1
|
Sharma S, Sundaram S, Kesavadas C, Thomas B. An Algorithmic Approach to MR Imaging of Hypomyelinating Leukodystrophies. J Magn Reson Imaging 2025; 61:1531-1551. [PMID: 39165110 DOI: 10.1002/jmri.29558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) are a heterogeneous group of white matter diseases characterized by permanent deficiency of myelin deposition in brain. MRI is instrumental in the diagnosis and recommending genetic analysis, and is especially useful as many patients have a considerable clinical overlap, with the primary presenting complains being global developmental delay with psychomotor regression. Hypomyelination is defined as deficient myelination on two successive MR scans, taken at least 6 months apart, one of which should have been obtained after 1 year of age. Due to subtle differences in MRI features, the need for a systematic imaging approach to diagnose and classify hypomyelinating disorders is reiterated. The presented article provides an explicit review of imaging features of a myriad of primary and secondary HLDs, using state of the art genetically proven MR cases. A systematic pattern-based approach using MR features and specific clinical clues is illustrated for a quick yet optimal diagnosis of common as well as rare hypomyelinating disorders. The major MR features helping to narrow the differential diagnosis include extent of involvement like diffuse or patchy hypomyelination with selective involvement or sparing of certain white matter structures like optic radiations, median lemniscus, posterior limb of internal capsule and periventricular white matter; cerebellar atrophy; brainstem, corpus callosal or basal ganglia involvement; T2 hypointense signal of the thalami; and presence of calcifications. The authors also discuss the genetic and pathophysiologic basis of HLDs and recent methods to quantify myelin in vivo using advanced neuroradiology tools. The proposed algorithmic approach provides an improved understanding of these rare yet important disorders, enhancing diagnostic precision and improving patient outcomes. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Smily Sharma
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Soumya Sundaram
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
2
|
Meena AK, Wander A, Mahesan A, Kamila G, Kumar A, Chakrabarty B, Jauhari P, Gulati S. POLR3-Related Leukodystrophy: A Case Series from the Indian Scenario. Neurol India 2025; 73:325-329. [PMID: 40176224 DOI: 10.4103/neurol-india.neurol-india-d-24-00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/26/2024] [Indexed: 04/04/2025]
Abstract
POLR3-related leukodystrophy is a spectrum of hypomyelinating leukodystrophy caused by biallelic POLR3A, POLR3B, POLR1C, and POLR3K variants. This series of case reports aims to provide a concise overview of the spectrum of rare hypomyelinating leukodystrophy caused by POLR3 variants and adds to the existing knowledge regarding clinical details of a rarer subset caused by POLR1C variant. A retrospective review of four cases in the POLR3-related leukodystrophy spectrum was done. Data pertaining to the clinical details, radiological features, and genetic results of the patients were retrieved and analyzed. Hypomyelination, hypodontia, and hypogonadotrophic hypogonadism are the core features of this spectrum of disorders, and our children from North India also had similar presentation. Sensorineural hearing loss is a newly reported feature, seen in our patients. Further research and larger studies are needed on the pathogenetic cellular mechanisms in this form of hypomyelinating leukodystrophy to guide development of therapeutic targets.
Collapse
Affiliation(s)
- Ankit Kumar Meena
- Centre of Excellence and Advanced Research for Childhood Neurodevelopmental Disorders, Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Arvinder Wander
- Centre of Excellence and Advanced Research for Childhood Neurodevelopmental Disorders, Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Aakash Mahesan
- Centre of Excellence and Advanced Research for Childhood Neurodevelopmental Disorders, Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Gautam Kamila
- Centre of Excellence and Advanced Research for Childhood Neurodevelopmental Disorders, Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Atin Kumar
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Biswaroop Chakrabarty
- Centre of Excellence and Advanced Research for Childhood Neurodevelopmental Disorders, Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant Jauhari
- Centre of Excellence and Advanced Research for Childhood Neurodevelopmental Disorders, Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sheffali Gulati
- Centre of Excellence and Advanced Research for Childhood Neurodevelopmental Disorders, Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Eskin-Schwartz M, Seraidy S, Paz E, Molhem M, Ranza E, Antonarakis SE, Blanc X, Herman K, Benko WS, Libzon S, Ben Sira L, Fattal-Valevski A, Dolgin V, Birk OS, Kessel A, Bross P, Weiss C, Azem A, Zerem A. Heterozygous de novo variants in HSPD1 cause hypomyelinating leukodystrophy through impaired HSP60 oligomerisation. J Med Genet 2024; 62:15-24. [PMID: 39500555 DOI: 10.1136/jmg-2024-109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/16/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Hypomyelinating leukodystrophies are a group of genetic disorders, characterised by severe permanent myelin deficiency. Their clinical features include developmental delay with or without neuroregression, nystagmus, central hypotonia, progressing to spasticity and ataxia. HSPD1 encodes the HSP60 chaperonin protein, mediating ATP-dependent folding of imported proteins in the mitochondrial matrix. Pathogenic variants in HSPD1 have been related to a number of neurological phenotypes, including the dominantly inherited pure hereditary spastic paraplegia (MIM 605280) and the recessively inherited hypomyelinating leukodystrophy 4 (MIM 612233). Subsequently, an additional phenotype of hypomyelinating leukodystrophy has been reported due to de novo heterozygous HSPD1 variants.In the current work, we expand the clinical and genetic spectrum of this hypomyelinating disorder by describing a cohort of three patients, being heterozygous for HSPD1 variants involving residue Ala536 of HSP60 (the novel p.Ala536Pro variant and the previously reported p.Ala536Val). METHODS Clinical and radiological evaluation; whole exome sequencing, in vitro reconstitution assay and patient fibroblast cell lysate analysis. RESULTS Clinical manifestation was of early-onset nystagmus, tremor and hypotonia evolving into spasticity and ataxia and childhood-onset neuroregression in one case. Brain MRI studies revealed diffuse hypomyelination.The 3D protein structure showed these variants to lie in spatial proximity to the previously reported Leu47Val variant, associated with a similar clinical phenotype. In vitro reconstitution assay and patient fibroblast cell lysate analysis demonstrated that these mutants display aberrant chaperonin protein complex assembly. DISCUSSION We provide evidence that impaired oligomerisation of the chaperonin complex might underlie this HSPD1-related phenotype, possibly through exerting a dominant negative effect.
Collapse
Affiliation(s)
- Marina Eskin-Schwartz
- Genetics Institute, Soroka Hospital, Beer Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shaikah Seraidy
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Paz
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Maism Molhem
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | | | - Xavier Blanc
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Kristin Herman
- UC Davis Medical Center, MIND Institute Section of Medical Genomics, Sacramento, California, USA
| | - William S Benko
- UC Davis Medical Center, Department of Neurology, Sacramento, California, USA
| | - Stephanie Libzon
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Ben Sira
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Radiology, Department of Radiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Aviva Fattal-Valevski
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases at the Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ohad S Birk
- Genetics Institute, Soroka Hospital, Beer Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases at the Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amit Kessel
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Celeste Weiss
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Abdussalam Azem
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Zerem
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Jaunmuktane Z. Neuropathology of white matter disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:3-20. [PMID: 39322386 DOI: 10.1016/b978-0-323-99209-1.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The hallmark neuropathologic feature of all leukodystrophies is depletion or alteration of the white matter of the central nervous system; however increasing genetic discoveries highlight the genetic heterogeneity of white matter disorders. These discoveries have significantly helped to advance the understanding of the complexity of molecular mechanisms involved in the biogenesis and maintenance of healthy white matter. Accordingly, genetic discoveries and functional studies have enabled us to firmly establish that multiple distinct structural defects can lead to white matter pathology. Leukodystrophies can develop not only due to defects in proteins essential for myelin biogenesis and maintenance or oligodendrocyte function, but also due to mutations encoding myriad of proteins involved in the function of neurons, astrocytes, microglial cells as well as blood vessels. To a variable extent, some leukodystrophies also show gray matter, peripheral nervous system, or multisystem involvement. Depending on the genetic defect and its role in the formation or maintenance of the white matter, leukodystrophies can present either in early childhood or adulthood. In this chapter, the classification of leukodystrophies will be discussed from the cellular defect point of view, followed by a description of known neuropathologic alterations for all leukodystrophies.
Collapse
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, United Kingdom; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
5
|
Aerts-Kaya F, van Til NP. Gene and Cellular Therapies for Leukodystrophies. Pharmaceutics 2023; 15:2522. [PMID: 38004502 PMCID: PMC10675548 DOI: 10.3390/pharmaceutics15112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Leukodystrophies are a heterogenous group of inherited, degenerative encephalopathies, that if left untreated, are often lethal at an early age. Although some of the leukodystrophies can be treated with allogeneic hematopoietic stem cell transplantation, not all patients have suitable donors, and new treatment strategies, such as gene therapy, are rapidly being developed. Recent developments in the field of gene therapy for severe combined immune deficiencies, Leber's amaurosis, epidermolysis bullosa, Duchenne's muscular dystrophy and spinal muscular atrophy, have paved the way for the treatment of leukodystrophies, revealing some of the pitfalls, but overall showing promising results. Gene therapy offers the possibility for overexpression of secretable enzymes that can be released and through uptake, allow cross-correction of affected cells. Here, we discuss some of the leukodystrophies that have demonstrated strong potential for gene therapy interventions, such as X-linked adrenoleukodystrophy (X-ALD), and metachromatic leukodystrophy (MLD), which have reached clinical application. We further discuss the advantages and disadvantages of ex vivo lentiviral hematopoietic stem cell gene therapy, an approach for targeting microglia-like cells or rendering cross-correction. In addition, we summarize ongoing developments in the field of in vivo administration of recombinant adeno-associated viral (rAAV) vectors, which can be used for direct targeting of affected cells, and other recently developed molecular technologies that may be applicable to treating leukodystrophies in the future.
Collapse
Affiliation(s)
- Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100 Ankara, Turkey;
- Advanced Technologies Application and Research Center, Hacettepe University, 06800 Ankara, Turkey
| | - Niek P. van Til
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Wan L, Yu D, Li Z, Liu X, Liang Y, Yan H, Zhu G, Zhang B, Yang G. RARS1-related developmental and epileptic encephalopathy. Epilepsia Open 2023; 8:867-876. [PMID: 37186453 PMCID: PMC10472388 DOI: 10.1002/epi4.12751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE Biallelic variants of RARS1, a gene that encodes the cytoplasmic tRNA synthetase for arginine (ArgRS), are associated with central nervous system (CNS) manifestations, such as hypomyelinating leukodystrophy-9 and developmental and epileptic encephalopathy (DEE). This study aimed to better understand the RARS1 biallelic mutations and the associated phenotypes, particularly in patients with DEE. METHODS We identified two patients with RARS1 biallelic mutations and functionally validated these mutations in vitro. Furthermore, we performed a review of the literature. RESULTS Two patients with hypomyelinating leukodystrophy were found to have RARS1 biallelic variants (Patient 1: c.1535G>A (p.Arg512Gln) and c.1382G>A (p.Arg461His); Patient 2: homozygous variants c.5A>T (p.Asp2Val)). Patient 2 had a severe clinical manifestation of DEE. A review of the literature identified 27 patients from five studies. Among the 29 patients, intellectual disability, developmental delay, and hypomyelination were the common symptoms, while 13 of them exhibited DEE and malformations of cortical development. Of the 25 variants identified, c.5A>G (p.Asp2Gly) was identified in 10 patients. ArgRS protein expression and stability were substantially reduced in the two newly identified patients. SIGNIFICANCE Patients with RARS1 biallelic mutations frequently exhibit DEE, a severe phenotype, along with hypomyelinating leukodystrophy. Besides its effects on the white matter, this mutation also influences cortical development. Moreover, the variants c.5A>T (p.Asp2Val), c.1382G>A (p.Arg461His), and c.1535G>A (p.Arg512Gln) are pathogenic and affect the expression of ArgRS by reducing the protein stability.
Collapse
Affiliation(s)
- Lin Wan
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Dan Yu
- Department of PediatricsWest China Second Hospital of Sichuan UniversityChengduChina
| | - Zhichao Li
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Xinting Liu
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Yan Liang
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Huimin Yan
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Gang Zhu
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Bo Zhang
- Department of Neurology, ICCTR Biostatistics and Research Design Center, Boston Children's HospitalHarvard Medical SchoolMassachusettsBostonUSA
| | - Guang Yang
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
- Department of Pediatrics, The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Zhang T, Pang W, Feng T, Guo J, Wu K, Nunez Santos M, Arthanarisami A, Nana AL, Nguyen Q, Kim PJ, Jankowsky JL, Seeley WW, Hu F. TMEM106B regulates microglial proliferation and survival in response to demyelination. SCIENCE ADVANCES 2023; 9:eadd2676. [PMID: 37146150 PMCID: PMC10162677 DOI: 10.1126/sciadv.add2676] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
TMEM106B, a lysosomal transmembrane protein, has been closely associated with brain health. Recently, an intriguing link between TMEM106B and brain inflammation has been discovered, but how TMEM106B regulates inflammation is unknown. Here, we report that TMEM106B deficiency in mice leads to reduced microglia proliferation and activation and increased microglial apoptosis in response to demyelination. We also found an increase in lysosomal pH and a decrease in lysosomal enzyme activities in TMEM106B-deficient microglia. Furthermore, TMEM106B loss results in a significant decrease in the protein levels of TREM2, an innate immune receptor essential for microglia survival and activation. Specific ablation of TMEM106B in microglia results in similar microglial phenotypes and myelination defects in mice, supporting the idea that microglial TMEM106B is critical for proper microglial activities and myelination. Moreover, the TMEM106B risk allele is associated with myelin loss and decreased microglial numbers in humans. Collectively, our study unveils a previously unknown role of TMEM106B in promoting microglial functionality during demyelination.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Weilun Pang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer Guo
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kenton Wu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mariela Nunez Santos
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Akshayakeerthi Arthanarisami
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alissa L. Nana
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Quynh Nguyen
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Peter J. Kim
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Joanna L. Jankowsky
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Departments of Molecular and Cellular Biology, Neurology, and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - William W. Seeley
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94158, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Andersen J, Thom N, Shadrach JL, Chen X, Onesto MM, Amin ND, Yoon SJ, Li L, Greenleaf WJ, Müller F, Pașca AM, Kaltschmidt JA, Pașca SP. Single-cell transcriptomic landscape of the developing human spinal cord. Nat Neurosci 2023; 26:902-914. [PMID: 37095394 DOI: 10.1038/s41593-023-01311-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Understanding spinal cord assembly is essential to elucidate how motor behavior is controlled and how disorders arise. The human spinal cord is exquisitely organized, and this complex organization contributes to the diversity and intricacy of motor behavior and sensory processing. But how this complexity arises at the cellular level in the human spinal cord remains unknown. Here we transcriptomically profiled the midgestation human spinal cord with single-cell resolution and discovered remarkable heterogeneity across and within cell types. Glia displayed diversity related to positional identity along the dorso-ventral and rostro-caudal axes, while astrocytes with specialized transcriptional programs mapped into white and gray matter subtypes. Motor neurons clustered at this stage into groups suggestive of alpha and gamma neurons. We also integrated our data with multiple existing datasets of the developing human spinal cord spanning 22 weeks of gestation to investigate the cell diversity over time. Together with mapping of disease-related genes, this transcriptomic mapping of the developing human spinal cord opens new avenues for interrogating the cellular basis of motor control in humans and guides human stem cell-based models of disease.
Collapse
Affiliation(s)
- Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Nicholas Thom
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | | | - Xiaoyu Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Massimo Mario Onesto
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Neal D Amin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Se-Jin Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Li Li
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Fabian Müller
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Anca M Pașca
- Department of Pediatrics, Division of Neonatology, Stanford University, Stanford, CA, USA
| | | | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA.
| |
Collapse
|
9
|
Quental R, Sampaio M, Alonso I, Quental S, Leão M, Sousa R. A Novel Homozygous Splice Site Variant in AIMP1 Gene Causing Hypomyelinating Leukodystrophy: Case Report and Review of the Literature. Neuropediatrics 2023; 54:120-125. [PMID: 36652953 DOI: 10.1055/s-0042-1760366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Biallelic pathogenic variants in AIMP1 gene cause hypomyelinating leukodystrophy type 3, a severe neurodegenerative disorder with early onset characterized by microcephaly, axial hypotonia, epilepsy, spasticity, and developmental delay. METHODS Clinical exome sequence was performed on patient's DNA and Sanger sequencing was used to confirm the candidate variant. To better characterize the effect of the genetic variant, functional analysis based on Sanger sequencing of the proband's complementary DNA (cDNA) was performed. RESULTS We report a case of 2-year-old girl with microcephaly, significant global developmental delay, refractory epilepsy, flaccid paralysis, hypomyelination, leukodystrophy, and cerebral atrophy on brain magnetic resonance imaging (MRI). Clinical exome sequencing revealed a novel splice site variant c.603 + 1G > A in homozygosity in the AIMP1 gene. Studies on patient's cDNA showed that the variant disrupts the canonical donor splice site of intron 5, with the recognition of a cryptic splice site within exon 5, leading to the skipping of the last 24 nucleotides of this exon together with the flanking intron. This alteration is predicted to cause an in-frame deletion of eight amino acids (p.Val194_Gln201del) belonging to the tRNA-biding domain of the protein. CONCLUSION To the best of our knowledge, this is the first report of a splice site variant in the AIMP1 gene causing hypomyelinating leukodystrophy. The description of this patient not only expands the mutational spectrum of AIMP1 but also provides deeper insights on genotype-phenotype correlation by comparing the clinical features of our patient with previously reported affected individuals.
Collapse
Affiliation(s)
- Rita Quental
- Department of Medical Genetics, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Mafalda Sampaio
- Department of Neuropediatrics, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Isabel Alonso
- Genetyca-ICM, Instituto de Estudos Celulares e Moleculares, Porto, Portugal
| | - Sofia Quental
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Institute for Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miguel Leão
- Department of Medical Genetics, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Raquel Sousa
- Department of Neuropediatrics, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
10
|
Yang F, Sun H, Yang Y, Wang Y, Dai S, Lin Z, Shen Y, Liu H. Identification of POLR3B biallelic mutations-associated hypomyelinating leukodystrophy-8 in two siblings. Clin Genet 2023; 103:596-602. [PMID: 36650939 DOI: 10.1111/cge.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
POLR3B gene encodes the 2nd largest catalytic subunit and affects the function of RNA polymerase III enzymes in transcription. Bi-allelic variants in POLR3B pathogenically cause hypomyelinating leukodystrophy-8 (HLD8). Herein, we recruited a family with two patients, who presented clinically with cerebellar atrophy, intellectual disability, hypogonadotropic hypogonadism, and visual problems. We identified the two affected siblings carrying the compound heterozygous variations (c.165_167del; c.1615G>T) in POLR3B by trio-whole-exome sequencing (trio-WES). The qPCR and western blot showed that both transcriptional and translational levels of the mutation (c.165_167del, p.I55_K56delinsM) were sharply attenuated. Following that, a thorough functional examination of a zebrafish line disrupted for human POLR3B validated the pathogenic effects of the two mutations. Our research broadens the spectrum of HLD8-related pathogenic POLR3B mutations and provides new molecular and animal evidence.
Collapse
Affiliation(s)
- Fan Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China.,Medical Genetics/Prenatal Diagnostic Department, Luoyang Maternal and Child Health Hospital, Henan University, Luoyang, China
| | - Huaqin Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China.,Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanting Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China
| | - Yanan Wang
- Medical Genetics/Prenatal Diagnostic Department, Luoyang Maternal and Child Health Hospital, Henan University, Luoyang, China
| | - Siyu Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China
| | - Ziyuan Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China.,Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China.,Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongqian Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Yoon Han J, Gon Cho Y, Park J, Jang W. A novel variant of the POLR3A gene in a patient with hypomyelinating POLR3-related leukodystrophy. Clin Chim Acta 2022; 533:15-21. [PMID: 35691411 DOI: 10.1016/j.cca.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypomyelinating POLR3-related leukodystrophy is a group of rare neurological diseases characterized by degeneration of the white matter of the brain with different combinations of major clinical findings. Here we report the first Korean POLR3-related leukodystrophy caused by bi-allelic POLR3A c.1771-6C > G and novel c.1650_1661del variants. METHODS An 18-month-old girl was admitted for evaluation of a seizure-like activity with spasticity that affected her entire body. She showed dental abnormalities, but not suspicious facial dysmorphism. She was in a bed-ridden state with severe cognitive impairments and episodes of dystonic posturing for 1-2 min. Trio exome sequencing (ES) was performed to determine the potential genetic cause of severe developmental delay with leukodystrophy in our proband. RESULTS Trio ES revealed that bi-allelic POLR3A deleterious variants, c.1650_1661del of the exon 13, and c.1771-6C > G of the intron 13 were best candidate as causes of hypomyelinating POLR3-related leukodystrophy. Sanger sequencing confirmed the genetic origin of these POLR3A deleterious variants as autosomal recessive hereditary transmission. CONCLUSION Our report provides additional evidence for a phenotypic continuum of hypomyelinating POLR3-related leukodystrophy caused by bi-allelic POLR3A variants. Further genetic studies are required to understand underlying pleiotropic effects of different POLR3A variants.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Gon Cho
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.
| | - Woori Jang
- Department of Laboratory Medicine, Inha University School of Medicine, Incheon, Korea.
| |
Collapse
|
12
|
Liu Z, Zhao S, Chen J, Ma L, Shi Q, Zhou Y. A novel frameshift mutation in Allan-Herndon-Dudley syndrome. Int J Legal Med 2022; 136:1181-1187. [PMID: 35391604 DOI: 10.1007/s00414-022-02823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a very rare, X-linked psychomotor disability syndrome with delayed myelination, almost exclusively affecting boys. We present a case of a 4-year-old boy with AHDS who was found cyanotic, with intermittent vomiting and paroxysmal convulsions about 4 h after his parents went out, and was then taken to the hospital, where he eventually died the next day. The autopsy revealed foreign bodies in the tiny bronchi and alveoli of the deceased, congestion, and punctate hemorrhage in multiple organs, consistent with the diagnosis of asphyxia. Compared with a normally developing 4-year-old boy, the deceased showed cerebral atrophy and cerebral edema, and Luxol Fast Blue (LFB) stain indicated delayed cerebellar, hippocampal, and basal ganglia development and myelination. A novel frameshift mutation c.584delG in the SLC16A2 gene was detected. Family lineage investigation showed that the mutation was also detected in the deceased's 8-year-old brother and biological mother. The present work enriches the profile mutations in SLC16A2 related to AHDS and emphasizes the importance of autopsy and postmortem genetic analysis in such cases.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Shuquan Zhao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Jianyi Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Qing Shi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
13
|
Feng T, Luan L, Katz II, Ullah M, Van Deerlin VM, Trojanowski JQ, Lee EB, Hu F. TMEM106B deficiency impairs cerebellar myelination and synaptic integrity with Purkinje cell loss. Acta Neuropathol Commun 2022; 10:33. [PMID: 35287730 PMCID: PMC8919601 DOI: 10.1186/s40478-022-01334-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
TMEM106B, a type II lysosomal transmembrane protein, has recently been associated with brain aging, hypomyelinating leukodystrophy, frontotemporal lobar degeneration (FTLD) and several other brain disorders. TMEM106B is critical for proper lysosomal function and TMEM106B deficiency leads to myelination defects, FTLD related pathology, and motor coordination deficits in mice. However, the physiological and pathological functions of TMEM106B in the brain are still not well understood. In this study, we investigate the role of TMEM106B in the cerebellum, dysfunction of which has been associated with FTLD and other brain disorders. We found that TMEM106B is ubiquitously expressed in neurons in the cerebellum, with the highest levels in the Purkinje neurons. Aged TMEM106B-deficient mice show significant loss of Purkinje neurons specifically in the anterior lobe of the cerebellum. Increased microglia and astrocyte activation, as well as an accumulation of ubiquitinated proteins, p62 and TDP-43 were also detected in the cerebellum of aged TMEM106B deficient mice. In the young mice, myelination defects and a significant loss of synapses between Purkinje and deep cerebellar nuclei neurons were observed. Interestingly, TMEM106B deficiency causes distinct lysosomal phenotypes in different types of neurons and glia in the cerebellum and frontal cortex. In humans, TMEM106B rs1990622 risk allele (T/T) is associated with increased Purkinje neuron loss. Taken together, our studies support that TMEM106B regulates lysosomal function in a cell-type-specific manner and TMEM106B is critical for maintaining synaptic integrity and neural functions in the cerebellum.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Lin Luan
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Isabel Iscol Katz
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Mohammed Ullah
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute On Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute On Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
14
|
Yellajoshyula D, Pappas SS, Dauer WT. Oligodendrocyte and Extracellular Matrix Contributions to Central Nervous System Motor Function: Implications for Dystonia. Mov Disord 2022; 37:456-463. [PMID: 34989453 PMCID: PMC11152458 DOI: 10.1002/mds.28892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
The quest to elucidate nervous system function and dysfunction in disease has focused largely on neurons and neural circuits. However, fundamental aspects of nervous system development, function, and plasticity are regulated by nonneuronal elements, including glial cells and the extracellular matrix (ECM). The rapid rise of genomics and neuroimaging techniques in recent decades has highlighted neuronal-glial interactions and ECM as a key component of nervous system development, plasticity, and function. Abnormalities of neuronal-glial interactions have been understudied but are increasingly recognized to play a key role in many neurodevelopmental disorders. In this report, we consider the role of myelination and the ECM in the development and function of central nervous system motor circuits and the neurodevelopmental disease dystonia. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Zarekiani P, Nogueira Pinto H, Hol EM, Bugiani M, de Vries HE. The neurovascular unit in leukodystrophies: towards solving the puzzle. Fluids Barriers CNS 2022; 19:18. [PMID: 35227276 PMCID: PMC8887016 DOI: 10.1186/s12987-022-00316-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
The neurovascular unit (NVU) is a highly organized multicellular system localized in the brain, formed by neuronal, glial (astrocytes, oligodendrocytes, and microglia) and vascular (endothelial cells and pericytes) cells. The blood-brain barrier, a complex and dynamic endothelial cell barrier in the brain microvasculature that separates the blood from the brain parenchyma, is a component of the NVU. In a variety of neurological disorders, including Alzheimer's disease, multiple sclerosis, and stroke, dysfunctions of the NVU occurs. There is, however, a lack of knowledge regarding the NVU function in leukodystrophies, which are rare monogenic disorders that primarily affect the white matter. Since leukodystrophies are rare diseases, human brain tissue availability is scarce and representative animal models that significantly recapitulate the disease are difficult to develop. The introduction of human induced pluripotent stem cells (hiPSC) now makes it possible to surpass these limitations while maintaining the ability to work in a biologically relevant human context and safeguarding the genetic background of the patient. This review aims to provide further insights into the NVU functioning in leukodystrophies, with a special focus on iPSC-derived models that can be used to dissect neurovascular pathophysiology in these diseases.
Collapse
Affiliation(s)
- Parand Zarekiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Henrique Nogueira Pinto
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Garcia-Martin G, Sanz-Rodriguez M, Alcover-Sanchez B, Pereira MP, Wandosell F, Cubelos B. R-Ras1 and R-Ras2 Expression in Anatomical Regions and Cell Types of the Central Nervous System. Int J Mol Sci 2022; 23:978. [PMID: 35055164 PMCID: PMC8781598 DOI: 10.3390/ijms23020978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Since the optic nerve is one of the most myelinated tracts in the central nervous system (CNS), many myelin diseases affect the visual system. In this sense, our laboratory has recently reported that the GTPases R-Ras1 and R-Ras2 are essential for oligodendrocyte survival and maturation. Hypomyelination produced by the absence of one or both proteins triggers axonal degeneration and loss of visual and motor function. However, little is known about R-Ras specificity and other possible roles that they could play in the CNS. In this work, we describe how a lack of R-Ras1 and/or R-Ras2 could not be compensated by increased expression of the closely related R-Ras3 or classical Ras. We further studied R-Ras1 and R-Ras2 expression within different CNS anatomical regions, finding that both were more abundant in less-myelinated regions, suggesting their expression in non-oligodendroglial cells. Finally, using confocal immunostaining colocalization, we report for the first time that R-Ras2 is specifically expressed in neurons. Neither microglia nor astrocytes expressed R-Ras1 or R-Ras2. These results open a new avenue for the study of neuronal R-Ras2's contribution to the process of myelination.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Miriam Sanz-Rodriguez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Marta P. Pereira
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Alzheimer’s Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
17
|
Subclinical hypothyroidism and Pelizaeus-Merzbacher Disease in same-sex twins: Case report. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY CASE REPORTS 2021. [DOI: 10.1016/j.jecr.2021.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Javadikooshesh S, Zaimkohan H, Pourghorban P, Bahramim F, Ebadi N. Pelizaeus-Merzbacher-Like Disease 1 Caused by a Novel Mutation in GJC2 Gene: A Case Report. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:493-497. [PMID: 34840390 PMCID: PMC8611227 DOI: 10.30476/ijms.2021.87126.1736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 11/29/2022]
Abstract
Pelizaeus-Merzbacher-Like Disease 1 is a genetic disorder affecting the central nervous system with an autosomal recessive inheritance pattern. It is a rare genetic disorder that affects the central nervous system. In this report, we demonstrated the clinical and paraclinical features of an Iranian consanguine pedigree with suspected hypomyelinating leukodystrophy, without any defined diagnosis. The proband, a 15-month-old girl, visited the Razi pathobiology and medical genetic laboratory of Karaj, where the study was conducted in 2020. Following whole-exome sequencing analysis of the proband and segregation analysis, a novel pathogenic mutation was discovered. GJC2 (NM_020435.4):c.1096dupG was found to be homozygous in the proband and heterozygous in both parents. This mutation was in the coding region of the protein, which results in D366Gfs*126 (p.Asp366GlyfsTer126). The site of mutation was at the 3' region of the connexin superfamily domain. The frameshift results in a different peptide sequence of the C-terminal and extended protein. Our findings led to the diagnosis of the proband's disease as Pelizaeus-Merzbacher-Like Disease 1 and led to the end of the diagnostic odyssey. We provided effective genetic counseling through the identification of a novel pathogenic mutation in gap junction protein C2 in this family and suggested preimplantation genetic diagnosis for the next pregnancy. Furthermore, our findings confirmed the association of GJC2 mutations with PMLD1. This discovery added to the repertoire of genetic mutations of Pelizaeus-Merzbacher-Like Disease 1. This knowledge could be applied for expanded carrier screening of other families, especially for Iranian consanguine marriages.
Collapse
Affiliation(s)
- Sepehr Javadikooshesh
- Razi Pathobiology and Medical Genetic Laboratory, Karaj, Iran,
Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hooshang Zaimkohan
- Razi Pathobiology and Medical Genetic Laboratory, Karaj, Iran,
Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Pourghorban
- Razi Pathobiology and Medical Genetic Laboratory, Karaj, Iran,
Department of Biology, School of Biological Sciences, Sabzevar Branch, Islamic Azad University, Savzevar, Iran
| | - Fatemeh Bahramim
- Razi Pathobiology and Medical Genetic Laboratory, Karaj, Iran,
Department of Medical Genetics, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Nader Ebadi
- Razi Pathobiology and Medical Genetic Laboratory, Karaj, Iran,
Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Zarekiani P, Breur M, Wolf NI, de Vries HE, van der Knaap MS, Bugiani M. Pathology of the neurovascular unit in leukodystrophies. Acta Neuropathol Commun 2021; 9:103. [PMID: 34082828 PMCID: PMC8173888 DOI: 10.1186/s40478-021-01206-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The blood-brain barrier is a dynamic endothelial cell barrier in the brain microvasculature that separates the blood from the brain parenchyma. Specialized brain endothelial cells, astrocytes, neurons, microglia and pericytes together compose the neurovascular unit and interact to maintain blood-brain barrier function. A disturbed brain barrier function is reported in most common neurological disorders and may play a role in disease pathogenesis. However, a comprehensive overview of how the neurovascular unit is affected in a wide range of rare disorders is lacking. Our aim was to provide further insights into the neuropathology of the neurovascular unit in leukodystrophies to unravel its potential pathogenic role in these diseases. Leukodystrophies are monogenic disorders of the white matter due to defects in any of its structural components. Single leukodystrophies are exceedingly rare, and availability of human tissue is unique. Expression of selective neurovascular unit markers such as claudin-5, zona occludens 1, laminin, PDGFRβ, aquaporin-4 and α-dystroglycan was investigated in eight different leukodystrophies using immunohistochemistry. We observed tight junction rearrangements, indicative of endothelial dysfunction, in five out of eight assessed leukodystrophies of different origin and an altered aquaporin-4 distribution in all. Aquaporin-4 redistribution indicates a general astrocytic dysfunction in leukodystrophies, even in those not directly related to astrocytic pathology or without prominent reactive astrogliosis. These findings provide further evidence for dysfunction in the orchestration of the neurovascular unit in leukodystrophies and contribute to a better understanding of the underlying disease mechanism.
Collapse
Affiliation(s)
- Parand Zarekiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, de Boelelaan 1117, 1081HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjolein Breur
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nicole I. Wolf
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjo S. van der Knaap
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, de Boelelaan 1117, 1081HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Feng T, Sheng RR, Solé-Domènech S, Ullah M, Zhou X, Mendoza CS, Enriquez LCM, Katz II, Paushter DH, Sullivan PM, Wu X, Maxfield FR, Hu F. A role of the frontotemporal lobar degeneration risk factor TMEM106B in myelination. Brain 2020; 143:2255-2271. [PMID: 32572497 DOI: 10.1093/brain/awaa154] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
TMEM106B encodes a lysosomal membrane protein and was initially identified as a risk factor for frontotemporal lobar degeneration. Recently, a dominant D252N mutation in TMEM106B was shown to cause hypomyelinating leukodystrophy. However, how TMEM106B regulates myelination is still unclear. Here we show that TMEM106B is expressed and localized to the lysosome compartment in oligodendrocytes. TMEM106B deficiency in mice results in myelination defects with a significant reduction of protein levels of proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG), the membrane proteins found in the myelin sheath. The levels of many lysosome proteins are significantly decreased in the TMEM106B-deficient Oli-neu oligodendroglial precursor cell line. TMEM106B physically interacts with the lysosomal protease cathepsin D and is required to maintain proper cathepsin D levels in oligodendrocytes. Furthermore, we found that TMEM106B deficiency results in lysosome clustering in the perinuclear region and a decrease in lysosome exocytosis and cell surface PLP levels. Moreover, we found that the D252N mutation abolished lysosome enlargement and lysosome acidification induced by wild-type TMEM106B overexpression. Instead, it stimulates lysosome clustering near the nucleus as seen in TMEM106B-deficient cells. Our results support that TMEM106B regulates myelination through modulation of lysosome function in oligodendrocytes.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Rory R Sheng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | | | - Mohammed Ullah
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Xiaolai Zhou
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Christina S Mendoza
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Laura Camila Martinez Enriquez
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Isabel Iscol Katz
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Daniel H Paushter
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Peter M Sullivan
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Xiaochun Wu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Garcia LM, Hacker JL, Sase S, Adang L, Almad A. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 2020; 146:105087. [PMID: 32977022 DOI: 10.1016/j.nbd.2020.105087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/16/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023] Open
Abstract
Glia cells are often viewed as support cells in the central nervous system, but recent discoveries highlight their importance in physiological functions and in neurological diseases. Central to this are leukodystrophies, a group of progressive, neurogenetic disease affecting white matter pathology. In this review, we take a closer look at multiple leukodystrophies, classified based on the primary glial cell type that is affected. While white matter diseases involve oligodendrocyte and myelin loss, we discuss how astrocytes and microglia are affected and impinge on oligodendrocyte, myelin and axonal pathology. We provide an overview of the leukodystrophies covering their hallmark features, clinical phenotypes, diverse molecular pathways, and potential therapeutics for clinical trials. Glial cells are gaining momentum as cellular therapeutic targets for treatment of demyelinating diseases such as leukodystrophies, currently with no treatment options. Here, we bring the much needed attention to role of glia in leukodystrophies, an integral step towards furthering disease comprehension, understanding mechanisms and developing future therapeutics.
Collapse
Affiliation(s)
- Luis M Garcia
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Julia L Hacker
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Laura Adang
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Akshata Almad
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA.
| |
Collapse
|
22
|
Malik P, Muthusamy K, Mankad K, Shroff M, Sudhakar S. Solving the hypomyelination conundrum - Imaging perspectives. Eur J Paediatr Neurol 2020; 27:9-24. [PMID: 32418752 DOI: 10.1016/j.ejpn.2020.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022]
Abstract
Hypomyelinating Leukodystrophies (HLDs) are a genetically heterogeneous, clinically overlapping group of disorders with the unifying MR imaging appearance of myelin deficit in the brain. In fact, it is the MRI phenotype that typically raises the diagnostic suspicion in this single largest group of undiagnosed leukodystrophies and guides gene testing for confirmation. This article reviews the neurobiology of myelination, focussing on the complex interplay of molecular genetic pathways and presents a practical clinico-radiological diagnostic algorithm based on the neuroimaging patterns of the common hypomyelinating disorders. The authors also address the current controversies about the definition and use of the term 'hypomyelination'.
Collapse
|
23
|
Hypomyelinating leukodystrophies: Navigating the diagnostic maze. Eur J Paediatr Neurol 2020; 27:3. [PMID: 32660881 DOI: 10.1016/j.ejpn.2020.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Cömert C, Brick L, Ang D, Palmfeldt J, Meaney BF, Kozenko M, Georgopoulos C, Fernandez-Guerra P, Bross P. A recurrent de novo HSPD1 variant is associated with hypomyelinating leukodystrophy. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004879. [PMID: 32532876 PMCID: PMC7304351 DOI: 10.1101/mcs.a004879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/23/2020] [Indexed: 12/02/2022] Open
Abstract
Standardization of the use of next-generation sequencing for the diagnosis of rare neurological disorders has made it possible to detect potential disease-causing genetic variations, including de novo variants. However, the lack of a clear pathogenic relevance of gene variants poses a critical limitation for translating this genetic information into clinical practice, increasing the necessity to perform functional assays. Genetic screening is currently recommended in the guidelines for diagnosis of hypomyelinating leukodystrophies (HLDs). HLDs represent a group of rare heterogeneous disorders that interfere with the myelination of the neurons in the central nervous system. One of the HLD-related genes is HSPD1, encoding the mitochondrial chaperone heat shock protein 60 (HSP60), which functions as folding machinery for the mitochondrial proteins imported into the mitochondrial matrix space. Disease-causing HSPD1 variants have been associated with an autosomal recessive form of fatal hypomyelinating leukodystrophy (HLD4, MitCHAP60 disease; MIM #612233) and an autosomal dominant form of spastic paraplegia, type 13 (SPG13; MIM #605280). In 2018, a de novo HSPD1 variant was reported in a patient with HLD. Here, we present another case carrying the same heterozygous de novo variation in the HSPD1 gene (c.139T > G, p.Leu47Val) associated with an HLD phenotype. Our molecular studies show that the variant HSP60 protein is stably present in the patient's fibroblasts, and functional assays demonstrate that the variant protein lacks in vivo function, thus confirming its disease association. We conclude that de novo variations of the HSPD1 gene should be considered as potentially disease-causing in the diagnosis and pathogenesis of the HLDs.
Collapse
Affiliation(s)
- Cagla Cömert
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Lauren Brick
- Division of Genetics, McMaster Children's Hospital, Hamilton, Ontario L8S 4K1, Canada
| | - Debbie Ang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Brandon F Meaney
- Division of Pediatric Neurology, McMaster Children's Hospital, Hamilton, Ontario L8S 4K1, Canada
| | - Mariya Kozenko
- Division of Genetics, McMaster Children's Hospital, Hamilton, Ontario L8S 4K1, Canada
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, 8200, Aarhus N, Denmark
| |
Collapse
|
25
|
Doyle JJ, Parker JA, Bateman A. TMEM106B, an unexpected point of contact between FTD, ageing and a hypomyelination disorder. Brain 2020; 143:1628-1631. [PMID: 32543692 DOI: 10.1093/brain/awaa149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This scientific commentary refers to ‘Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies’, by Zhou et al. (doi:10.1093/brain/awaa141).
Collapse
Affiliation(s)
- James J Doyle
- Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Quebec, Canada
| | - J Alex Parker
- Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Quebec, Canada
| | - Andrew Bateman
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
26
|
Escande-Beillard N, Loh A, Saleem SN, Kanata K, Hashimoto Y, Altunoglu U, Metoska A, Grandjean J, Ng FM, Pomp O, Baburajendran N, Wong J, Hill J, Beillard E, Cozzone P, Zaki M, Kayserili H, Hamada H, Shiratori H, Reversade B. Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2. Neuron 2020; 107:82-94.e6. [PMID: 32330411 DOI: 10.1016/j.neuron.2020.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/12/2019] [Accepted: 03/25/2020] [Indexed: 01/17/2023]
Abstract
Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzymatic activity. We find that knocking out Pycr2 in mice phenocopies the human disorder and depletes PYCR1 levels in neural lineages. In situ quantification of neurotransmitters in the brains of PYCR2 mutant mice and patients revealed a signature of encephalopathy driven by excessive cerebral glycine. Mechanistically, we demonstrate that loss of PYCR2 upregulates SHMT2, which is responsible for glycine synthesis. This hyperglycemia could be partially reversed by SHMT2 knockdown, which rescued the axonal beading and neurite lengths of cultured Pycr2 knockout neurons. Our findings identify the glycine metabolic pathway as a possible intervention point to alleviate the neurological symptoms of PYCR2-mutant patients.
Collapse
Affiliation(s)
- Nathalie Escande-Beillard
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Genome Institute of Singapore, A∗STAR, Singapore 138672, Singapore; Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey.
| | - Abigail Loh
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Sahar N Saleem
- Radiology Department, Kasr Al Ainy Faculty of Medicine - Cairo University, El Manial, Cairo 11956, Egypt
| | - Kohei Kanata
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yui Hashimoto
- Division of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Umut Altunoglu
- Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey
| | - Artina Metoska
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, A(∗)STAR, Singapore 138667, Singapore
| | - Fui Mee Ng
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | - Oz Pomp
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore
| | | | - Joyner Wong
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | - Jeffrey Hill
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | | | - Patrick Cozzone
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, A(∗)STAR, Singapore 138667, Singapore
| | - Maha Zaki
- Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Hülya Kayserili
- Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidetaka Shiratori
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Division of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Bruno Reversade
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Genome Institute of Singapore, A∗STAR, Singapore 138672, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey; Department of Paediatrics, National University of Singapore, Singapore 119260, Singapore.
| |
Collapse
|
27
|
Vancamp P, Demeneix BA, Remaud S. Monocarboxylate Transporter 8 Deficiency: Delayed or Permanent Hypomyelination? Front Endocrinol (Lausanne) 2020; 11:283. [PMID: 32477268 PMCID: PMC7237703 DOI: 10.3389/fendo.2020.00283] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Monocarboxylate transporter 8 (MCT8) deficiency or the Allan-Herndon-Dudley Syndrome (AHDS) is an X-linked psychomotor disability syndrome with around 320 clinical cases described worldwide. SLC16A2 gene mutations, encoding the thyroid hormone (TH) transporter MCT8, result in intellectual disability due to impaired TH uptake in the developing brain. MCT8 deficiency is a multi-organ affecting disease with a predominant neuronal cell-based pathology, with the glial component inadequately investigated. However, deficiency in myelin, a key component of white matter (WM) enabling fast nerve conduction, is a TH-dependent hallmark of the disease. Nevertheless, analysis of the myelin status in AHDS patients has led to conflicting interpretations. The majority of individual case studies reported delayed myelination, that was restored later in life. In contrast, post-mortem studies and high-resolution MRIs detected WM (micro-) abnormalities throughout adolescence, suggesting permanent hypomyelination. Thus, interpretations vary depending on methodology to investigate WM microstructure. Further, it is unknown whether the mutation within the MCT8 is linked to the severity of the myelin deficiency. Consequently, terminology is inconsistent among reports, and AHDS is occasionally misdiagnosed as another WM disorder. The evolutionary conserved TH signaling pathway that promotes the generation of myelinating oligodendrocytes enabled deciphering how the lack of MCT8 might affect myelinogenesis. Linking patient findings on myelination to those obtained from models of MCT8 deficiency revealed underlying pathophysiological mechanisms, but knowledge gaps remain, notably how myelination progresses both spatially and temporally in MCT8 deficiency. This limits predicting how myelin integrity might benefit therapeutically, and when to initiate. A recurrent observation in clinical trials is the absence of neurological improvement. Testing MCT8-independent thyromimetics in models, and evaluating treatments used in other demyelinating diseases, despite different etiologies, is crucial to propose new therapeutic strategies combatting this devastating disease.
Collapse
Affiliation(s)
- Pieter Vancamp
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
28
|
Sarret C. Leukodystrophies and genetic leukoencephalopathies in children. Rev Neurol (Paris) 2020; 176:10-19. [DOI: 10.1016/j.neurol.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
|
29
|
Ashrafi MR, Amanat M, Garshasbi M, Kameli R, Nilipour Y, Heidari M, Rezaei Z, Tavasoli AR. An update on clinical, pathological, diagnostic, and therapeutic perspectives of childhood leukodystrophies. Expert Rev Neurother 2019; 20:65-84. [PMID: 31829048 DOI: 10.1080/14737175.2020.1699060] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Leukodystrophies constitute heterogenous group of rare heritable disorders primarily affecting the white matter of central nervous system. These conditions are often under-appreciated among physicians. The first clinical manifestations of leukodystrophies are often nonspecific and can occur in different ages from neonatal to late adulthood periods. The diagnosis is, therefore, challenging in most cases.Area covered: Herein, the authors discuss different aspects of leukodystrophies. The authors used MEDLINE, EMBASE, and GOOGLE SCHOLAR to provide an extensive update about epidemiology, classifications, pathology, clinical findings, diagnostic tools, and treatments of leukodystrophies. Comprehensive evaluation of clinical findings, brain magnetic resonance imaging, and genetic studies play the key roles in the early diagnosis of individuals with leukodystrophies. No cure is available for most heritable white matter disorders but symptomatic treatments can significantly decrease the burden of events. New genetic methods and stem cell transplantation are also under investigation to further increase the quality and duration of life in affected population.Expert opinion: The improvements in molecular diagnostic tools allow us to identify the meticulous underlying etiology of leukodystrophies and result in higher diagnostic rates, new classifications of leukodystrophies based on genetic information, and replacement of symptomatic managements with more specific targeted therapies.Abbreviations: 4H: Hypomyelination, hypogonadotropic hypogonadism and hypodontia; AAV: Adeno-associated virus; AD: autosomal dominant; AGS: Aicardi-Goutieres syndrome; ALSP: Axonal spheroids and pigmented glia; APGBD: Adult polyglucosan body disease; AR: autosomal recessive; ASO: Antisense oligonucleotide therapy; AxD: Alexander disease; BAEP: Brainstem auditory evoked potentials; CAA: Cerebral amyloid angiopathy; CADASIL: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; CARASAL: Cathepsin A-related arteriopathy with strokes and leukoencephalopathy; CARASIL: Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy; CGH: Comparative genomic hybridization; ClC2: Chloride Ion Channel 2; CMTX: Charcot-Marie-Tooth disease, X-linked; CMV: Cytomegalovirus; CNS: central nervous system; CRISP/Cas9: Clustered regularly interspaced short palindromic repeat/CRISPR-associated 9; gRNA: Guide RNA; CTX: Cerebrotendinous xanthomatosis; DNA: Deoxyribonucleic acid; DSB: Double strand breaks; DTI: Diffusion tensor imaging; FLAIR: Fluid attenuated inversion recovery; GAN: Giant axonal neuropathy; H-ABC: Hypomyelination with atrophy of basal ganglia and cerebellum; HBSL: Hypomyelination with brainstem and spinal cord involvement and leg spasticity; HCC: Hypomyelination with congenital cataracts; HEMS: Hypomyelination of early myelinated structures; HMG CoA: Hydroxy methylglutaryl CoA; HSCT: Hematopoietic stem cell transplant; iPSC: Induced pluripotent stem cells; KSS: Kearns-Sayre syndrome; L-2-HGA: L-2-hydroxy glutaric aciduria; LBSL: Leukoencephalopathy with brainstem and spinal cord involvement and elevated lactate; LCC: Leukoencephalopathy with calcifications and cysts; LTBL: Leukoencephalopathy with thalamus and brainstem involvement and high lactate; MELAS: Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke; MERRF: Myoclonic epilepsy with ragged red fibers; MLC: Megalencephalic leukoencephalopathy with subcortical cysts; MLD: metachromatic leukodystrophy; MRI: magnetic resonance imaging; NCL: Neuronal ceroid lipofuscinosis; NGS: Next generation sequencing; ODDD: Oculodentodigital dysplasia; PCWH: Peripheral demyelinating neuropathy-central-dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschprung disease; PMD: Pelizaeus-Merzbacher disease; PMDL: Pelizaeus-Merzbacher-like disease; RNA: Ribonucleic acid; TW: T-weighted; VWM: Vanishing white matter; WES: whole exome sequencing; WGS: whole genome sequencing; X-ALD: X-linked adrenoleukodystrophy; XLD: X-linked dominant; XLR: X-linked recessive.
Collapse
Affiliation(s)
- Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Department of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Man Amanat
- Faculty of Medicine, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reyhaneh Kameli
- Myelin Disorders Clinic, Department of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Nilipour
- Pediatric pathology research center, research institute for children's health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Myelin Disorders Clinic, Department of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Myelin Disorders Clinic, Department of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Department of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Mastrangelo M. Clinical approach to neurodegenerative disorders in childhood: an updated overview. Acta Neurol Belg 2019; 119:511-521. [PMID: 31161467 DOI: 10.1007/s13760-019-01160-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders include a group of severe diseases that share a core including a gradual loss of previously acquired motor, sensory and cognitive functions. In pediatric age, the main diagnostic issues are the discrimination between the loss of previously acquired competencies and the lack of achievement of specific developmental milestones. An ideal classification of these disorders could be based on the combination of genetic, clinical and neuroimaging features. Diagnostic workup should be organized with a special attention to the few diseases with an available and effective therapeutic treatment. The present paper reports a proposal of classification that is based on the prominently involved structure and summarizes the hallmarks for clinical approach and therapeutic management.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Division of Child Neurology and Psychiatry, Department of Human Neurosciences, Sapienza University of Rome, Via dei Sabelli 108, 00141, Rome, Italy.
| |
Collapse
|
31
|
Remerand G, Boespflug-Tanguy O, Tonduti D, Touraine R, Rodriguez D, Curie A, Perreton N, Des Portes V, Sarret C. Expanding the phenotypic spectrum of Allan-Herndon-Dudley syndrome in patients with SLC16A2 mutations. Dev Med Child Neurol 2019; 61:1439-1447. [PMID: 31410843 DOI: 10.1111/dmcn.14332] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2019] [Indexed: 01/01/2023]
Abstract
The aim of the study was to redefine the phenotype of Allan-Herndon-Dudley syndrome (AHDS), which is caused by mutations in the SLC16A2 gene that encodes the brain transporter of thyroid hormones. Clinical phenotypes, brain imaging, thyroid hormone profiles, and genetic data were compared to the existing literature. Twenty-four males aged 11 months to 29 years had a mutation in SLC16A2, including 12 novel mutations and five previously described mutations. Sixteen patients presented with profound developmental delay, three had severe intellectual disability with poor language and walking with an aid, four had moderate intellectual disability with language and walking abilities, and one had mild intellectual disability with hypotonia. Overall, eight had learned to walk, all had hypotonia, 17 had spasticity, 18 had dystonia, 12 had choreoathetosis, 19 had hypomyelination, and 10 had brain atrophy. Kyphoscoliosis (n=12), seizures (n=7), and pneumopathies (n=5) were the most severe complications. This study extends the phenotypic spectrum of AHDS to a mild intellectual disability with hypotonia. Developmental delay, hypotonia, hypomyelination, and thyroid hormone profile help to diagnose patients. Clinical course depends on initial severity, with stable acquisition after infancy; this may be adversely affected by neuro-orthopaedic, pulmonary, and epileptic complications. WHAT THIS PAPER ADDS: Mild intellectual disability is associated with SLC16A2 mutations. A thyroid hormone profile with a free T3 /T4 ratio higher than 0.75 can help diagnose patients. Patients with SLC16A2 mutations present a broad spectrum of neurological phenotypes that are also observed in other hypomyelinating disorders. Axial hypotonia is a consistent feature of Allan-Herndon-Dudley syndrome and leads to specific complications.
Collapse
Affiliation(s)
- Ganaelle Remerand
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Pôle Femme et Enfant, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Centre de Référence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Service de Neurologie Pédiatrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France.,NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Paris, France
| | - Davide Tonduti
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Unit of Child Neurology, V. Buzzi Children's Hospital, Milan, Italy
| | - Renaud Touraine
- Service de Génétique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Diana Rodriguez
- Sorbonne Université, GRC no. 19, Pathologies Congénitales du Cervelet-LeucoDystrophies, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France.,Centre de Référence Neurogénétique, Service de Neurologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Aurore Curie
- Centre de Référence des Déficiences Intellectuelles de Cause Rare, Service de Neurologie Pédiatrique, Centre Hospitalier Universitaire de Lyon, Hôpital Femme-Mère-Enfant, Lyon, France
| | - Nathalie Perreton
- CIC 1407Inserm, Centre Hospitalo-Universitaire de Lyon, Lyon, France
| | - Vincent Des Portes
- Centre de Référence des Déficiences Intellectuelles de Cause Rare, Service de Neurologie Pédiatrique, Centre Hospitalier Universitaire de Lyon, Hôpital Femme-Mère-Enfant, Lyon, France
| | - Catherine Sarret
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Pôle Femme et Enfant, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,IGCNC, Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
| | | |
Collapse
|
32
|
Baldi C, Bertoli-Avella AM, Al-Sannaa N, Alfadhel M, Al-Thihli K, Alameer S, Elmonairy AA, Al Shamsi AM, Abdelrahman HA, Al-Gazali L, Shawli A, Al-Hakami F, Yavuz H, Kandaswamy KK, Rolfs A, Brandau O, Bauer P. Expanding the clinical and genetic spectra of NKX6-2-related disorder. Clin Genet 2019; 93:1087-1092. [PMID: 29388673 DOI: 10.1111/cge.13221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
Hypomyelinating leukodystrophies (HLDs) affect the white matter of the central nervous system and manifest as neurological disorders. They are genetically heterogeneous. Very recently, biallelic variants in NKX6-2 have been suggested to cause a novel form of autosomal recessive HLD. Using whole-exome or whole-genome sequencing, we identified the previously reported c.196delC and c.487C>G variants in NKX6-2 in 3 and 2 unrelated index cases, respectively; the novel c.608G>A variant was identified in a sixth patient. All variants were homozygous in affected family members only. Our patients share a primary diagnosis of psychomotor delay, and they show spastic quadriparesis, nystagmus and hypotonia. Seizures and dysmorphic features (observed in 2 families each) represent an addition to the phenotype, while developmental regression (observed in 3 families) appears to be a notable and previously underestimated clinical feature. Our findings extend the clinical and mutational spectra associated with this novel form of HLD. Comparative analysis of our 10 patients and the 15 reported previously did, however, not reveal clear evidence for a genotype-phenotype correlation.
Collapse
Affiliation(s)
- C Baldi
- Centogene AG, Rostock, Germany
| | | | - N Al-Sannaa
- John Hopkins Aramco Health Care, Pediatric Services, Dhahran, Saudi Arabia
| | - M Alfadhel
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - K Al-Thihli
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - S Alameer
- King Saud Bin Abdulaziz University for Health Sciences, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (NGHA), Jeddah, Saudi Arabia
| | | | - A M Al Shamsi
- Department of Paediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - H A Abdelrahman
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, Al-Ain, United Arab Emirates
| | - L Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, United Arab Emirates
| | - A Shawli
- King Saud Bin Abdulaziz University for Health Sciences, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (NGHA), Jeddah, Saudi Arabia.,Molecular Medicine Section, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - F Al-Hakami
- Molecular Medicine Section, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,Molecular Medicine Section, King Abdulaziz Medical City-WR, Jeddah, Saudi Arabia
| | - H Yavuz
- Centogene AG, Rostock, Germany
| | | | - A Rolfs
- Centogene AG, Rostock, Germany.,Albrecht-Kossel-Institute for Neuroregeneration, Medical University Rostock, Rostock, Germany
| | | | - P Bauer
- Centogene AG, Rostock, Germany
| |
Collapse
|
33
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
34
|
Owczarek-Lipska M, Mulahasanovic L, Obermaier CD, Hörtnagel K, Neubauer BA, Korenke GC, Biskup S, Neidhardt J. Novel mutations in the GJC2 gene associated with Pelizaeus–Merzbacher-like disease. Mol Biol Rep 2019; 46:4507-4516. [DOI: 10.1007/s11033-019-04906-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
|
35
|
Zhou X, Rademakers R. TMEM106B and myelination: rare leukodystrophy families reveal unexpected connections. Brain 2019; 140:3069-3080. [PMID: 29194508 DOI: 10.1093/brain/awx318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
36
|
Yamamoto-Shimojima K, Imaizumi T, Aoki Y, Inoue K, Kaname T, Okuno Y, Muramatsu H, Kato K, Yamamoto T. Elucidation of the pathogenic mechanism and potential treatment strategy for a female patient with spastic paraplegia derived from a single-nucleotide deletion in PLP1. J Hum Genet 2019; 64:665-671. [PMID: 31004103 DOI: 10.1038/s10038-019-0600-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked recessive disorder caused by abnormalities in the gene PLP1. Most females harboring heterozygous PLP1 abnormalities are basically asymptomatic. However, as a result of abnormal patterns of X-chromosome inactivation, it is possible for some female carriers to be symptomatic. Whole-exome sequencing of a female patient with unknown spastic paraplegia was performed to obtain a molecular diagnosis. As a result, a de novo heterozygous single-nucleotide deletion in PLP1 [NM_000533.5(PLP1_v001):c.783del; p.Thr262Leufs*20] was identified. RNA sequencing was performed in a patient-derived lymphoblastoid cell line, confirming mono-allelic expression of the mutated allele and abnormal inactivation of the wild-type allele. The patient-derived lymphoblastoid cell line was then treated with VX680 or 5azadC, which resulted in restored expression of the wild-type allele. These two agents thus have the potential to reverse inappropriately-skewed inactivation of the X-chromosome.
Collapse
Affiliation(s)
- Keiko Yamamoto-Shimojima
- Japan Society for the Promotion of Science (RPD), Tokyo, 160-8582, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.,Tokyo Women's Medical University, Institute of Integrated Medical Sciences, Tokyo, 162-8666, Japan
| | - Taichi Imaizumi
- Department of Gene Medicine, Graduate school of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Yusuke Aoki
- Department of Neurology, Aichi Children's Health and Medical Center, Aichi, 474-8710, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, 187-0031, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, 466-8560, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Kohji Kato
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan. .,Tokyo Women's Medical University, Institute of Integrated Medical Sciences, Tokyo, 162-8666, Japan. .,Department of Gene Medicine, Graduate school of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
| |
Collapse
|
37
|
Ramji S, Barkhof F, Mankad K. Leukodystrophies and Inherited Metabolic Conditions. Clin Neuroradiol 2019. [DOI: 10.1007/978-3-319-61423-6_33-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Leukodystrophies and Inherited Metabolic Conditions. Clin Neuroradiol 2019. [DOI: 10.1007/978-3-319-68536-6_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Vancamp P, Darras VM. From zebrafish to human: A comparative approach to elucidate the role of the thyroid hormone transporter MCT8 during brain development. Gen Comp Endocrinol 2018; 265:219-229. [PMID: 29183795 DOI: 10.1016/j.ygcen.2017.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates transmembrane transport of thyroid hormones (THs) ensuring their action on gene expression during vertebrate neurodevelopment. A loss of MCT8 in humans results in severe psychomotor deficits associated with the Allan-Herndon-Dudley Syndrome (AHDS). However, where and when exactly a lack of MCT8 causes the neurological manifestations remains unclear because of the varying expression pattern of MCT8 between specific brain regions and cells. Here, we elaborate on the animal models that have been generated to elucidate the mechanisms underlying MCT8-deficient brain development. The absence of a clear neurological phenotype in Mct8 knockout mice made it clear that a single species would not suffice. The evolutionary conservation of TH action on neurodevelopment as well as the components regulating TH signalling however offers the opportunity to answer different aspects of MCT8 function in brain development using different vertebrate species. Moreover, the plethora of tools for genome editing available today facilitates gene silencing in these animals as well. Studies in the recently generated mct8-deficient zebrafish and Mct8/Oatp1c1 double knockout mice have put forward the current paradigm of impaired TH uptake at the level of the blood-brain barrier during peri- and postnatal development as being the main pathophysiological mechanism of AHDS. RNAi vector-based, cell-specific induction of MCT8 knockdown in the chicken embryo points to an additional function of MCT8 at the level of the neural progenitors during early brain development. Future studies including also additional in vivo models like Xenopus or in vitro approaches such as induced pluripotent stem cells will continue to help unravelling the exact role of MCT8 in developmental events. In the end, this multispecies approach will lead to a unifying thesis regarding the cellular and molecular mechanisms responsible for the neurological phenotype in AHDS patients.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium.
| |
Collapse
|
40
|
Kresojević N, Petrović I, Dobričić V, Tomić A, Branković V, Milić Rašić V, Svetel M, Kostić V. Phenotype of PLP1
-related Disorder Caused by Novel Mutation: A Case Report. Mov Disord Clin Pract 2018; 5:548-550. [DOI: 10.1002/mdc3.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/17/2018] [Accepted: 05/18/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Igor Petrović
- Neurology Clinic; Clinical Centre of Serbia; Belgrade Serbia
- School of Medicine; University of Belgrade; Belgrade Serbia
| | | | - Aleksandra Tomić
- Neurology Clinic; Clinical Centre of Serbia; Belgrade Serbia
- School of Medicine; University of Belgrade; Belgrade Serbia
| | - Vesna Branković
- Clinic for Neurology and Psychiatry for Children and Youth; Belgrade Serbia
| | - Vedrana Milić Rašić
- School of Medicine; University of Belgrade; Belgrade Serbia
- Clinic for Neurology and Psychiatry for Children and Youth; Belgrade Serbia
| | - Marina Svetel
- Neurology Clinic; Clinical Centre of Serbia; Belgrade Serbia
- School of Medicine; University of Belgrade; Belgrade Serbia
| | - Vladimir Kostić
- Neurology Clinic; Clinical Centre of Serbia; Belgrade Serbia
- School of Medicine; University of Belgrade; Belgrade Serbia
| |
Collapse
|
41
|
Independent occurrence of de novo HSPD1 and HIP1 variants in brothers with different neurological disorders - leukodystrophy and autism. Hum Genome Var 2018; 5:18. [PMID: 30083362 PMCID: PMC6053359 DOI: 10.1038/s41439-018-0020-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 11/23/2022] Open
Abstract
Consecutive occurrence of de novo variants in the same family is an extremely rare phenomenon. Two siblings, a younger brother with hypomyelinating leukodystrophy and an elder brother with severe intellectual disability and autistic features, had independent de novo variants of HSPD1 c.139T > G (p.Leu47Val) and HIP1 c.1393G > A (p.Glu465Lys), respectively. These novel variants were predicted to be pathogenic. Both patients also had a known MECP2 variant, c.499C > T (p.Arg167Trp).
Collapse
|
42
|
Nguyen HB, Sui Y, Thai TQ, Ikenaka K, Oda T, Ohno N. Decreased number and increased volume with mitochondrial enlargement of cerebellar synaptic terminals in a mouse model of chronic demyelination. Med Mol Morphol 2018; 51:208-216. [PMID: 29796936 DOI: 10.1007/s00795-018-0193-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
Impaired nerve conduction, axonal degeneration, and synaptic alterations contribute to neurological disabilities in inflammatory demyelinating diseases. Cerebellar dysfunction is associated with demyelinating disorders, but the alterations of axon terminals in cerebellar gray matter during chronic demyelination are still unclear. We analyzed the morphological and ultrastructural changes of climbing fiber terminals in a mouse model of hereditary chronic demyelination. Three-dimensional ultrastructural analyses using serial block-face scanning electron microscopy and immunostaining for synaptic markers were performed in a demyelination mouse model caused by extra copies of myelin gene (PLP4e). At 1 month old, many myelinated axons were observed in PLP4e and wild-type mice, but demyelinated axons and axons with abnormally thin myelin were prominent in PLP4e mice at 5 months old. The density of climbing fiber terminals was significantly reduced in PLP4e mice at 5 months old. Reconstruction of climbing fiber terminals revealed that PLP4e climbing fibers had increased varicosity volume and enlarged mitochondria in the varicosities at 5-month-old mice. These results suggest that chronic demyelination is associated with alterations and loss of climbing fiber terminals in the cerebellar cortex, and that synaptic changes may contribute to cerebellar phenotypes observed in hereditary demyelinating disorders.
Collapse
Affiliation(s)
- Huy Bang Nguyen
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy and Structural Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Yang Sui
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy and Structural Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Truc Quynh Thai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy and Structural Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan. .,Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| |
Collapse
|
43
|
Six-month cultured cerebral organoids from human ES cells contain matured neural cells. Neurosci Lett 2018; 670:75-82. [DOI: 10.1016/j.neulet.2018.01.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/05/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
|
44
|
Lee JY, Kim MJ, Deliyanti D, Azari MF, Rossello F, Costin A, Ramm G, Stanley EG, Elefanty AG, Wilkinson-Berka JL, Petratos S. Overcoming Monocarboxylate Transporter 8 (MCT8)-Deficiency to Promote Human Oligodendrocyte Differentiation and Myelination. EBioMedicine 2017; 25:122-135. [PMID: 29111262 PMCID: PMC5704066 DOI: 10.1016/j.ebiom.2017.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023] Open
Abstract
Cell membrane thyroid hormone (TH) transport can be facilitated by the monocarboxylate transporter 8 (MCT8), encoded by the solute carrier family 16 member 2 (SLC16A2) gene. Human mutations of the gene, SLC16A2, result in the X-linked-inherited psychomotor retardation and hypomyelination disorder, Allan-Herndon-Dudley syndrome (AHDS). We posited that abrogating MCT8-dependent TH transport limits oligodendrogenesis and myelination. We show that human oligodendrocytes (OL), derived from the NKX2.1-GFP human embryonic stem cell (hESC) reporter line, express MCT8. Moreover, treatment of these cultures with DITPA (an MCT8-independent TH analog), up-regulates OL differentiation transcription factors and myelin gene expression. DITPA promotes hESC-derived OL myelination of retinal ganglion axons in co-culture. Pharmacological and genetic blockade of MCT8 induces significant OL apoptosis, impairing myelination. DITPA treatment limits OL apoptosis mediated by SLC16A2 down-regulation primarily signaling through AKT phosphorylation, driving myelination. Our results highlight the potential role of MCT8 in TH transport for human OL development and may implicate DITPA as a promising treatment for developmentally-regulated myelination in AHDS. NKX2.1-based sorting enhances OL derivation from hESC MCT8 is required for the survival of OL precursor cells DITPA promotes OL differentiation and myelination DITPA overrides SLC16A2 (MCT8) down-regulation to potentiate myelination
Thyroid hormone is vital for oligodendrocyte differentiation and myelination. Lee and colleagues show that MCT8 is an integral thyroid hormone transporter for oligodendrocytes derived from human embryonic stem cells. Knockdown of this transporter induces apoptosis of OLs, which could be prevented by the provision of DITPA.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Min Joung Kim
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Devy Deliyanti
- Department of Diabetes, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Michael F Azari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Fernando Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Adam Costin
- The Clive & Vera Ramaciotti Centre for Cryo Electron Microscopy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Georg Ramm
- The Clive & Vera Ramaciotti Centre for Cryo Electron Microscopy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
45
|
Zhou XL, He LX, Yu LJ, Wang Y, Wang XJ, Wang ED, Yang T. Mutations inKARScause early-onset hearing loss and leukoencephalopathy: Potential pathogenic mechanism. Hum Mutat 2017; 38:1740-1750. [PMID: 28887846 DOI: 10.1002/humu.23335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/07/2017] [Accepted: 09/03/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Xiao-Long Zhou
- State Key Laboratory of Molecular Biology; CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Long-Xia He
- Department of Otolaryngology-Head and Neck Surgery; Shanghai Ninth People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
- Department of Otorhinolaryngology-Head and Neck Surgery; Chengdu Integrated TCM & Western Medicine Hospital; Sichuan Province China
| | - Li-Jia Yu
- Department of Neurology; Xinhua Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yong Wang
- School of Life Science and Technology; Shanghai Tech University; Shanghai China
| | - Xi-Jin Wang
- Department of Neurology; Xinhua Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology; CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
- School of Life Science and Technology; Shanghai Tech University; Shanghai China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery; Shanghai Ninth People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| |
Collapse
|
46
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Hypomyelinating leukodystrophy associated with a deleterious mutation in the ATRN gene. Neurogenetics 2017; 18:135-139. [DOI: 10.1007/s10048-017-0515-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
48
|
Zada D, Tovin A, Lerer-Goldshtein T, Appelbaum L. Pharmacological treatment and BBB-targeted genetic therapy for MCT8-dependent hypomyelination in zebrafish. Dis Model Mech 2016; 9:1339-1348. [PMID: 27664134 PMCID: PMC5117236 DOI: 10.1242/dmm.027227] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
Hypomyelination is a key symptom of Allan-Herndon-Dudley syndrome (AHDS), a psychomotor retardation associated with mutations in the thyroid-hormone (TH) transporter MCT8 (monocarboxylate transporter 8). AHDS is characterized by severe intellectual deficiency, neuromuscular impairment and brain hypothyroidism. In order to understand the mechanism for TH-dependent hypomyelination, we developed an mct8 mutant (mct8-/-) zebrafish model. The quantification of genetic markers for oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes revealed reduced differentiation of OPCs into oligodendrocytes in mct8-/- larvae and adults. Live imaging of single glial cells showed that the number of oligodendrocytes and the length of their extensions are reduced, and the number of peripheral Schwann cells is increased, in mct8-/- larvae compared with wild type. Pharmacological analysis showed that TH analogs and clemastine partially rescued the hypomyelination in the CNS of mct8-/- larvae. Intriguingly, triiodothyronine (T3) treatment rescued hypomyelination in mct8-/- embryos before the maturation of the blood-brain barrier (BBB), but did not affect hypomyelination in older larvae. Thus, we expressed Mct8-tagRFP in the endothelial cells of the vascular system and showed that even relatively weak mosaic expression completely rescued hypomyelination in mct8-/- larvae. These results suggest potential pharmacological treatments and BBB-targeted gene therapy that can enhance myelination in AHDS and possibly in other TH-dependent brain disorders.
Collapse
Affiliation(s)
- David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Adi Tovin
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|