of SIX1-SIX6; rs2033008 of NCK2; rs3213787 of SRBD1 and c.231G>A of EDNRA) with increased or decreased risk of NTG. CONCLUSIONS In this study, we confirmed 16 genetic polymorphisms in 10 genes (OPA1, ELOVL5, HK2, OPTN, TLR4, EDNRA, P53, NCK2, SRBD1 and SIX1-SIX6) were associated with NTG.
Collapse
Affiliation(s)
- Lijie Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing 100730, China;
| | - Jian Wu
- School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Henan Academy of Innovations in Medical Science, No. 2 Biotechnology Street, Hangkonggang District, Zhengzhou 450000, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing 100730, China;
| |
Collapse
|
17
|
Golubnitschaja O, Polivka J, Potuznik P, Pesta M, Stetkarova I, Mazurakova A, Lackova L, Kubatka P, Kropp M, Thumann G, Erb C, Fröhlich H, Wang W, Baban B, Kapalla M, Shapira N, Richter K, Karabatsiakis A, Smokovski I, Schmeel LC, Gkika E, Paul F, Parini P, Polivka J. The paradigm change from reactive medical services to 3PM in ischemic stroke: a holistic approach utilising tear fluid multi-omics, mitochondria as a vital biosensor and AI-based multi-professional data interpretation. EPMA J 2024; 15:1-23. [PMID: 38463624 PMCID: PMC10923756 DOI: 10.1007/s13167-024-00356-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Worldwide stroke is the second leading cause of death and the third leading cause of death and disability combined. The estimated global economic burden by stroke is over US$891 billion per year. Within three decades (1990-2019), the incidence increased by 70%, deaths by 43%, prevalence by 102%, and DALYs by 143%. Of over 100 million people affected by stroke, about 76% are ischemic stroke (IS) patients recorded worldwide. Contextually, ischemic stroke moves into particular focus of multi-professional groups including researchers, healthcare industry, economists, and policy-makers. Risk factors of ischemic stroke demonstrate sufficient space for cost-effective prevention interventions in primary (suboptimal health) and secondary (clinically manifested collateral disorders contributing to stroke risks) care. These risks are interrelated. For example, sedentary lifestyle and toxic environment both cause mitochondrial stress, systemic low-grade inflammation and accelerated ageing; inflammageing is a low-grade inflammation associated with accelerated ageing and poor stroke outcomes. Stress overload, decreased mitochondrial bioenergetics and hypomagnesaemia are associated with systemic vasospasm and ischemic lesions in heart and brain of all age groups including teenagers. Imbalanced dietary patterns poor in folate but rich in red and processed meat, refined grains, and sugary beverages are associated with hyperhomocysteinaemia, systemic inflammation, small vessel disease, and increased IS risks. Ongoing 3PM research towards vulnerable groups in the population promoted by the European Association for Predictive, Preventive and Personalised Medicine (EPMA) demonstrates promising results for the holistic patient-friendly non-invasive approach utilising tear fluid-based health risk assessment, mitochondria as a vital biosensor and AI-based multi-professional data interpretation as reported here by the EPMA expert group. Collected data demonstrate that IS-relevant risks and corresponding molecular pathways are interrelated. For examples, there is an evident overlap between molecular patterns involved in IS and diabetic retinopathy as an early indicator of IS risk in diabetic patients. Just to exemplify some of them such as the 5-aminolevulinic acid/pathway, which are also characteristic for an altered mitophagy patterns, insomnia, stress regulation and modulation of microbiota-gut-brain crosstalk. Further, ceramides are considered mediators of oxidative stress and inflammation in cardiometabolic disease, negatively affecting mitochondrial respiratory chain function and fission/fusion activity, altered sleep-wake behaviour, vascular stiffness and remodelling. Xanthine/pathway regulation is involved in mitochondrial homeostasis and stress-driven anxiety-like behaviour as well as molecular mechanisms of arterial stiffness. In order to assess individual health risks, an application of machine learning (AI tool) is essential for an accurate data interpretation performed by the multiparametric analysis. Aspects presented in the paper include the needs of young populations and elderly, personalised risk assessment in primary and secondary care, cost-efficacy, application of innovative technologies and screening programmes, advanced education measures for professionals and general population-all are essential pillars for the paradigm change from reactive medical services to 3PM in the overall IS management promoted by the EPMA.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Jiri Polivka
- Department of Histology and Embryology, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Pavel Potuznik
- Department of Neurology, University Hospital Plzen and Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Ivana Stetkarova
- Department of Neurology, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Lackova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Carl Erb
- Private Institute of Applied Ophthalmology, Berlin, Germany
| | - Holger Fröhlich
- Artificial Intelligence & Data Science Group, Fraunhofer SCAI, Sankt Augustin, Germany
- Bonn-Aachen International Center for IT (B-It), University of Bonn, 53115 Bonn, Germany
| | - Wei Wang
- Edith Cowan University, Perth, Australia
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Babak Baban
- The Dental College of Georgia, Departments of Neurology and Surgery, The Medical College of Georgia, Augusta University, Augusta, USA
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Niva Shapira
- Department of Nutrition, School of Health Sciences, Ashkelon Academic College, Ashkelon, Israel
| | - Kneginja Richter
- CuraMed Tagesklinik Nürnberg GmbH, Nuremberg, Germany
- Technische Hochschule Nürnberg GSO, Nuremberg, Germany
- University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Alexander Karabatsiakis
- Department of Psychology, Clinical Psychology II, University of Innsbruck, Innsbruck, Austria
| | - Ivica Smokovski
- University Clinic of Endocrinology, Diabetes and Metabolic Disorders Skopje, University Goce Delcev, Faculty of Medical Sciences, Stip, North Macedonia
| | - Leonard Christopher Schmeel
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | | | - Paolo Parini
- Cardio Metabolic Unit, Department of Medicine Huddinge, and Department of Laboratory Medicine, Karolinska Institutet, and Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Polivka
- Department of Neurology, University Hospital Plzen and Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Angeli A, Chelli I, Lucarini L, Sgambellone S, Marri S, Villano S, Ferraroni M, De Luca V, Capasso C, Carta F, Supuran CT. Novel Carbonic Anhydrase Inhibitors with Dual-Tail Core Sulfonamide Show Potent and Lasting Effects for Glaucoma Therapy. J Med Chem 2024; 67:3066-3089. [PMID: 38266245 DOI: 10.1021/acs.jmedchem.3c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Glaucoma, a leading cause of irreversible vision loss worldwide, is characterized by elevated intraocular pressure (IOP), a well-established risk factor across all its forms. We present the design and synthesis of 39 novel carbonic anhydrase inhibitors by a dual-tailed approach, strategically crafted to interact with distinct hydrophobic and hydrophilic pockets of CA active sites. The series was investigated against the CA isoforms implicated in glaucoma (hCA II, hCA IV, and hCA XII), and the X-ray crystal structures of compounds 25a, 25f, and 26a with CA II, along with 14b in complex with a hCA XII mimic, were determined. Selected compounds (14a, 25a, and 26a) underwent evaluation for their ability to reduce IOP in rabbits with ocular hypertension. Derivative 26a showed significant potency and sustained IOP-lowering effects, surpassing the efficacy of the drugs dorzolamide and bimatoprost. This positions compound 26a as a promising candidate for the development of a novel anti-glaucoma medication.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Irene Chelli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Laura Lucarini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Silvia Sgambellone
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Silvia Marri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Serafina Villano
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Florence, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, 80131 Naples, Italy
| | | | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| |
Collapse
|
19
|
Lucchesi M, Marracci S, Amato R, Lapi D, Santana-Garrido Á, Espinosa-Martín P, Vázquez CM, Mate A, Dal Monte M. The Anti-Inflammatory and Antioxidant Properties of Acebuche Oil Exert a Retinoprotective Effect in a Murine Model of High-Tension Glaucoma. Nutrients 2024; 16:409. [PMID: 38337691 PMCID: PMC10857689 DOI: 10.3390/nu16030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Glaucoma is characterized by cupping of the optic disc, apoptotic degeneration of retinal ganglion cells (RGCs) and their axons, and thinning of the retinal nerve fiber layer, with patchy loss of vision. Elevated intraocular pressure (IOP) is a major risk factor for hypertensive glaucoma and the only modifiable one. There is a need to find novel compounds that counteract other risk factors contributing to RGC degeneration. The oil derived from the wild olive tree (Olea europaea var. sylvestris), also called Acebuche (ACE), shows powerful anti-inflammatory, antioxidant and retinoprotective effects. We evaluated whether ACE oil could counteract glaucoma-related detrimental effects. To this aim, we fed mice either a regular or an ACE oil-enriched diet and then induced IOP elevation through intraocular injection of methylcellulose. An ACE oil-enriched diet suppressed glaucoma-dependent retinal glia reactivity and inflammation. The redox status of the glaucomatous retinas was restored to a control-like situation, and ischemia was alleviated by an ACE oil-enriched diet. Notably, retinal apoptosis was suppressed in the glaucomatous animals fed ACE oil. Furthermore, as shown by electroretinogram analyses, RGC electrophysiological functions were almost completely preserved by the ACE oil-enriched diet. These ameliorative effects were IOP-independent and might depend on ACE oil's peculiar composition. Although additional studies are needed, nutritional supplementation with ACE oil might represent an adjuvant in the management of glaucoma.
Collapse
Affiliation(s)
- Martina Lucchesi
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Rosario Amato
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Dominga Lapi
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Pablo Espinosa-Martín
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
| | - Carmen María Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
20
|
Tsai T, Reinehr S, Deppe L, Strubbe A, Kluge N, Dick HB, Joachim SC. Glaucoma Animal Models beyond Chronic IOP Increase. Int J Mol Sci 2024; 25:906. [PMID: 38255979 PMCID: PMC10815097 DOI: 10.3390/ijms25020906] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glaucoma is a complex and multifactorial disease defined as the loss of retinal ganglion cells (RGCs) and their axons. Besides an elevated intraocular pressure (IOP), other mechanisms play a pivotal role in glaucoma onset and progression. For example, it is known that excitotoxicity, immunological alterations, ischemia, and oxidative stress contribute to the neurodegeneration in glaucoma disease. To study these effects and to discover novel therapeutic approaches, appropriate animal models are needed. In this review, we focus on various glaucoma animal models beyond an elevated IOP. We introduce genetically modified mice, e.g., the optineurin E50K knock-in or the glutamate aspartate transporter (GLAST)-deficient mouse. Excitotoxicity can be mimicked by injecting the glutamate analogue N-methyl-D-aspartate intravitreally, which leads to rapid RGC degeneration. To explore the contribution of the immune system, the experimental autoimmune glaucoma model can serve as a useful tool. Here, immunization with antigens led to glaucoma-like damage. The ischemic mechanism can be mimicked by inducing a high IOP for a certain amount of time in rodents, followed by reperfusion. Thereby, damage to the retina and the optic nerve occurs rapidly after ischemia/reperfusion. Lastly, we discuss the importance of optic nerve crush models as model systems for normal-tension glaucoma. In summary, various glaucoma models beyond IOP increase can be utilized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (T.T.); (S.R.); (L.D.); (N.K.); (H.B.D.)
| |
Collapse
|
21
|
Ruan Y, Buonfiglio F, Gericke A. Adrenoceptors in the Eye - Physiological and Pathophysiological Relevance. Handb Exp Pharmacol 2024; 285:453-505. [PMID: 38082203 DOI: 10.1007/164_2023_702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The autonomic nervous system plays a crucial role in the innervation of the eye. Consequently, it comes as no surprise that catecholamines and their corresponding receptors have been extensively studied and characterized in numerous ocular structures, including the cornea, conjunctiva, lacrimal gland, trabecular meshwork, uvea, and retina. These investigations have unveiled substantial clinical implications, particularly in the context of treating glaucoma, a progressive neurodegenerative disorder responsible for irreversible vision loss on a global scale. The primary therapeutic approaches for glaucoma frequently involve the modulation of α1-, α2-, and β-adrenoceptors, making them pivotal targets. In this chapter, we offer a comprehensive overview of the expression, distribution, and functional roles of adrenoceptors within various components of the eye and its associated structures. Additionally, we delve into the pivotal role of adrenoceptors in the pathophysiology of glaucoma. Furthermore, we provide a concise historical perspective on adrenoceptor research, examine the distinct contributions of individual adrenoceptor subtypes to the treatment of various ocular conditions, and propose potential future avenues of exploration in this field.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
22
|
Lei K, Tang Y, Pang R, Zhou H, Yang L, Wang N. Comparison of the retinal microvasculature between compressive and glaucomatous optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2023; 261:3589-3597. [PMID: 37347246 DOI: 10.1007/s00417-023-06137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
PURPOSE To compare the patterns of retinal microvasculature change in the peripapillary and macular region between compressive optic neuropathy (CON) and glaucomatous optic neuropathy (GON), and to assess the ability of optical coherence tomography angiography (OCTA) in differentiating the two conditions. METHODS This cross-sectional study included 108 participants (108 eyes), 36 with CON, 36 with GON, and 36 healthy controls. The CON and GON eyes were matched by the average peripapillary retinal nerve fiber layer (pRNFL) thickness (1:1). Optical coherence tomography (OCT) and OCTA were performed to compare the structural and vascular change of the peripapillary and macular region between groups. RESULTS Both CON and GON eyes showed more severe structural and vascular damage than the control eyes. The CON eyes had lower pRNFL thickness than the GON eyes in the temporal and nasal quadrants, and thicker pRNFL thickness in the inferior quadrant. The average GCC thickness did not differ between the two groups. The peripapillary vessel density of the CON group was significantly higher in the inferior sectors than that of the GON group. In the macular region, the CON group had significantly higher vessel density in the whole image, the temporal sector in parafovea region, and the temporal, superior, and inferior sectors in perifovea region. CONCLUSION To a similar degree of structural damage, CON had less retinal vascular impairment than GON, especially in the macular region, and the significance of the finding needs further evaluation.
Collapse
Affiliation(s)
- Kun Lei
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Yang Tang
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruiqi Pang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Huiying Zhou
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
23
|
Wang W, Wang H. Understanding the complex genetics and molecular mechanisms underlying glaucoma. Mol Aspects Med 2023; 94:101220. [PMID: 37856931 DOI: 10.1016/j.mam.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Currently the only effective treatment for glaucoma is to reduce the intraocular pressure, which can halt the progression of the disease. Highlighting the importance of identifying individuals at risk of developing glaucoma and those with early-stage glaucoma will help patients receive treatment before sight loss. However, some cases of glaucoma do not have raised intraocular pressure. In fact, glaucoma is caused by a variety of different mechanisms and has a wide range of different subtypes. Understanding other risk factors, the underlying mechanisms, and the pathology of glaucoma might lead to novel treatments and treatment of underlying diseases. In this review we present the latest research into glaucoma including the genetics and molecular basis of the disease.
Collapse
Affiliation(s)
- Weiwei Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital, Northwest University, Xi'an, 710004, Shaanxi Province, China.
| | - Huaizhou Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
24
|
Karg MM, Lu YR, Refaian N, Cameron J, Hoffmann E, Hoppe C, Shirahama S, Shah M, Krasniqi D, Krishnan A, Shrestha M, Guo Y, Cermak JM, Walthier M, Broniowska K, Rosenzweig-Lipson S, Gregory-Ksander M, Sinclair DA, Ksander BR. Sustained Vision Recovery by OSK Gene Therapy in a Mouse Model of Glaucoma. Cell Reprogram 2023; 25:288-299. [PMID: 38060815 PMCID: PMC10739681 DOI: 10.1089/cell.2023.0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Glaucoma, a chronic neurodegenerative disease, is a leading cause of age-related blindness worldwide and characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons. Previously, we developed a novel epigenetic rejuvenation therapy, based on the expression of the three transcription factors Oct4, Sox2, and Klf4 (OSK), which safely rejuvenates RGCs without altering cell identity in glaucomatous and old mice after 1 month of treatment. In the current year-long study, mice with continuous or cyclic OSK expression induced after glaucoma-induced vision damage had occurred were tracked for efficacy, duration, and safety. Surprisingly, only 2 months of OSK fully restored impaired vision, with a restoration of vision for 11 months with prolonged expression. In RGCs, transcription from the doxycycline (DOX)-inducible Tet-On AAV system, returned to baseline 4 weeks after DOX withdrawal. Significant vision improvements remained for 1 month post switching off OSK, after which the vision benefit gradually diminished but remained better than baseline. Notably, no adverse effects on retinal structure or body weight were observed in glaucomatous mice with OSK continuously expressed for 21 months providing compelling evidence of efficacy and safety. This work highlights the tremendous therapeutic potential of rejuvenating gene therapies using OSK, not only for glaucoma but also for other ocular and systemic injuries and age-related diseases.
Collapse
Affiliation(s)
- Margarete M. Karg
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Whitehead Institute for Biomedical Research, Department of Biology, MIT, Cambridge, Massachusetts, USA
| | - Nasrin Refaian
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Cameron
- Whitehead Institute for Biomedical Research, Department of Biology, MIT, Cambridge, Massachusetts, USA
| | - Emma Hoffmann
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Cindy Hoppe
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shintaro Shirahama
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Madhura Shah
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Drenushe Krasniqi
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anitha Krishnan
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maleeka Shrestha
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yinjie Guo
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | - Meredith Gregory-Ksander
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - David A. Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Ksander
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Kim MJ, Martin CA, Kim J, Jablonski MM. Computational methods in glaucoma research: Current status and future outlook. Mol Aspects Med 2023; 94:101222. [PMID: 37925783 PMCID: PMC10842846 DOI: 10.1016/j.mam.2023.101222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Advancements in computational techniques have transformed glaucoma research, providing a deeper understanding of genetics, disease mechanisms, and potential therapeutic targets. Systems genetics integrates genomic and clinical data, aiding in identifying drug targets, comprehending disease mechanisms, and personalizing treatment strategies for glaucoma. Molecular dynamics simulations offer valuable molecular-level insights into glaucoma-related biomolecule behavior and drug interactions, guiding experimental studies and drug discovery efforts. Artificial intelligence (AI) technologies hold promise in revolutionizing glaucoma research, enhancing disease diagnosis, target identification, and drug candidate selection. The generalized protocols for systems genetics, MD simulations, and AI model development are included as a guide for glaucoma researchers. These computational methods, however, are not separate and work harmoniously together to discover novel ways to combat glaucoma. Ongoing research and progresses in genomics technologies, MD simulations, and AI methodologies project computational methods to become an integral part of glaucoma research in the future.
Collapse
Affiliation(s)
- Minjae J Kim
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Cole A Martin
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Jinhwa Kim
- Graduate School of Artificial Intelligence, Graduate School of Metaverse, Department of Management Information Systems, Sogang University, 1 Shinsoo-Dong, Mapo-Gu, Seoul, South Korea.
| | - Monica M Jablonski
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
26
|
Lo J, Mehta K, Dhillon A, Huang YK, Luo Z, Nam MH, Al Diri I, Chang KC. Therapeutic strategies for glaucoma and optic neuropathies. Mol Aspects Med 2023; 94:101219. [PMID: 37839232 PMCID: PMC10841486 DOI: 10.1016/j.mam.2023.101219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Glaucoma is a neurodegenerative eye disease that causes permanent vision impairment. The main pathological characteristics of glaucoma are retinal ganglion cell (RGC) loss and optic nerve degeneration. Glaucoma can be caused by elevated intraocular pressure (IOP), although some cases are congenital or occur in patients with normal IOP. Current glaucoma treatments rely on medicine and surgery to lower IOP, which only delays disease progression. First-line glaucoma medicines are supported by pharmacotherapy advancements such as Rho kinase inhibitors and innovative drug delivery systems. Glaucoma surgery has shifted to safer minimally invasive (or microinvasive) glaucoma surgery, but further trials are needed to validate long-term efficacy. Further, growing evidence shows that adeno-associated virus gene transduction and stem cell-based RGC replacement therapy hold potential to treat optic nerve fiber degeneration and glaucoma. However, better understanding of the regulatory mechanisms of RGC development is needed to provide insight into RGC differentiation from stem cells and help choose target genes for viral therapy. In this review, we overview current progress in RGC development research, optic nerve fiber regeneration, and human stem cell-derived RGC differentiation and transplantation. We also provide an outlook on perspectives and challenges in the field.
Collapse
Affiliation(s)
- Jung Lo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Kamakshi Mehta
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Armaan Dhillon
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yu-Kai Huang
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Mi-Hyun Nam
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Issam Al Diri
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA; Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
27
|
Kim DK, Yu H. Incidence Rates and Risk Ratios of Normal Tension Glaucoma in Patients with Chronic Rhinosinusitis: A Population-Based Longitudinal Follow-Up Study. Life (Basel) 2023; 13:2238. [PMID: 38137840 PMCID: PMC10745065 DOI: 10.3390/life13122238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Several studies have investigated the association between chronic rhinosinusitis (CRS) and ophthalmological complications. However, it remains uncertain whether CRS is independently associated with the development of normal tension glaucoma (NTG). Therefore, this retrospective cohort study aimed to investigate the prospective association between CRS and the increased incidence and risk of NTG using a representative population-based dataset. The selection of both the CRS and comparison groups was meticulously conducted through the propensity scoring method. The incidence and risk ratios of NTG were measured using person-years at risk and a weighted Cox proportional hazards model. We enrolled 30,284 individuals without CRS (comparison group) and 15,142 individuals with CRS. The NTG incidence rates were 1.19 and 0.81 in the CRS and comparison groups, respectively. The CRS group showed a significantly increased risk of subsequent development for NTG (adjusted hazard ratio = 1.41, 95% confidence interval = 1.16-1.72), regardless of the CRS subtype. Additionally, the risk of developing NTG was relatively higher in the first 2 years after CRS diagnosis. Moreover, a subgroup analysis revealed a higher risk of NTG in elderly female individuals with CRS. The present findings underscore the importance of monitoring and managing NTG risk in individuals with CRS, especially in elderly female patients.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Hyunjae Yu
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
28
|
Wang X, Wang M, Liu H, Mercieca K, Prinz J, Feng Y, Prokosch V. The Association between Vascular Abnormalities and Glaucoma-What Comes First? Int J Mol Sci 2023; 24:13211. [PMID: 37686017 PMCID: PMC10487550 DOI: 10.3390/ijms241713211] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. While intraocular pressure (IOP) presents a major risk factor, the underlying pathophysiology still remains largely unclear. The correlation between vascular abnormalities and glaucoma has been deliberated for decades. Evidence for a role played by vascular factors in the pathogenesis of glaucomatous neurodegeneration has already been postulated. In addition, the fact that glaucoma causes both structural and functional changes to retinal blood vessels has been described. This review aims to investigate the published evidence concerning the relationship between vascular abnormalities and glaucoma, and to provide an overview of the "chicken or egg" dilemma in glaucoma. In this study, several biomarkers of glaucoma progression from a vascular perspective, including endothelin-1 (ET-1), nitric oxide, vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs), were identified and subsequently assessed for their potential as pharmacological intervention targets.
Collapse
Affiliation(s)
- Xiaosha Wang
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
| | - Maoren Wang
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
| | - Karl Mercieca
- Glaucoma Section, University Hospital Eye Clinic, 53127 Bonn, Germany;
- Faculty of Biology, Medicine and Health, School of Health Sciences, University of Manchester, Manchester M13 9WH, UK
| | - Julia Prinz
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Yuan Feng
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
29
|
Buonfiglio F, Pfeiffer N, Gericke A. Immunomodulatory and Antioxidant Drugs in Glaucoma Treatment. Pharmaceuticals (Basel) 2023; 16:1193. [PMID: 37765001 PMCID: PMC10535738 DOI: 10.3390/ph16091193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma, a group of diseases characterized by progressive retinal ganglion cell loss, cupping of the optic disc, and a typical pattern of visual field defects, is a leading cause of severe visual impairment and blindness worldwide. Elevated intraocular pressure (IOP) is the leading risk factor for glaucoma development. However, glaucoma can also develop at normal pressure levels. An increased susceptibility of retinal ganglion cells to IOP, systemic vascular dysregulation, endothelial dysfunction, and autoimmune imbalances have been suggested as playing a role in the pathophysiology of normal-tension glaucoma. Since inflammation and oxidative stress play a role in all forms of glaucoma, the goal of this review article is to present an overview of the inflammatory and pro-oxidant mechanisms in the pathophysiology of glaucoma and to discuss immunomodulatory and antioxidant treatment approaches.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| |
Collapse
|
30
|
Salvetat ML, Pellegrini F, Spadea L, Salati C, Zeppieri M. Pharmaceutical Approaches to Normal Tension Glaucoma. Pharmaceuticals (Basel) 2023; 16:1172. [PMID: 37631087 PMCID: PMC10458083 DOI: 10.3390/ph16081172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Normal tension glaucoma (NTG) is defined as a subtype of primary open-angle glaucoma (POAG) in which the intraocular pressure (IOP) values are constantly within the statistically normal range without treatment and represents approximately the 30-40% of all glaucomatous cases. The pathophysiology of this condition is multifactorial and is still not completely well known. Several theories have been proposed to explain the onset and progression of this disease, which can be divided into IOP-dependent and IOP-independent factors, suggesting different therapeutic strategies. The current literature strongly supports the fundamental role of IOP in NTG. The gold standard treatment for NTG tends to be based on the lowering IOP even if "statistically normal". Numerous studies have shown, however, that the IOP reduction alone is not enough to slow down or stop the disease progression in all cases, suggesting that other IOP-independent risk factors may contribute to the NTG pathogenesis. In addition to IOP-lowering strategies, several different therapeutic approaches for NTG have been proposed, based on vaso-active, antioxidant, anti-inflammatory and/or neuroprotective substances. To date, unfortunately, there are no standardized or proven treatment alternatives for NTG when compared to traditional IOP reduction treatment regimes. The efficacy of the IOP-independent strategies in decreasing the risk or treating NTG still remains inconclusive. The aim of this review is to highlight strategies reported in the current literature to treat NTG. The paper also describes the challenges in finding appropriate and pertinent treatments for this potentially vision-threatening disease. Further comprehension of NTG pathophysiology can help clinicians determine when to use IOP-lowering treatments alone and when to consider additional or alternatively individualized therapies focused on particular risk factors, on a case-by-case basis.
Collapse
Affiliation(s)
- Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
31
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
32
|
Yang PJ, Lin CW, Lee CY, Huang JY, Hsieh MJ, Yang SF. The Use of Androgen Deprivation Therapy for Prostate Cancer Lead to Similar Rate of Following Open Angle Glaucoma: A Population-Based Cohort Study. Cancers (Basel) 2023; 15:cancers15112915. [PMID: 37296878 DOI: 10.3390/cancers15112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed to survey the effect of androgen deprivation therapy (ADT) on the development of open angle glaucoma (OAG) in prostate cancer using the data from national health insurance research database (NHIRD) of Taiwan. A retrospective cohort study was conducted and patients were regarded as prostate cancer with ADT according to related diagnostic, procedure and medication codes. Each prostate subject with ADT was matched to one patient with prostate cancer, but without ADT, and two participants without both prostate cancer and ADT; 1791, 1791 and 3582 patients were recruited in each group. The primary outcome was set as the OAG development according to related diagnostic codes. Cox proportional hazard regression was used to estimate the adjusted hazard ratio (aHR) and 95% confidence interval (CI) of ADT for the incidence of OAG. There were 145, 65 and 42 newly developed OAG cases in the control group, prostate cancer without ADT group and prostate cancer with ADT group. The prostate cancer with ADT group showed a significantly lower risk of OAG development compared to the control group (aHR: 0.689, 95% CI: 0.489-0.972, p = 0.0341), and the risk of OAG development in the prostate cancer without ADT group was similar compared to that in the control group (aHR: 0.825, 95% CI: 0.613-1.111, p = 0.2052). In addition, ages older than 50 years old would lead to higher incidence of OAG development, respectively. In conclusion, the use of ADT will lead to a similar or lower rate of OAG development.
Collapse
Affiliation(s)
- Po-Jen Yang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Yi Lee
- Department of Ophthalmology, Nobel Eye Institute, Taipei 115, Taiwan
- Department of Ophthalmology, Jen-Ai Hospital Dali Branch, Taichung 412, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Jing-Yang Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
33
|
Abstract
Vision is an ability that depends on the precise structure and functioning of the retina. Any kind of stress or injury can disrupt the retinal architecture and leads to vision impairment, vision loss, and blindness. Immune system and immune response function maintain homeostasis in the microenvironment. Several genetic, metabolic, and environmental factors may alter retinal homeostasis, and these events may initiate various inflammatory cascades. The prolonged inflammatory state may contribute to the initiation and development of retinal disorders such as glaucoma, age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa, which pose a threat to vision. In the current review, we attempted to provide sufficient evidence on the role of inflammation in these retinal disorders. Moreover, this review paves the way to focus on therapeutic targets of the disease, which are found to be promising.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University; Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University; Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
34
|
Erb C, Prokosch V. [Crosstalk between Primary Open-Angle Glaucoma and Diabetes Mellitus]. Klin Monbl Augenheilkd 2023; 240:123-124. [PMID: 36812924 DOI: 10.1055/a-1989-6285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
35
|
Ischemic stroke of unclear aetiology: a case-by-case analysis and call for a multi-professional predictive, preventive and personalised approach. EPMA J 2022; 13:535-545. [PMID: 36415625 PMCID: PMC9670046 DOI: 10.1007/s13167-022-00307-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Due to the reactive medical approach applied to disease management, stroke has reached an epidemic scale worldwide. In 2019, the global stroke prevalence was 101.5 million people, wherefrom 77.2 million (about 76%) suffered from ischemic stroke; 20.7 and 8.4 million suffered from intracerebral and subarachnoid haemorrhage, respectively. Globally in the year 2019 — 3.3, 2.9 and 0.4 million individuals died of ischemic stroke, intracerebral and subarachnoid haemorrhage, respectively. During the last three decades, the absolute number of cases increased substantially. The current prevalence of stroke is 110 million patients worldwide with more than 60% below the age of 70 years. Prognoses by the World Stroke Organisation are pessimistic: globally, it is predicted that 1 in 4 adults over the age of 25 will suffer stroke in their lifetime. Although age is the best known contributing factor, over 16% of all strokes occur in teenagers and young adults aged 15–49 years and the incidence trend in this population is increasing. The corresponding socio-economic burden of stroke, which is the leading cause of disability, is enormous. Global costs of stroke are estimated at 721 billion US dollars, which is 0.66% of the global GDP. Clinically manifested strokes are only the “tip of the iceberg”: it is estimated that the total number of stroke patients is about 14 times greater than the currently applied reactive medical approach is capable to identify and manage. Specifically, lacunar stroke (LS), which is characteristic for silent brain infarction, represents up to 30% of all ischemic strokes. Silent LS, which is diagnosed mainly by routine health check-up and autopsy in individuals without stroke history, has a reported prevalence of silent brain infarction up to 55% in the investigated populations. To this end, silent brain infarction is an independent predictor of ischemic stroke. Further, small vessel disease and silent lacunar brain infarction are considered strong contributors to cognitive impairments, dementia, depression and suicide, amongst others in the general population. In sub-populations such as diabetes mellitus type 2, proliferative diabetic retinopathy is an independent predictor of ischemic stroke. According to various statistical sources, cryptogenic strokes account for 15 to 40% of the entire stroke incidence. The question to consider here is, whether a cryptogenic stroke is fully referable to unidentifiable aetiology or rather to underestimated risks. Considering the latter, translational research might be of great clinical utility to realise innovative predictive and preventive approaches, potentially benefiting high risk individuals and society at large. In this position paper, the consortium has combined multi-professional expertise to provide clear statements towards the paradigm change from reactive to predictive, preventive and personalised medicine in stroke management, the crucial elements of which are:Consolidation of multi-disciplinary expertise including family medicine, predictive and in-depth diagnostics followed by the targeted primary and secondary (e.g. treated cancer) prevention of silent brain infarction Application of the health risk assessment focused on sub-optimal health conditions to effectively prevent health-to-disease transition Application of AI in medicine, machine learning and treatment algorithms tailored to robust biomarker patterns Application of innovative screening programmes which adequately consider the needs of young populations
Stroke is a severe brain disease which has reached an epidemic scale worldwide: in 2019, the global stroke prevalence was 101.5 million people. The World Stroke Organisation predicted that globally, 1 in 4 adults over the age of 25 will get a stroke in their lifetime. Not only old people but also teenagers and young adults are affected. Current global costs of stroke are estimated at 721 billion US dollars. Due to undiagnosed so-called “silent” brain infarction, the number of affected individuals is about 14 times greater in the population than clinically recorded. If it remains untreated, silent brain infarction may cause many severe and fatal disorders such as dementia, depression and even suicide. In this position paper, the consortium describes how the rudimental approach to treating severely diseased people could be replaced by an innovative predictive and preventive one to protect people against the health-to-disease transition.
Collapse
|
36
|
Roth S, Moss HE, Vajaranant TS, Sweitzer B. Perioperative Care of the Patient with Eye Pathologies Undergoing Nonocular Surgery. Anesthesiology 2022; 137:620-643. [PMID: 36179149 PMCID: PMC9588701 DOI: 10.1097/aln.0000000000004338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The authors reviewed perioperative ocular complications and implications of ocular diseases during nonocular surgeries. Exposure keratopathy, the most common perioperative eye injury, is preventable. Ischemic optic neuropathy, the leading cause of perioperative blindness, has well-defined risk factors. The incidence of ischemic optic neuropathy after spine fusion, but not cardiac surgery, has been decreasing. Central retinal artery occlusion during spine fusion surgery can be prevented by protecting eyes from compression. Perioperative acute angle closure glaucoma is a vision-threatening emergency that can be successfully treated by rapid reduction of elevated intraocular pressure. Differential diagnoses of visual dysfunction in the perioperative period and treatments are detailed. Although glaucoma is increasingly prevalent and often questions arise concerning perioperative anesthetic management, evidence-based recommendations to guide safe anesthesia care in patients with glaucoma are currently lacking. Patients with low vision present challenges to the anesthesia provider that are becoming more common as the population ages.
Collapse
Affiliation(s)
- Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - Heather E Moss
- Departments of Ophthalmology and Neurology & Neurologic Sciences, Stanford University, Palo Alto, California
| | - Thasarat Sutabutr Vajaranant
- Department of Ophthalmology and Visual Science, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - BobbieJean Sweitzer
- University of Virginia, Charlottesville, Virginia; Perioperative Medicine, Inova Health System, Falls Church, Virginia
| |
Collapse
|
37
|
Wang YM, Shen R, Lin TP, Chan PP, Wong MO, Chan NC, Tang F, Lam AK, Leung DY, Tham CC, Cheung CY. Optical coherence tomography angiography metrics predict normal tension glaucoma progression. Acta Ophthalmol 2022; 100:e1455-e1462. [PMID: 35261173 DOI: 10.1111/aos.15117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/25/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Meng Wang
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Ruyue Shen
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Timothy P.H. Lin
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Poemen P. Chan
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong Hong Kong SAR China
- Hong Kong Eye Hospital Hong Kong SAR China
- Lam Kin Chung, Jet King‐Shing Ho Glaucoma Treatment and Research Centre The Chinese University of Hong Kong Hong Kong SAR China
| | - Mandy O.M. Wong
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong Hong Kong SAR China
- Hong Kong Eye Hospital Hong Kong SAR China
| | - Noel C.Y. Chan
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong Hong Kong SAR China
- Department of Ophthalmology and Visual Sciences Prince of Wales Hospital Hong Kong SAR China
| | - Fangyao Tang
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Alexander K.N. Lam
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Dexter Y.L. Leung
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong Hong Kong SAR China
- Department of Ophthalmology Hong Kong Sanatorium and Hospital Hong Kong SAR China
| | - Clement C.Y. Tham
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong Hong Kong SAR China
- Hong Kong Eye Hospital Hong Kong SAR China
- Lam Kin Chung, Jet King‐Shing Ho Glaucoma Treatment and Research Centre The Chinese University of Hong Kong Hong Kong SAR China
| | - Carol Y. Cheung
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong Hong Kong SAR China
- Lam Kin Chung, Jet King‐Shing Ho Glaucoma Treatment and Research Centre The Chinese University of Hong Kong Hong Kong SAR China
| |
Collapse
|