1
|
Caracoti VI, Caracoti CȘ, Ancuța DL, Ioniță F, Muntean AA, Bhide M, Popa GL, Popa MI, Coman C. Developing a Novel Murine Meningococcal Meningitis Model Using a Capsule-Null Bacterial Strain. Diagnostics (Basel) 2024; 14:1116. [PMID: 38893642 PMCID: PMC11172168 DOI: 10.3390/diagnostics14111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Neisseria meningitidis (meningococcus) is a Gram-negative bacterium that colonises the nasopharynx of about 10% of the healthy human population. Under certain conditions, it spreads into the body, causing infections with high morbidity and mortality rates. Although the capsule is the key virulence factor, unencapsulated strains have proved to possess significant clinical implications as well. Meningococcal meningitis is a primarily human infection, with limited animal models that are dependent on a variety of parameters such as bacterial virulence and mouse strain. In this study, we aimed to develop a murine Neisseria meningitidis meningitis model to be used in the study of various antimicrobial compounds. METHOD We used a capsule-deficient Neisseria meningitidis strain that was thoroughly analysed through various methods. The bacterial strain was incubated for 48 h in brain-heart infusion (BHI) broth before being concentrated and injected intracisternally to bypass the blood-brain barrier in CD-1 mice. This prolonged incubation time was a key factor in increasing the virulence of the bacterial strain. A total of three more differently prepared inoculums were tested to further solidify the importance of the protocol (a 24-h incubated inoculum, a diluted inoculum, and an inactivated inoculum). Antibiotic treatment groups were also established. The clinical parameters and number of deaths were recorded over a period of 5 days, and comatose mice with no chance of recovery were euthanised. RESULTS The bacterial strain was confirmed to have no capsule but was found to harbour a total of 56 genes coding virulence factors, and its antibiotic susceptibility was established. Meningitis was confirmed through positive tissue culture and histological evaluation, where specific lesions were observed, such as perivascular sheaths with inflammatory infiltrate. In the treatment groups, survival rates were significantly higher (up to 81.25% in one of the treatment groups compared to 18.75% in the control group). CONCLUSION We managed to successfully develop a cost-efficient murine (using simple CD-1 mice instead of expensive transgenic mice) meningococcal meningitis model using an unencapsulated strain with a novel method of preparation.
Collapse
Affiliation(s)
- Viorela-I. Caracoti
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-I.C.); (C.-Ș.C.); (A.-A.M.); (G.L.P.)
| | - Costin-Ș. Caracoti
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-I.C.); (C.-Ș.C.); (A.-A.M.); (G.L.P.)
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
| | - Diana L. Ancuța
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| | - Fabiola Ioniță
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| | - Andrei-A. Muntean
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-I.C.); (C.-Ș.C.); (A.-A.M.); (G.L.P.)
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
| | - Mangesh Bhide
- Faculty of Veterinary Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia;
- Institute of Neuroimmunology of Slovak Academy of Sciences, Dubravska Cesta 9, 84510 Bratislava, Slovakia
| | - Gabriela L. Popa
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-I.C.); (C.-Ș.C.); (A.-A.M.); (G.L.P.)
| | - Mircea I. Popa
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-I.C.); (C.-Ș.C.); (A.-A.M.); (G.L.P.)
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
| | - Cristin Coman
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
- Fundeni Clinical Institute Translational Medicine Centre of Excellence, 022328 Bucharest, Romania
| |
Collapse
|
2
|
Kulkarni A, Jozefiaková J, Bhide K, Mochnaćová E, Bhide M. Differential transcriptome response of blood brain barrier spheroids to neuroinvasive Neisseria and Borrelia. Front Cell Infect Microbiol 2023; 13:1326578. [PMID: 38179419 PMCID: PMC10766361 DOI: 10.3389/fcimb.2023.1326578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Background The blood-brain barrier (BBB), a highly regulated interface between the blood and the brain, prevents blood-borne substances and pathogens from entering the CNS. Nevertheless, pathogens like Neisseria meningitidis and Borrelia bavariensis can breach the BBB and infect the brain parenchyma. The self-assembling BBB-spheroids can simulate the cross talk occurring between the cells of the barrier and neuroinvasive pathogens. Methods BBB spheroids were generated by co-culturing human brain microvascular endothelial cells (hBMECs), pericytes and astrocytes. The BBB attributes of spheroids were confirmed by mapping the localization of cells, observing permeability of angiopep2 and non-permeability of dextran. Fluorescent Neisseria, Borrelia or E. coli (non-neuroinvasive) were incubated with spheroids to observe the adherence, invasion and spheroid integrity. Transcriptome analysis with NGS was employed to investigate the response of BBB cells to infections. Results hBMECs were localized throughout the spheroids, whereas pericytes and astrocytes were concentrated around the core. Within 1 hr of exposure, Neisseria and Borrelia adhered to spheroids, and their microcolonization increased from 5 to 24 hrs. Integrity of spheroids was compromised by both Neisseria and Borrelia, but not by E. coli infection. Transcriptome analysis revealed a significant change in the expression of 781 genes (467 up and 314 down regulated) in spheroids infected with Neisseria, while Borrelia altered the expression of 621 genes (225 up and 396 down regulated). The differentially expressed genes could be clustered into various biological pathways like cell adhesion, extracellular matrix related, metallothionines, members of TGF beta, WNT signaling, and immune response. Among the differentially expressed genes, 455 (48%) genes were inversely expressed during Neisseria and Borrelia infection. Conclusion The self-assembling spheroids were used to perceive the BBB response to neuroinvasive pathogens - Neisseria and Borrelia. Compromised integrity of spheroids during Neisseria and Borrelia infection as opposed to its intactness and non-adherence of E. coli (non-neuroinvasive) denotes the pathogen dependent fate of BBB. Genes categorized into various biological functions indicated weakened barrier properties of BBB and heightened innate immune response. Inverse expression of 48% genes commonly identified during Neisseria and Borrelia infection exemplifies unique response of BBB to varying neuropathogens.
Collapse
Affiliation(s)
- Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Jozefiaková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Evelína Mochnaćová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Sereikaitė E, Plepytė R, Petrutienė A, Stravinskienė D, Kučinskaitė-Kodzė I, Gėgžna V, Ivaškevičienė I, Žvirblienė A, Plečkaitytė M. Molecular characterization of invasive Neisseria meningitidis isolates collected in Lithuania (2009-2019) and estimation of serogroup B meningococcal vaccine 4CMenB and MenB-Fhbp coverage. Front Cell Infect Microbiol 2023; 13:1136211. [PMID: 36875527 PMCID: PMC9975601 DOI: 10.3389/fcimb.2023.1136211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Neisseria meningitidis causes invasive meningococcal disease (IMD), which is associated with significant mortality and long-term consequences, especially among young children. The incidence of IMD in Lithuania was among the highest in European Union/European Economic Area countries during the past two decades; however, the characterization of meningococcal isolates by molecular typing methods has not yet been performed. In this study, we characterized invasive meningococcal isolates (n=294) recovered in Lithuania from 2009 to 2019 by multilocus sequence typing (MLST) and typing of antigens FetA and PorA. The more recent (2017-2019) serogroup B isolates (n=60) were genotyped by analyzing vaccine-related antigens to evaluate their coverage by four-component (4CMenB) and two-component (MenB-Fhbp) vaccines using the genetic Meningococcal Antigen Typing System (gMATS) and Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) Index methods, respectively. The vast majority (90.5%) of isolates belonged to serogroup B. MLST revealed a predominance of clonal complex 32 (74.02%). Serogroup B strain P1.19,15: F4-28: ST-34 (cc32) accounted for 64.1% of IMD isolates. The overall level of strain coverage by the 4MenB vaccine was 94.8% (CI 85.9-98.2%). Most serogroup B isolates (87.9%) were covered by a single vaccine antigen, most commonly Fhbp peptide variant 1 (84.5% of isolates). The Fhbp peptides included in the MenB-Fhbp vaccine were not detected among the analyzed invasive isolates; however, the identified predominant variant 1 was considered cross-reactive. In total, 88.1% (CI 77.5-94.1) of isolates were predicted to be covered by the MenB-Fhbp vaccine. In conclusion, both serogroup B vaccines demonstrate potential to protect against IMD in Lithuania.
Collapse
Affiliation(s)
- Emilija Sereikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Plepytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelija Petrutienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Department of Bacteriology, National Public Health Surveillance Laboratory, Vilnius, Lithuania
| | - Dovilė Stravinskienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Vilmantas Gėgžna
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Inga Ivaškevičienė
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Pediatric Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Plečkaitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- *Correspondence: Milda Plečkaitytė,
| |
Collapse
|
4
|
de Figueiredo AM, Glória JC, Chaves YO, Neves WLL, Mariúba LAM. Diagnostic applications of microsphere-based flow cytometry: A review. Exp Biol Med (Maywood) 2022; 247:1852-1861. [PMID: 35974694 PMCID: PMC9679357 DOI: 10.1177/15353702221113856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microsphere-based flow cytometry is a highly sensitive emerging technology for specific detection and clinical analysis of antigens, antibodies, and nucleic acids of interest. In this review, studies that focused on the application of flow cytometry as a viable alternative for the investigation of infectious diseases were analyzed. Many of the studies involve research aimed at epidemiological surveillance, vaccine candidates and early diagnosis, non-infectious diseases, specifically cancer, and emphasize the simultaneous detection of biomarkers for early diagnosis, with accurate results in a non-invasive approach. The possibility of carrying out multiplexed assays affords this technique high versatility and performance, which is evidenced in a series of clinical studies that have verified the ability to detect several molecules in low concentrations and with minimal sample volume. As such, we demonstrate that microsphere-based flow cytometry presents itself as a promising technique that can be adopted as a fundamental element in the development of new diagnostic methods for a number of diseases.
Collapse
Affiliation(s)
| | - Juliane Corrêa Glória
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, Brazil
| | - Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus 69057-070, Brazil,Programa de Pós-graduação em biologia parasitária, Instituto Oswaldo Cruz – FIOCRUZ, Manaus 21040-360, Brazil
| | - Walter Luiz Lima Neves
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus 69067-00, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, Brazil,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus 69057-070, Brazil,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus 69067-00, Brazil,Luis André Morais Mariúba.
| |
Collapse
|
5
|
Dinh-Hung N, Sangpo P, Kruangkum T, Kayansamruaj P, Rung-Ruangkijkrai T, Senapin S, Rodkhum C, Dong HT. Dissecting the localization of Tilapia tilapinevirus in the brain of the experimentally infected Nile tilapia, Oreochromis niloticus (L.). JOURNAL OF FISH DISEASES 2021; 44:1053-1064. [PMID: 33724491 DOI: 10.1111/jfd.13367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 05/08/2023]
Abstract
Tilapia tilapinevirus or tilapia lake virus (TiLV) is an emerging virus that inflicts significant mortality on farmed tilapia globally. Previous studies reported detection of the virus in multiple organs of the infected fish; however, little is known about the in-depth localization of the virus in the central nervous system. Herein, we determined the distribution of TiLV in the entire brain of experimentally infected Nile tilapia. In situ hybridization (ISH) using TiLV-specific probes revealed that the virus was broadly distributed throughout the brain. The strongest positive signals were dominantly detected in the forebrain (responsible for learning, appetitive behaviour and attention) and the hindbrain (involved in controlling locomotion and basal physiology). The permissive cell zones for viral infection were observed mostly to be along the blood vessels and the ventricles. This indicates that the virus may productively enter into the brain through the circulatory system and widen broad regions, possibly through the cerebrospinal fluid along the ventricles, and subsequently induce the brain dysfunction. Understanding the pattern of viral localization in the brain may help elucidate the neurological disorders of the diseased fish. This study revealed the distribution of TiLV in the whole infected brain, providing new insights into fish-virus interactions and neuropathogenesis.
Collapse
Affiliation(s)
- Nguyen Dinh-Hung
- Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pattiya Sangpo
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanapong Kruangkum
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pattanapon Kayansamruaj
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Tilladit Rung-Ruangkijkrai
- Department of Veterinary Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Channarong Rodkhum
- Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ha Thanh Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
| |
Collapse
|
6
|
Azimi S, Wheldon LM, Oldfield NJ, Ala'Aldeen DAA, Wooldridge KG. A role for fibroblast growth factor receptor 1 in the pathogenesis of Neisseria meningitidis. Microb Pathog 2020; 149:104534. [PMID: 33045339 DOI: 10.1016/j.micpath.2020.104534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Neisseria meningitidis (the meningococcus) remains an important cause of human disease, including meningitis and sepsis. Adaptation to the host environment includes many interactions with specific cell surface receptors, resulting in intracellular signalling and cytoskeletal rearrangements that contribute to pathogenesis. Here, we assessed the interactions between meningococci and Fibroblast Growth Factor Receptor 1-IIIc (FGFR1-IIIc): a receptor specific to endothelial cells of the microvasculature, including that of the blood-brain barrier. We show that the meningococcus recruits FGFR1-IIIc onto the surface of human blood microvascular endothelial cells (HBMECs). Furthermore, we demonstrate that expression of FGFR1-IIIc is required for optimal invasion of HBMECs by meningococci. We show that the ability of N. meningitidis to interact with the ligand-binding domain of FGFR1-IIIc is shared with the other pathogenic Neisseria species, N. gonorrhoeae, but not with commensal bacteria including non-pathogenic Neisseria species.
Collapse
Affiliation(s)
- Sheyda Azimi
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Lee M Wheldon
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Neil J Oldfield
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Dlawer A A Ala'Aldeen
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Karl G Wooldridge
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK.
| |
Collapse
|
7
|
Káňová E, Tkáčová Z, Bhide K, Kulkarni A, Jiménez-Munguía I, Mertinková P, Drážovská M, Tyagi P, Bhide M. Transcriptome analysis of human brain microvascular endothelial cells response to Neisseria meningitidis and its antigen MafA using RNA-seq. Sci Rep 2019; 9:18763. [PMID: 31822804 PMCID: PMC6904618 DOI: 10.1038/s41598-019-55409-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/28/2019] [Indexed: 01/25/2023] Open
Abstract
Interaction of Neisseria meningitidis (NM) with human brain microvascular endothelial cells (hBMECs) initiates of multiple cellular processes, which allow bacterial translocation across the blood-brain barrier (BBB). NM is equipped with several antigens, which interacts with the host cell receptors. Recently we have shown that adhesin MafA (UniProtKB-X5EG71), relatively less studied protein, is one of those surface exposed antigens that adhere to hBMECs. The present study was designed to comprehensively map the undergoing biological processes in hBMECs challenged with NM or MafA using RNA sequencing. 708 and 726 differentially expressed genes (DEGs) were identified in hBMECs exposed to NM and MafA, respectively. Gene ontology analysis of the DEGs revealed that several biological processes, which may alter the permeability of BBB, were activated. Comparative analysis of DEGs revealed that MafA, alike NM, might provoke TLR-dependent pathway and augment cytokine response. Moreover, both MafA and NM were able to induce genes involved in cell surface modifications, endocytosis, extracellular matrix remodulation and anoikis/apoptosis. In conclusion, this study for the first time describes effect of NM on the global gene expression in hBMECs using high-throughput RNA-seq. It also presents ability of MafA to induce gene expression, which might aid NM in breaching the BBB.
Collapse
Affiliation(s)
- Evelína Káňová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Monika Drážovská
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Punit Tyagi
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia. .,Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia.
| |
Collapse
|
8
|
Kánová E, Jiménez-Munguía I, Majerová P, Tkáčová Z, Bhide K, Mertinková P, Pulzová L, Kováč A, Bhide M. Deciphering the Interactome of Neisseria meningitidis With Human Brain Microvascular Endothelial Cells. Front Microbiol 2018; 9:2294. [PMID: 30319591 PMCID: PMC6168680 DOI: 10.3389/fmicb.2018.02294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis is able to translocate the blood-brain barrier and cause meningitis. Bacterial translocation is a crucial step in the onset of neuroinvasion that involves interactions between pathogen surface proteins and host cells receptors. In this study, we applied a systematic workflow to recover and identify proteins of N. meningitidis that may interact with human brain microvascular endothelial cells (hBMECs). Biotinylated proteome of N. meningitidis was incubated with hBMECs, interacting proteins were recovered by affinity purification and identified by SWATH-MS. Interactome of N. meningitidis comprised of 41 potentially surface exposed proteins. These were assigned into groups based on their probability to interact with hBMECs: high priority candidates (21 outer membrane proteins), medium priority candidates (14 inner membrane proteins) and low priority candidates (six secretory proteins). Ontology analysis provided information for 17 out of 41 surface proteins. Based on the series of bioinformatic analyses and literature review, five surface proteins (adhesin MafA1, major outer membrane protein P.IB, putative adhesin/invasion, putative lipoprotein and membrane lipoprotein) were selected and their recombinant forms were produced for experimental validation of interaction with hBMECs by ELISA and immunocytochemistry. All candidates showed interaction with hBMECs. In this study, we present a high-throughput approach to generate a dataset of plausible meningococcal ligands followed by systematic bioinformatic pipeline to categorize the proteins for experimental validation.
Collapse
Affiliation(s)
- Evelína Kánová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Lucia Pulzová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
9
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
10
|
Abstract
Adjunctive therapies have been proposed for use in at least 5 inflammation pathobiology phenotypes in pediatric sepsis-induced multiple organ failure. This article discusses host-pathogen interaction prototypes to facilitate understanding of the rationale for personalized therapy in these phenotypes. The article discusses the literature on adjunctive antiinflammatory and immune modulation therapies that, in addition to traditional organ support and infection source control, might be part of a personalized precision medicine approach to the reversal of each of these inflammatory pathobiology phenotypes.
Collapse
|
11
|
Implications of Neuroinvasive Bacterial Peptides on Rodents Behaviour and Neurotransmission. Pathogens 2017; 6:pathogens6030027. [PMID: 28671588 PMCID: PMC5617984 DOI: 10.3390/pathogens6030027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/06/2017] [Accepted: 06/10/2017] [Indexed: 01/09/2023] Open
Abstract
Neuroinvasive microbes are capable of applying their influences on the autonomic nervous system (ANS) of the host followed by the involvement of central nervous system (CNS) by releasing extracellular metabolites that may cause alterations in the biochemical and neurophysiological environment. Consequently synaptic, neuroendocrine, peripheral immune, neuro-immune, and behavioural responses of the host facilitate the progression of infection. The present study was designed to extrapolate the effects of crude and purified extracellular peptides of neuropathogenic bacteria on behavioural responses and neurotransmission of Sprague Dawley (SD) models. Listeria monocytogenes (Lm) and Neisseria meningitides (Nm) were isolated from the 92 cerebrospinal fluid (CSF) samples collected from mentally compromised patients. Bacillus cereus (Bc) and Clostridium tetani (Ct) were also included in the study. All bacterial strains were identified by the standard biochemical procedures. Filter sterilized cell free cultural broths (SCFBs) were prepared of different culture media. Behavioural study and neurotransmitter analysis were performed by giving an intraperitoneal (i.p.) injection of each bacterial SCFB to four groups (Test; n = 7) of SD rats, whereas two groups each (Control; n = 7) received a nutrient broth (NB) control and sterile physiological saline control, respectively. Extracellular bioactive peptides of these bacteria were screened and purified. All experiments were repeated using purified bacterial peptides on SD rat cohorts. Our study indicated promising behavioural changes, including fever, swelling, and hind paw paralysis, in SD rat cohorts. Purified bacterial peptides of all bacteria used in the present study elicited marked changes in behaviour through the involvement of the autonomic nervous system. Furthermore, these peptides of meningitis bacteria were found to potently affect the dopaminergic neurotransmission in CNS.
Collapse
|
12
|
Han JX, Ng GZ, Cecchini P, Chionh YT, Saeed MA, Næss LM, Joachim M, Blandford LE, Strugnell RA, Colaco CA, Sutton P. Heat shock protein complex vaccines induce antibodies against Neisseria meningitidis via a MyD88-independent mechanism. Vaccine 2016; 34:1704-11. [DOI: 10.1016/j.vaccine.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/14/2016] [Accepted: 02/02/2016] [Indexed: 12/17/2022]
|
13
|
Islam ST, Mignot T. The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus. Semin Cell Dev Biol 2015; 46:143-54. [PMID: 26520023 DOI: 10.1016/j.semcdb.2015.10.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022]
Abstract
Motility of bacterial cells promotes a range of important physiological phenomena such as nutrient detection, harm avoidance, biofilm formation, and pathogenesis. While much research has been devoted to the mechanism of bacterial swimming in liquid via rotation of flagellar filaments, the mechanisms of bacterial translocation across solid surfaces are poorly understood, particularly when cells lack external appendages such as rotary flagella and/or retractile type IV pili. Under such limitations, diverse bacteria at the single-cell level are still able to "glide" across solid surfaces, exhibiting smooth translocation of the cell along its long axis. Though multiple gliding mechanisms have evolved in different bacterial classes, most remain poorly characterized. One exception is the gliding motility mechanism used by the Gram-negative social predatory bacterium Myxococcus xanthus. The available body of research suggests that M. xanthus gliding motility is mediated by trafficked multi-protein (Glt) cell envelope complexes, powered by proton-driven flagellar stator homologues (Agl). Through coupling to the substratum via polysaccharide slime, Agl-Glt assemblies can become fixed relative to the substratum, forming a focal adhesion site. Continued directional transport of slime-associated substratum-fixed Agl-Glt complexes would result in smooth forward movement of the cell. In this review, we have provided a comprehensive synthesis of the latest mechanistic and structural data for focal adhesion-mediated gliding motility in M. xanthus, with emphasis on the role of each Agl and Glt protein. Finally, we have also highlighted the possible connection between the motility complex and a new type of spore coat assembly system, suggesting that gliding and cell envelope synthetic complexes are evolutionarily linked.
Collapse
Affiliation(s)
- Salim T Islam
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique (CNRS) UMR7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13009 Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique (CNRS) UMR7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
14
|
Abstract
In the context of host-pathogen interaction, host cell receptors and signaling pathways are essential for both invading pathogens, which exploit them for their own profit, and the defending organism, which activates early mechanism of defense, known as innate immunity, to block the aggression. Because of their central role as scaffolding proteins downstream of activated receptors, β-arrestins are involved in multiple signaling pathways activated in host cells by pathogens. Some of these pathways participate in the innate immunity and the inflammatory response. Other β-arrestin-dependent pathways are actually hijacked by microbes and toxins to penetrate into host cells and spread in the organism.
Collapse
|
15
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|