1
|
Duan Q, Shao H, Luo N, Wang F, Cheng L, Ying J, Zhao D. [Research progress in three-dimensional-printed bone scaffolds combined with vascularized tissue flaps for segmental bone defect reconstruction]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2025; 39:639-646. [PMID: 40368869 DOI: 10.7507/1002-1892.202503081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Objective To review and summarize the research progress on repairing segmental bone defects using three-dimensional (3D)-printed bone scaffolds combined with vascularized tissue flaps in recent years. Methods Relevant literature was reviewed to summarize the application of 3D printing technology in artificial bone scaffolds made from different biomaterials, as well as methods for repairing segmental bone defects by combining these scaffolds with various vascularized tissue flaps. Results The combination of 3D-printed artificial bone scaffolds with different vascularized tissue flaps has provided new strategies for repairing segmental bone defects. 3D-printed artificial bone scaffolds include 3D-printed polymer scaffolds, bio-ceramic scaffolds, and metal scaffolds. When these scaffolds of different materials are combined with vascularized tissue flaps ( e.g., omental flaps, fascial flaps, periosteal flaps, muscular flaps, and bone flaps), they provide blood supply to the inorganic artificial bone scaffolds. After implantation into the defect site, the scaffolds not only achieve structural filling and mechanical support for the bone defect area, but also promote osteogenesis and vascular regeneration. Additionally, the mechanical properties, porous structure, and biocompatibility of the 3D-printed scaffold materials are key factors influencing their osteogenic efficiency. Furthermore, loading the scaffolds with active components such as osteogenic cells and growth factors can synergistically enhance bone defect healing and vascularization processes. Conclusion The repair of segmental bone defects using 3D-printed artificial bone scaffolds combined with vascularized tissue flap transplantation integrates material science technologies with surgical therapeutic approaches, which will significantly improve the clinical treatment outcomes of segmental bone defect repair.
Collapse
Affiliation(s)
- Qida Duan
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian Liaoning, 116001, P. R. China
| | - Hongyun Shao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian Liaoning, 116001, P. R. China
| | - Ning Luo
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian Liaoning, 116001, P. R. China
| | - Fuyang Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian Liaoning, 116001, P. R. China
| | - Liangliang Cheng
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian Liaoning, 116001, P. R. China
| | - Jiawei Ying
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian Liaoning, 116001, P. R. China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian Liaoning, 116001, P. R. China
| |
Collapse
|
2
|
Lovera K, Vanaclocha V, Atienza CM, Vanaclocha A, Jordá-Gómez P, Saiz-Sapena N, Vanaclocha L. Dental Implant with Porous Structure and Anchorage: Design and Bench Testing in a Calf Rib Model Study. MATERIALS (BASEL, SWITZERLAND) 2025; 18:700. [PMID: 39942366 PMCID: PMC11820065 DOI: 10.3390/ma18030700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Primary dental implant stability is critical to enable osseointegration. We assessed the primary stability of our newly designed dental implant. We used the calf rib bone animal model. Our implant has an outside tapered screw with two inside barrettes that deploy with a second screw situated at the implant's crown. We used ten calf ribs with III/IV bone density and inserted ten implants per rib. We deployed the barrettes in the calf rib's transversal direction to support against the nearby cortical bone. We measured the primary implant's stability with resonance frequency analysis and collected the Implant Stability Quota (ISQ) in the transverse and longitudinal calf rib planes before (PRE) and after (POS) deploying the barrette. The mean ISQ was PRE 84.00 ± 3.56 and POS 84.73 ± 4.53 (p = 0.84) in the longitudinal plane and PRE 81.80 ± 2.74 and POS 83.53 ± 4.53 (0.27) in the transverse plane. The barrettes' insertion increases our dental implant primary stability by 11% in the transverse plane and 2% in the longitudinal plane. Our dental implant ISQ values are in the higher range than those reported in the literature and reflect high primary stability after insertion. The barrette deployment improves the dental implant's primary stability, particularly in the direction in which it deploys (transverse plane).
Collapse
Affiliation(s)
- Keila Lovera
- CDL Clínica Dental Lovera, Avenida Cornellà, 2-BJ, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Vicente Vanaclocha
- Faculty of Medicine and Odontology, Department of Surgery, University of Valencia, 46010 Valencia, Spain
| | - Carlos M. Atienza
- Biomechanics Institute of Valencia, Polytechnic University of Valencia, 46022 Valencia, Spain; (C.M.A.); (A.V.)
| | - Amparo Vanaclocha
- Biomechanics Institute of Valencia, Polytechnic University of Valencia, 46022 Valencia, Spain; (C.M.A.); (A.V.)
| | - Pablo Jordá-Gómez
- Hospital General Universitario de Castellón, 12004 Castellón de la Plana, Spain;
| | | | - Leyre Vanaclocha
- Medius Klinik, Ostfildern-Ruit Klinik für Urologie, Hedelfinger Strasse 166, 73760 Ostfildern, Germany;
| |
Collapse
|
3
|
Yu H, Xu M, Duan Q, Li Y, Liu Y, Song L, Cheng L, Ying J, Zhao D. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Biomed Mater 2024; 19:042002. [PMID: 38697199 DOI: 10.1088/1748-605x/ad46d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Porous tantalum scaffolds offer a high degree of biocompatibility and have a low friction coefficient. In addition, their biomimetic porous structure and mechanical properties, which closely resemble human bone tissue, make them a popular area of research in the field of bone defect repair. With the rapid advancement of additive manufacturing, 3D-printed porous tantalum scaffolds have increasingly emerged in recent years, offering exceptional design flexibility, as well as facilitating the fabrication of intricate geometries and complex pore structures that similar to human anatomy. This review provides a comprehensive description of the techniques, procedures, and specific parameters involved in the 3D printing of porous tantalum scaffolds. Concurrently, the review provides a summary of the mechanical properties, osteogenesis and antibacterial properties of porous tantalum scaffolds. The use of surface modification techniques and the drug carriers can enhance the characteristics of porous tantalum scaffolds. Accordingly, the review discusses the application of these porous tantalum materials in clinical settings. Multiple studies have demonstrated that 3D-printed porous tantalum scaffolds exhibit exceptional corrosion resistance, biocompatibility, and osteogenic properties. As a result, they are considered highly suitable biomaterials for repairing bone defects. Despite the rapid development of 3D-printed porous tantalum scaffolds, they still encounter challenges and issues when used as bone defect implants in clinical applications. Ultimately, a concise overview of the primary challenges faced by 3D-printed porous tantalum scaffolds is offered, and corresponding insights to promote further exploration and advancement in this domain are presented.
Collapse
Affiliation(s)
- Haiyu Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Minghao Xu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Qida Duan
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Yada Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Yuchen Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Liqun Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Liangliang Cheng
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Jiawei Ying
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| |
Collapse
|
4
|
Bianconi S, Romanos G, Testori T, Del Fabbro M. Management of Advanced Peri-Implantitis by Guided Bone Regeneration in Combination with Trabecular Metal Fixtures, Two Months after Removal of the Failed Implants: Two-Year Results of a Single-Cohort Clinical Study. J Clin Med 2024; 13:713. [PMID: 38337407 PMCID: PMC10856143 DOI: 10.3390/jcm13030713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Implant replacement is among the treatment options for severe peri-implantitis. The aim of this single-cohort study was to evaluate the feasibility of replacing compromised implants affected by advanced peri-implantitis with new implants with a porous trabecular metal (TM) structure. Materials and Methods: Patients with one or more implants in the posterior region showing a defect depth >50% of implant length, measured from the residual crest, were consecutively included. Two months after implant removal, patients received a TM implant combined with a xenograft and a resorbable membrane. The implant stability quotient (ISQ) was measured at placement and re-assessed five months later (at uncovering), then after 6, 12, and 24 months of function. Marginal bone loss was radiographically evaluated. Results: Twenty consecutive cases were included. One patient dropped out due to COVID-19 infection, and nineteen cases were evaluated up to 24 months. At placement, the mean ISQ was 53.08 ± 13.65 (standard deviation), which increased significantly to 69.74 ± 9.01 after five months of healing (p < 0.001) and to 78.00 ± 7.29 after six months of loading (p < 0.001). Thereafter, the ISQ remained stable for up to 24 months (80.55 ± 4.73). All implants successfully osseointegrated and were restored as planned. After two years, the average marginal bone level change was -0.41 ± 0.38 mm (95% confidence interval -0.60, -0.21), which was limited yet significantly different from the baseline (p < 0.05). Conclusions: The treatment of advanced peri-implant defects using TM implants inserted two months after explantation in combination with guided bone regeneration may achieve successful outcomes up to two years follow-up, even in the presence of low primary stability.
Collapse
Affiliation(s)
- Stefano Bianconi
- Department of Oral Surgery and Dentistry, General Hospital, 39100 Bolzano, Italy;
| | - Georgios Romanos
- Department of Periodontics and Endodontics, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Tiziano Testori
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy;
- Department of Implantology and Oral Rehabilitation, Dental Clinic, IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 01451, USA
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy;
- Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
5
|
Młynarek-Żak K, Żmudzki J. The effect of porous compliance bushings in a dental implant on the distribution of occlusal loads. Sci Rep 2024; 14:1607. [PMID: 38238380 PMCID: PMC10796672 DOI: 10.1038/s41598-024-51429-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/02/2023] [Indexed: 01/22/2024] Open
Abstract
Porous dental implants are clinically used, but the mechanism of load distribution for stepped implant shaft surrounded by compliance bushings is still not known, especially for different bone conditions. The aim of the study was to assess the impact of the design of a dental implant with compliance bushings (CBs) on the occlusal load distribution during primary and secondary stability using finite element simulation (FEA), with a distinction between low and high quality cervical support under primary stability. The FEA of the oblique occlusal load transfer (250 N; 45°) was carried out for implants under variable bone conditions. The stepped shaft in the intermediate part of the dental implant was surrounded by CBs with an increasing modulus of elasticity of 2, 10 and 50 GPa. With a smaller Young's modulus of the bushings the increase of stress in the trabecular bone indicated that more bone tissue can be protected against disuse. The beneficial effect for the trabecular bone derived from the reduction of the stiffness of the bushings in relation to the loss of the implant's load bearing ability can be assessed using the FEM method.
Collapse
Affiliation(s)
- Katarzyna Młynarek-Żak
- Department of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, Konarskiego 18a St., 44-100, Gliwice, Poland
| | - Jarosław Żmudzki
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100, Gliwice, Poland.
| |
Collapse
|
6
|
Al Deeb M, Aldosari AA, Anil S. Osseointegration of Tantalum Trabecular Metal in Titanium Dental Implants: Histological and Micro-CT Study. J Funct Biomater 2023; 14:355. [PMID: 37504850 PMCID: PMC10382015 DOI: 10.3390/jfb14070355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to investigate the impact of the Tantalum Trabecular Metal dental implant design on implant stability and the process of osseointegration following its placement in the rabbit femoral condyle. The subjects for the experiment consisted of 10 New Zealand white rabbits. Twenty implants, comprising 10 Trabecular Metal (TM) and 10 Traditional Screw Vent (TSV) implants, were placed into the femoral condyles of these rabbits. The implant type was alternated based on a random sequence. Following a healing period of 8 weeks, the implants were retrieved for further analysis using micro-computed tomography (micro-CT), histological studies, and histomorphometry evaluations. The Bone-to-Implant Contact (BIC) ratio and the Bone Volume (BV) percentage in the region of interest were subsequently assessed. The BIC and BV values between TM and TSV implants were compared using the Student t-test. The TM implants exhibited significantly greater BIC and BV scores. In particular, the BIC percentage was recorded as 57.9 ± 6.5 for the TM implants, as opposed to 47.6 ± 8 for the TSV implants. Correspondingly, the BV percentage was 57 ± 7.3 for the TM implants and 46.4 ± 7.4 for the TSV implants. The bone volume percentage measured using micro-CT evaluation was 89.1 ± 8.7 for the TM implants and 79.1 ± 8.6 for the TSV implants. Given the observed results, it is plausible to suggest that the bone growth surrounding the tantalum mesh could have improved the integration of the bone and facilitated its ingrowth into the TM implant.
Collapse
Affiliation(s)
- Modhi Al Deeb
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Abdullah AlFarraj Aldosari
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| |
Collapse
|
7
|
Lovera-Prado K, Vanaclocha V, Atienza CM, Vanaclocha A, Jordá-Gómez P, Saiz-Sapena N, Vanaclocha L. Barbed Dental Ti6Al4V Alloy Screw: Design and Bench Testing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2228. [PMID: 36984107 PMCID: PMC10054258 DOI: 10.3390/ma16062228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND CONTEXT Dental implants are designed to replace a missing tooth. Implant stability is vital to achieving osseointegration and successful implantation. Although there are many implants available on the market, there is room for improvement. PURPOSE We describe a new dental implant with improved primary stability features. STUDY DESIGN Lab bench test studies. METHODS We evaluated the new implant using static and flexion-compression fatigue tests with compression loads, 35 Ncm tightening torque, displacement control, 0.01 mm/s actuator movement speed, and 9-10 Hz load application frequency, obtaining a cyclic load diagram. We applied variable cyclic loadings of predetermined amplitude and recorded the number of cycles until failure. The test ended with implant failure (breakage or permanent deformation) or reaching five million cycles for each load. RESULTS Mean stiffness was 1151.13 ± 133.62 SD N/mm, mean elastic limit force 463.94 ± 75.03 SD N, and displacement 0.52 ± 0.04 SD mm, at failure force 663.21 ± 54.23 SD N and displacement 1.56 ± 0.18 SD mm, fatigue load limit 132.6 ± 10.4 N, and maximum bending moment 729.3 ± 69.43 mm/N. CONCLUSIONS The implant fatigue limit is satisfactory for incisor and canine teeth and between the values for premolars and molars for healthy patients. The system exceeds five million cycles when subjected to a 132.60 N load, ensuring long-lasting life against loads below the fatigue limit.
Collapse
Affiliation(s)
- Keila Lovera-Prado
- CIRU-IMPLANT, S.L., Avenida Cornellà, 2-BJ, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Vicente Vanaclocha
- Department of Surgery, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Carlos M. Atienza
- Biomechanical Engineer, Biomechanics Institute of Valencia, Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Amparo Vanaclocha
- Biomechanical Engineer, Biomechanics Institute of Valencia, Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Pablo Jordá-Gómez
- Hospital General Universitario de Castellón, 12004 Castellón de la Plana, Spain
| | | | - Leyre Vanaclocha
- Medius Klinik, Ostfildern-Ruit Klinik für Urologie, Hedelfinger Strasse 166, 73760 Ostfildern, Germany
| |
Collapse
|
8
|
Nimmawitt P, Aliyu AAA, Lohwongwatana B, Arunjaroensuk S, Puncreobutr C, Mattheos N, Pimkhaokham A. Understanding the Stress Distribution on Anatomic Customized Root-Analog Dental Implant at Bone-Implant Interface for Different Bone Densities. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6379. [PMID: 36143689 PMCID: PMC9506153 DOI: 10.3390/ma15186379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study is to assess the stress distribution on the bone tissue and bone-implant interface of a customized anatomic root-analog dental implant (RAI) by means of finite element analysis (FEA) for different types of bone density. A mandibular right second premolar was selected from the CBCT database. A DICOM file was converted to an STL file to create a CAD model in FEA software. The bone boundary model was created, while bone density types I-IV were determined. Von Mises stress was measured at bone tissues and bone-implant interfaces. To validate the models, the RAI was 3D printed through a laser powder-bed fusion (L-PBF) approach. The results revealed that all RAI designs could not cause plastic deformation or fracture resulting in lower stress than the ultimate tensile stress of natural bone and implant. Compared to a conventional screw-type implant, RAIs possess a more favorable stress distribution pattern around the bone tissue and the bone-implant interface. The presence of a porous structure was found to reduce the stress at cancellous bone in type IV bone density.
Collapse
Affiliation(s)
- Pawhat Nimmawitt
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Abdul Azeez Abdu Aliyu
- Biomedical Engineering Research Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonrat Lohwongwatana
- Biomedical Engineering Research Center, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirida Arunjaroensuk
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chedtha Puncreobutr
- Biomedical Engineering Research Center, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nikos Mattheos
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Dental Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Atiphan Pimkhaokham
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Liu M, Wang Y, Zhang S, Wei Q, Li X. Success Factors of Additive Manufactured Root Analogue Implants. ACS Biomater Sci Eng 2022; 8:360-378. [PMID: 34990114 DOI: 10.1021/acsbiomaterials.1c01079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dental implantation is an effective method for the treatment of loose teeth, but the threaded dental implants used in the clinic cannot match with the tooth extraction socket. A root analogue implant (RAI) has the congruence shape, which reduces the damage to bone and soft tissue. Additive manufacturing (AM) technologies have the advantages of high precision, flexibility, and easy operation, becoming the main manufacturing method of RAI in basic research. The purpose of this systematic review is to summarize AM technologies used for RAI manufacturing as well as the factors affecting successful implantation. First, it introduces the AM technologies according to different operating principles and summarizes the advantages and disadvantages of each method. Then the influences of materials, structure design, surface characteristics, implant site, and positioning are discussed, providing reference for designers and dentists. Finally, it addresses the gap between basic research and clinical application for additive manufactured RAIs and discusses the current challenges and future research directions for this field.
Collapse
Affiliation(s)
- Minyan Liu
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shan Zhang
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qinghua Wei
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xinpei Li
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Li J, Ahmed A, Degrande T, De Baerdemaeker J, Al-Rasheed A, van den Beucken JJ, Jansen JA, Alghamdi HS, Walboomers XF. Histological evaluation of titanium fiber mesh-coated implants in a rabbit femoral condyle model. Dent Mater 2021; 38:613-621. [PMID: 34955235 DOI: 10.1016/j.dental.2021.12.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study was aimed to comparatively evaluate new bone formation into the pores of a flexible titanium fiber mesh (TFM) applied on the surface of implant. METHODS Twenty-eight custom made cylindrical titanium implants (4 ×10 mm) with and without a layer of two different types of TFM (fiber diameter of 22 µm and 50 µm, volumetric porosity ~70%) were manufactured and installed bilaterally in the femoral condyles of 14 rabbits. The elastic modulus for these two TFM types was ~20 GPa and ~5 GPa respectively, whereas the solid titanium was ~110 GPa. The implants (Control, TFM-22, TFM-50) were retrieved after 14 weeks of healing and prepared for histological assessment. The percentage of the bone area (BA%), the bone-to-implant contact (BIC%) and amount were determined. RESULTS Newly formed bone into mesh porosity was observed for all three types of implants. Histomorphometric analyses revealed significantly higher (~2.5 fold) BA% values for TFM-22 implants (30.9 ± 9.5%) compared to Control implants (12.7 ± 6.0%), whereas BA% for TMF-50 did not significantly differ compared with Control implants. Furthermore, both TFM-22 and TFM-50 implants showed significantly higher BIC% values (64.9 ± 14.0%, ~2.5 fold; 47.1 ± 14.1%, ~2 fold) compared to Control (23.6 ± 17.4%). Finally, TFM-22 implants showed more and thicker trabeculae in the peri-implant region. SIGNIFICANCE This in vivo study demonstrated that implants with a flexible coating of TFM improve bone formation within the inter-fiber space and the peri-implant region.
Collapse
Affiliation(s)
- Jinmeng Li
- Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Abeer Ahmed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Abdulaziz Al-Rasheed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | | - John A Jansen
- Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Hamdan S Alghamdi
- Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands; Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
11
|
Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance. J Nanobiotechnology 2021; 19:353. [PMID: 34717648 PMCID: PMC8557588 DOI: 10.1186/s12951-021-01099-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Titanium (Ti) implants are widely used in dentistry and orthopedics owing to their excellent corrosion resistance, biocompatibility, and mechanical properties, which have gained increasing attention from the viewpoints of fundamental research and practical applications. Also, numerous studies have been carried out to fine-tune the micro/nanostructures of Ti and/or incorporate chemical elements to improve overall implant performance. Zinc oxide nanoparticles (nano-ZnO) are well-known for their good antibacterial properties and low cytotoxicity along with their ability to synergize with a variety of substances, which have received increasingly widespread attention as biomodification materials for implants. In this review, we summarize recent research progress on nano-ZnO modified Ti-implants. Their preparation methods of nano-ZnO modified Ti-implants are introduced, followed by a further presentation of the antibacterial, osteogenic, and anti-corrosion properties of these implants. Finally, challenges and future opportunities for nano-ZnO modified Ti-implants are proposed.
Collapse
Affiliation(s)
- Zheng Wang
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xiaojing Wang
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yingruo Wang
- Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanli Zhu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xinqiang Liu
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
12
|
Luo C, Wang C, Wu X, Xie X, Wang C, Zhao C, Zou C, Lv F, Huang W, Liao J. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: A comprehensive study based on 3D-printing technology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112382. [PMID: 34579901 DOI: 10.1016/j.msec.2021.112382] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 02/05/2023]
Abstract
The emerging role of porous tantalum (Ta) scaffold for bone tissue engineering is noticed due to its outstanding biological properties. However, it is controversial which pore size and porosity are more conducive for bone defect repair. In the present work, porous tantalum scaffolds with pore sizes of 100-200, 200-400, 400-600 and 600-800 μm and corresponding porosities of 25%, 55%, 75%, and 85% were constructed, using computer aided design and 3D printing technologies, then comprehensively studied by in vitro and in vivo studies. We found that Ta scaffold with pore size of 400-600 μm showed stronger ability in facilitating cell adhesion, proliferation, and osteogenic differentiation in vitro. In vivo tests identified that porous tantalum scaffolds with pore size of 400-600 μm showed better performance of bone ingrowth and integration. In mechanism, computational fluid dynamics analysis proved porous tantalum scaffolds with pore size of 400-600 μm hold appropriate permeability and surface area, which facilitated cell adhesion and proliferation. Our results strongly indicate that pore size and porosity are essential for further applications of porous tantalum scaffolds, and porous tantalum scaffolds with pore size 400-600 μm are conducive to osteogenesis and osseointegration. These findings provide new evidence for further application of porous tantalum scaffolds for bone defect repair.
Collapse
Affiliation(s)
- Changqi Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Orthopaedic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, China
| | - Claire Wang
- Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA
| | - Xiangdong Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoping Xie
- Department of Orthopaedic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, China
| | - Chao Wang
- Department of Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chang Zou
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Furong Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
13
|
Wang X, Ning B, Pei X. Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces 2021; 208:112055. [PMID: 34438295 DOI: 10.1016/j.colsurfb.2021.112055] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Implant-associated infections and aseptic loosening are some of the main reasons for implant failure. Therefore, there is an urgent need to improve the osseointegration and antibacterial capabilities of implant materials. In recent years, a large number of breakthroughs in the biological application of tantalum and its derivatives have been achieved. Owing to their corrosion resistance, biocompatibility, osseointegration ability, and antibacterial properties, they have shown considerable potential in orthopedic and dental implant applications. In this review, we provide the latest progress and achievements in the research on osseointegration and antibacterial properties of tantalum as well as its derivatives, and summarize the surface modification methods to enhance their osseointegration and antibacterial properties.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Boyu Ning
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
14
|
Huang G, Pan ST, Qiu JX. The Clinical Application of Porous Tantalum and Its New Development for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2647. [PMID: 34070153 PMCID: PMC8158527 DOI: 10.3390/ma14102647] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone-implant stability in the long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, the low elastic modulus and high friction coefficient of porous Ta allow it to effectively avoid the stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta-based implants or prostheses is mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta-based implants or prostheses have shown their clinical value in the treatment of individual patients who need specially designed implants or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.
Collapse
Affiliation(s)
| | | | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (G.H.); (S.-T.P.)
| |
Collapse
|
15
|
PDLCs and EPCs Co-Cultured on Ta Discs: A Golden Fleece for "Compromised" Osseointegration. Int J Mol Sci 2021; 22:ijms22094486. [PMID: 33925774 PMCID: PMC8123461 DOI: 10.3390/ijms22094486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/04/2022] Open
Abstract
Material research in tissue engineering forms a vital link between basic cell research and animal research. Periodontal ligament cells (PDLCs, P) from the tooth have an osteogenic effect, whereas endothelial progenitor cells (EPCs, E) assist in neovascularization. In the present study, the interaction of PDLCs and EPCs with Tantalum (Ta, I) discs, either alone (IP or IE group) or in 1:1 (IPE) ratio was explored. Additionally, surface analysis of Ta discs with respect to different types and cycles of sterilization and disinfection procedures was evaluated. It was observed that Ta discs could be used for a maximum of three times, after which the changes in properties of Ta discs were detrimental to cell growth, irrespective of the type of the protocol. Cell-Disc’s analysis revealed that cell proliferation in the IE group at day 6 and day 10 was significantly higher (p < 0.05) than other groups. A cell viability assay revealed increased live cells in the IPE group than in the IP or IE group. Similarly, adhesion and penetration of cells in the IPE group were not only higher, but also had an increased thickness of cellular extensions. RT-PCR analysis revealed that on day 8, both osteogenic (ALP, RUNX-2, and BSP) and angiogenic genes (VEGFR-2, CD31) increased significantly in the IPE group as compared to the IP or IE groups (p < 0.05). In conclusion, Ta discs promoted cellular proliferation and increased osteogenic and angiogenic activity by augmenting RUNX-2 and VEGFR-2 activity.
Collapse
|
16
|
Rajaraman V, Nallaswamy D, Ganapathy DM, Kachhara S. Osseointegration of Hafnium when Compared to Titanium - A Structured Review. Open Dent J 2021. [DOI: 10.2174/1874210602115010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim:
This systematic review was conducted to analyse osseointegration of hafnium over conventional titanium.
Materials and Methods:
Search methodology was comprehended using PICO analysis and a comprehensive search was initiated in PubMed Central, Medline, Cochrane, Ovid, Science Direct, Copernicus and Google Scholar databases to identify the related literature. Randomised control trials, clinical studies, case control studies and animal studies were searched for osseointegration of hafnium coated titanium implants versus conventional titanium implants. Timeline was set to include all the manuscripts published till December 2018 in this review.
Clinical Significance:
Hafnium is a very promising surface coating intervention that can augment osseointegration in titanium implants. If research could be widened, including in vivo studies on hafnium as a metal for coating over dental implants or as a dental implant material itself to enhance better osseointegration, it could explore possibilities of this metal in the rehabilitation of both intra and extra oral defects and in medically compromised patients with poor quality of bone.
Results:
Out of the 25 articles obtained from the PICO based keyword search, 5 studies were excluded based on title and abstract. Out of the remaining 20 studies, 16 were excluded based on the inclusion and exclusion criteria of our interest and finally, 4 were included on the basis of core data.
Conclusion:
This systematic review observed hafnium metal exhibited superior osseointegration than titanium. Owing to its biocompatibility, hafnium could be an alternative to titanium, in the near future.
Collapse
|
17
|
Ahmed A, Al-Rasheed A, Badwelan M, Alghamdi HS. Peri-Implant bone response around porous-surface dental implants: A preclinical meta-analysis. Saudi Dent J 2020; 33:239-247. [PMID: 34194186 PMCID: PMC8236543 DOI: 10.1016/j.sdentj.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/09/2022] Open
Abstract
Introduction This meta-analysis of relevant animal studies was conducted to assess whether the use of porous-surface implants improves osseointegration compared to the use of non-porous-surface implants. Material and methods An electronic search of PubMed (MEDLINE) resulted in the selection of ten animal studies (out of 865 publications) for characterization and quality assessment. Risk of bias assessment indicated poor reporting for the majority of studies. The results for bone-implant contact (BIC%) and peri-implant bone formation (BF%) were extracted from the eligible studies and used for the meta-analysis. Data for porous-surface implants were compared to those for non-porous-surface implants, which were considered as the controls. Results The random-effects meta-analysis showed that the use of porous-surface implants did not significantly increase overall BIC% (mean difference or MD: 3.63%; 95% confidence interval or 95% CI: −1.66 to 8.91; p = 0.18), whereas it significantly increased overall BF% (MD: 5.43%; CI: 2.20 to 8.67; p = 0.001), as compared to the controls. Conclusion Porous-surface implants promote osseointegration with increase in BF%. However, their use shows no significant effect on BIC%. Further preclinical and clinical investigations are required to find conclusive evidence on the effect of porous-surface implants.
Collapse
Affiliation(s)
- Abeer Ahmed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Al-Rasheed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Badwelan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aden University, Aden, Yemen
| | - Hamdan S Alghamdi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Wang X, Zhu Z, Xiao H, Luo C, Luo X, Lv F, Liao J, Huang W. Three-Dimensional, MultiScale, and Interconnected Trabecular Bone Mimic Porous Tantalum Scaffold for Bone Tissue Engineering. ACS OMEGA 2020; 5:22520-22528. [PMID: 32923811 PMCID: PMC7482253 DOI: 10.1021/acsomega.0c03127] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/10/2020] [Indexed: 05/03/2023]
Abstract
To investigate the biocompatibility and bone ingrowth properties of a novel trabecular bone mimic porous tantalum scaffold which holds potential for bone tissue engineering, a novel three-dimensional, multiscale interconnected porous tantalum scaffold was designed and manufactured. The morphology of the novel scaffold was observed with the use of scanning electron microscopy (SEM) and industrial computerized tomography. Mesenchymal stem cells (MSCs) were cultured with novel porous tantalum powder, SEM was carried out for the observation of cell morphology and adhesion, and cytotoxicity was evaluated by the MTT assay. Canine femoral shaft bone defect models were established, and novel porous tantalum rods were used to repair the bone defect. Repair effects and bone integration were evaluated by hard tissue slice examination and push-out tests at the indicated time. We found that the novel porous tantalum scaffold is a trabecular bone mimic, having the characteristics of being three-dimensional, multiscaled, and interconnected. The MSCs adhered to the surface of tantalum and proliferated with time, the tantalum extract did not have a cytotoxic effect on MSCs. In the bone defect model, porous tantalum rods integrated tightly with the host bone, and new bone formation was found on the scaffold-host bone interface both 3 and 6 months after the implantation. Favorable bone ingrowth was observed in the center of the tantalum rod. The push-out test showed that the strength needed to push out the tantalum rod is comparable for both 3 and 6 months when compared with the normal femoral shaft bone tissue. These findings suggested that the novel trabecular bone mimic porous tantalum scaffold is biocompatible and osteoinductive, which holds potential for bone tissue engineering application.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haozuo Xiao
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Changqi Luo
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoji Luo
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Furong Lv
- Department
of Radiology, The First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
| | - Junyi Liao
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
- . Phone: 86-23
89011222. Fax: 86-23 89011211
| | - Wei Huang
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016, China
- . Phone: 86-23 89011222. Fax: 86-23 89011211
| |
Collapse
|
19
|
Enhancement of Bone Ingrowth into a Porous Titanium Structure to Improve Osseointegration of Dental Implants: A Pilot Study in the Canine Model. MATERIALS 2020; 13:ma13143061. [PMID: 32650581 PMCID: PMC7412235 DOI: 10.3390/ma13143061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
A porous titanium structure was suggested to improve implant stability in the early healing period or in poor bone quality. This study investigated the effect of a porous structure on the osseointegration of dental implants. A total of 28 implants (14 implants in each group) were placed in the posterior mandibles of four beagle dogs at 3 months after extraction. The control group included machined surface implants with an external implant–abutment connection, whereas test group implants had a porous titanium structure added to the apical portion. Resonance frequency analysis (RFA); removal torque values (RTV); and surface topographic and histometric parameters including bone-to-implant contact length and ratio, inter-thread bone area and ratio in total, and the coronal and apical parts of the implants were measured after 4 weeks of healing. RTV showed a significant difference between the groups after 4 weeks of healing (p = 0.032), whereas no difference was observed in RFA. In the test group, surface topography showed bone tissue integrated into the porous structures. In the apical part of the test group, all the histometric parameters exhibited significant increases compared to the control group. Within the limitations of this study, enhanced bone growth into the porous structure was achieved, which consequently improved osseointegration of the implant.
Collapse
|
20
|
Affiliation(s)
- Hamdan S. ALGHAMDI
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University
| | - John A. JANSEN
- Department of Dentistry–Biomaterials, Radboud University Medical Center
| |
Collapse
|
21
|
Li J, Jansen JA, Walboomers XF, van den Beucken JJ. Mechanical aspects of dental implants and osseointegration: A narrative review. J Mech Behav Biomed Mater 2019; 103:103574. [PMID: 32090904 DOI: 10.1016/j.jmbbm.2019.103574] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/23/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022]
Abstract
With the need of rapid healing and long-term stability of dental implants, the existing Ti-based implant materials do not meet completely the current expectation of patients. Low elastic modulus Ti-alloys have shown superior biocompatibility and can achieve comparable or even faster bone formation in vivo at the interface of bone and the implant. Porous structured Ti alloys have shown to allow rapid bone ingrowth through their open structure and to achieve anchorage with bone tissue by increasing the bone-implant interface area. In addition to the mechanical properties of implant materials, the design of the implant body can be used to optimize load transfer and affect the ultimate results of osseointegration. The aim of this narrative review is to define the mechanical properties of dental implants, summarize the relationship between implant stability and osseointegration, discuss the effect of metallic implant mechanical properties (e.g. stiffness and porosity) on the bone response based on existing in vitro and in vivo information, and analyze load transfer through mechanical properties of the implant body. This narrative review concluded that although several studies have presented the advantages of low elastic modulus or high porosity alloys and their effect on osseointegration, further in vivo studies, especially long-term observational studies are needed to justify these novel materials as a replacement for current Ti-based implant materials.
Collapse
Affiliation(s)
- Jinmeng Li
- Department of Biomaterials, Radboudumc, P.O. Box 9101, 6500, Nijmegen, HB, the Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboudumc, P.O. Box 9101, 6500, Nijmegen, HB, the Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboudumc, P.O. Box 9101, 6500, Nijmegen, HB, the Netherlands
| | | |
Collapse
|
22
|
Liu Y, Rath B, Tingart M, Eschweiler J. Role of implants surface modification in osseointegration: A systematic review. J Biomed Mater Res A 2019; 108:470-484. [DOI: 10.1002/jbm.a.36829] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Liu
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Björn Rath
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| |
Collapse
|
23
|
Biomechanical analysis of the osseointegration of porous tantalum implants. J Prosthet Dent 2019; 123:811-820. [PMID: 31703918 DOI: 10.1016/j.prosdent.2019.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 11/24/2022]
Abstract
STATEMENT OF PROBLEM Although implants containing porous tantalum undergo osseointegration, whether this material significantly alters new bone formation and improves implant stability during healing in comparison to titanium is unclear. PURPOSE The purpose of this in vivo study was to determine the influence of the inclusion of porous tantalum into a dental implant on the biomechanical properties of the bone-implant interface and peri-implant bone which may contribute to secondary implant stability. MATERIAL AND METHODS Threaded titanium implants with a porous tantalum midsection (Trabecular Metal Dental Implant; Zimmer Biomet) or without (Tapered Screw-Vent; Zimmer Biomet) were placed in rabbit tibiae and allowed to heal for 4, 8, or 12 weeks. The implants were evaluated by resonance frequency analysis and removed with surrounding bone for nanoindentation testing. Two-way ANOVA was used to determine the impact of implant type, bone region, and time on the outcomes implant stability quotient (ISQ), hardness, and elastic modulus (α=.05). RESULTS Resonance frequency analysis found no significant difference in ISQ values between implant types at 4, 8, or 12 weeks, and ISQ values did not increase for either implant over time. Nanoindentation showed no significant differences in hardness or elastic modulus in newly formed bone adjacent to either implant type at any time point. CONCLUSIONS The stiffness of the bone-implant interface was similar for threaded titanium implants with or without porous tantalum when placed in the rabbit tibia and allowed to heal for at least 4 weeks. The new peri-implant bone adjacent to dental implants containing porous tantalum showed no difference in nanomechanical properties to the new bone around implants comprised completely of threaded titanium at all healing time points.
Collapse
|
24
|
Zhu H, Ji X, Guan H, Zhao L, Zhao L, Liu C, Cai C, Li W, Tao T, Reseland JE, Haugen HJ, Xiao J. Tantalum nanoparticles reinforced polyetheretherketone shows enhanced bone formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:232-242. [PMID: 31029316 DOI: 10.1016/j.msec.2019.03.091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/23/2019] [Accepted: 03/24/2019] [Indexed: 11/18/2022]
Abstract
Polyetheretherketone (PEEK) has been used in orthopedic surgery for several decades. Numerous methods were invented to alter the properties of PEEK. By adding nanoparticles, fibers, etc., elastic modulus and strength of PEEK can be changed to meet certain demand. In this study, tantalum (Ta), a promising metal, was introduced to modify the properties of PEEK, in which PEEK was reinforced with different contents of tantalum nanoparticles (from 1 wt% to 9 wt%). Mechanical properties and biological functions (both in vitro and in vivo) were then investigated. The highest elastic modulus and compressive strength were observed in 3%Ta-PEEK. Cell experiments as cell adhesion, collagen secretion, biomineralization and osteogenesis related gene expression showed preferable results in 3%Ta-PEEK and 5%Ta-PEEK. Improved bone integration was shown in 3%Ta-PEEK and 5%Ta-PEEK in vivo. Above all, enhanced mechanical properties and promoted bone formation were proved for 3%Ta-PEEK and 5%Ta-PEEK compared to others groups both in vitro and in vivo, suggesting that the addition of tantalum nanoparticles modified the osseointegration ability of PEEK. This composite of tantalum and PEEK could have a clinical potential for orthopedic implants.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo, Norway.
| | - Xiongfa Ji
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Hanfeng Guan
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Liming Zhao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Libo Zhao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Changyu Liu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Cong Cai
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Weijing Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Tenghui Tao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo, Norway.
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo, Norway.
| | - Jun Xiao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
25
|
Fraser D, Mendonca G, Sartori E, Funkenbusch P, Ercoli C, Meirelles L. Bone response to porous tantalum implants in a gap-healing model. Clin Oral Implants Res 2019; 30:156-168. [PMID: 30636059 DOI: 10.1111/clr.13402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/31/2018] [Accepted: 12/22/2018] [Indexed: 01/30/2023]
Abstract
OBJECTIVES The objective of this study was to determine the relative osteogenic behavior of titanium implants with or without a porous tantalum modification when placed with a gap between the implant and existing bone. MATERIALS AND METHODS A gap-healing model in the rabbit tibia was used for placement of titanium implants. Forty-eight rabbits received 96 implants, with 48 of the implants containing a porous tantalum middle section and the remaining 48 implants were composed of solid titanium. After 4, 8, and 12 weeks of healing, biomechanical stability was measured with removal torque testing, implant-adherent cells were isolated for analysis of osteogenic gene expression, and histomorphometric analysis was performed on sections of the implants and surrounding bone. RESULTS Increased osteogenic activity at 4 weeks was demonstrated by upregulation of key osteogenic genes at implants containing porous tantalum which was accompanied by greater bone-implant contact at 4, 8, and 12 weeks and significantly greater removal torque at 8 and 12 weeks. CONCLUSIONS Implants containing porous tantalum demonstrated increased peri-implant bone formation within this gap-healing model as shown by significant differences in biomechanical and histomorphometric outcomes. Such implants may represent an alternative to influence bone healing in surgical sites with an existing gap.
Collapse
Affiliation(s)
- David Fraser
- Eastman Institute for Oral Health, University of Rochester, Rochester, New York
| | - Gustavo Mendonca
- Department of Biologic and Material Science, University of Michigan, Ann Arbor, Michigan
| | - Elisa Sartori
- Department of Biologic and Material Science, University of Michigan, Ann Arbor, Michigan
| | - Paul Funkenbusch
- Department of Mechanical Engineering, University of Rochester, Rochester, New York
| | - Carlo Ercoli
- Eastman Institute for Oral Health, University of Rochester, Rochester, New York
| | - Luiz Meirelles
- Eastman Institute for Oral Health, University of Rochester, Rochester, New York
| |
Collapse
|
26
|
Lee JW, Wen HB, Gubbi P, Romanos GE. New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: A pilot canine study. Clin Oral Implants Res 2017; 29:164-174. [PMID: 28971532 PMCID: PMC6084354 DOI: 10.1111/clr.13074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 12/23/2022]
Abstract
Aim This study evaluated new bone formation activities and trabecular bone microarchitecture within the highly porous region of Trabecular Metal™ Dental Implants (TM) and between the threads of Tapered Screw‐Vent® Dental Implants (TSV) in fresh canine extraction sockets. Materials and methods Eight partially edentulated dogs received four implants (4.1 mmD × 13 mmL) bilaterally in mandibular fresh extraction sockets (32 TM, 32 TSV implants), and allowed to heal for 2, 4, 8, and 12 weeks. Calcein was administered to label mineralizing bone at 11 and 4 days before euthanasia for dogs undergoing all four healing periods. Biopsies taken at each time interval were examined histologically. Histomorphometric assay was conducted for 64 unstained and 64 stained slides at the region of interest (ROI) (6 mm long × 0.35 mm deep) in the midsections of the implants. Topographical and chemical analyses were also performed. Results Histomorphometry revealed significantly more new bone in the TM than in the TSV implants at each healing time (p = .0014, .0084, .0218, and .0251). Calcein‐labeled data showed more newly mineralized bone in the TM group than in the TSV group at 2, 8, and 12 weeks (p = .045, .028, .002, respectively) but not at 4 weeks (p = .081). Histologically TM implants exhibited more bone growth and dominant new immature woven bone at an earlier time point than TSV implants. The parameters representing trabecular bone microarchitecture corroborated faster new bone formation in the TM implants when compared to the TSV implants. TM exhibited an irregular faceted topography compared to a relatively uniform microtextured surface for TSV. Chemical analysis showed peaks associated with each implant's composition material, and TSV also showed peaks reflecting the elements of the calcium phosphate blasting media. Conclusions and clinical implications Results suggest that the healing pathway associated with the highly porous midsection of TM dental implant could enable faster and stronger secondary implant stability than conventional osseointegration alone; however, prospective clinical studies are needed to confirm these potential benefits in patients with low bone density, compromised healing, or prior implant failure.
Collapse
Affiliation(s)
| | - Hai Bo Wen
- Zimmer Biomet, Palm Beach Gardens, FL, USA
| | | | | |
Collapse
|