1
|
Warecki B, Vega G, Fowler S, Hartzog G, Karr TL, Sullivan W. Wolbachia-mediated reduction in the glutamate receptor mGluR promotes female promiscuity and bacterial spread. Cell Rep 2025:115629. [PMID: 40347951 DOI: 10.1016/j.celrep.2025.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
The molecular mechanisms by which parasites mediate host behavioral changes remain largely unexplored. Here, we examine Drosophila melanogaster infected with Wolbachia, a symbiont transmitted through the maternal germline, and find Wolbachia infection increases female receptivity to male courtship and hybrid mating. Wolbachia colonize regions of the brain that control sense perception and behavior. Quantitative global proteomics identify 177 differentially abundant proteins in infected female larval brains. Genetic alteration of the levels of three of these proteins in adults, the metabotropic glutamate receptor mGluR, the transcription factor TfAP-2, and the odorant binding protein Obp99b, each mimic the effect of Wolbachia on female receptivity. Furthermore, >700 Wolbachia proteins are detected in infected brains. Through abundance and molecular modeling analyses, we distinguish several Wolbachia-produced proteins as potential effectors. These results identify potential networks of host and Wolbachia proteins that modify behavior to promote mating success and aid the spread of Wolbachia.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Giovanni Vega
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sommer Fowler
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Grant Hartzog
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Timothy L Karr
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Boothman SM, Preston S, Minden J. Wolbachia infection confers post-translational modification of glutamic acid decarboxylase and other proteins in D. melanogaster. Microbiol Spectr 2025:e0246524. [PMID: 40293253 DOI: 10.1128/spectrum.02465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Wolbachia pipientis is a ubiquitous intracellular bacterium that is known for its manipulation of reproduction in arthropod hosts. Wolbachia has also been shown to colonize virtually all somatic tissues, including the brain, but little is known about the interaction between host and bacterium in these locations. To this end, we studied the effects of Wolbachia infection on the brain of Drosophila melanogaster. Using comparative proteomics, we uncovered the post-translational modification of many proteins within the Drosophila head and body upon infection, with glutamic acid decarboxylase being modified within the head only. Given this enzyme's role in neurotransmitter synthesis, we next tested how Wolbachia infection impacts host behaviors and gamma aminobutyric acid (GABA) production within Drosophila. We discovered an improved response to yeast odors in Wolbachia-infected, mated females compared with their uninfected counterparts. Gross measurements of GABA in whole brains showed no detectable change in GABA abundance upon infection. Treatments with a GABA antagonist indicated that the behavioral change was not GABA-dependent, leaving the mechanism behind Wolbachia-mediated changes in behavior obscure. Given the multiple protein changes in the Drosophila head upon infection, we propose a model in which Wolbachia drives the modification of glutamic acid decarboxylase and several metabolic proteins to increase survival in the specialized niche of the brain. These results give rise to new questions about the Wolbachia-Drosophila relationship, and future work will focus on the mechanism through which Wolbachia confers these protein changes.IMPORTANCEIn order to fully understand the biology of an organism, we must understand its interactions with its resident microbes. Wolbachia is commonly used to study such interactions, but the molecular interactions this bacterium has with its hosts are not well understood, especially within somatic tissues. Here, we address this knowledge gap by characterizing the changes in host proteins within Drosophila melanogaster upon Wolbachia infection. Our results provide the first description of post-translational modifications induced by Wolbachia infection within a host, unveiling a new level of regulation in the Wolbachia-host relationship. The modification of glutamic acid decarboxylase within the Drosophila head was not shown to be connected to changes in GABA production or host behavior, indicating another role for this enzyme during Wolbachia infection within the brain. Altogether, these results provide more information about Wolbachia's infection of somatic tissue and spark new inquiries into the host-bacterium relationship.
Collapse
Affiliation(s)
- Sarah M Boothman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Sarah Preston
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jonathan Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Tourani AH, Katlav A, Cook JM, Riegler M. Mating receptivity mediated by endosymbiont interactions in a haplodiploid thrips species. Proc Biol Sci 2024; 291:20241564. [PMID: 39471850 PMCID: PMC11521595 DOI: 10.1098/rspb.2024.1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 09/24/2024] [Indexed: 11/01/2024] Open
Abstract
Many arthropods carry maternally inherited endosymbionts that cause cytoplasmic incompatibility (CI), manifested as embryonic mortality in matings of infected males with uninfected females. Infected females, however, do not suffer this cost. Therefore, in populations with mixed endosymbiont infections, selection is expected to favour mechanisms that enable hosts to avoid or mitigate CI. This may include changes in mating behaviour, such as reduced female receptivity to mating and/or remating when approached by incompatible males. Here, we investigated mating behavioural traits in haplodiploid thrips naturally associated with two CI-inducing endosymbionts, Cardinium and Wolbachia. Compared with females with both endosymbionts, those with only Cardinium showed reduced receptivity to males carrying both. However, surprisingly, females without endosymbionts were not less receptive to incompatible males. Furthermore, in contrast to females without endosymbionts, females with Cardinium were far less likely to remate with incompatible than compatible males irrespective of the compatibility type of the first mating. Our results suggest that endosymbiont-specific sexual selection processes occur, whereby females carrying only Cardinium recognize Wolbachia in coinfected males to avoid CI. This may hinder a CI-driven Wolbachia spread. Endosymbiont-mediated mating behaviours may be crucial for the dynamics of CI-inducing endosymbionts and their application in pest management strategies.
Collapse
Affiliation(s)
- Amir H. Tourani
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales2751, Australia
| | - Alihan Katlav
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales2751, Australia
| | - James M. Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales2751, Australia
| |
Collapse
|
4
|
Wang X, Huangfu N, Chen L, Zhang K, Li D, Gao X, Li B, Wang L, Zhu X, Ji J, Luo J, Cui J. Effects of developmental stages, sex difference, and diet types of the host marmalade hoverfly ( Episyrphus balteatus) on symbiotic bacteria. Front Microbiol 2024; 15:1433909. [PMID: 39296285 PMCID: PMC11408942 DOI: 10.3389/fmicb.2024.1433909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Symbiotic bacteria play key roles in a variety of important life processes of insects such as development, reproduction and environmental adaptation, and the elucidation of symbiont population structure and dynamics is crucial for revealing the underlying regulatory mechanisms. The marmalade hoverfly (Episyrphus balteatus) is not only a remarkable aphid predator, but also a worldwide pollinator second to honeybees. However, its symbiont composition and dynamics remain unclear. Methods Herein, we investigate the symbiotic bacterial dynamics in marmalade hoverfly throughout whole life cycle, across two sexes, and in its prey Megoura crassicauda by 16S rRNA sequencing. Results In general, the dominant phyla were Proteobacteria and Firmicutes, and the dominant genera were Serratia and Wolbachia. Serratia mainly existed in the larval stage of hoverfly with the highest relative abundance of 86.24% in the 1st instar larvae. Wolbachia was found in adults and eggs with the highest relative abundance of 62.80% in eggs. Significant difference in species diversity was observed between the adults feeding on pollen and larvae feeding on M. crassicauda, in which the dominant symbiotic bacteria were Asaia and Serratia, respectively. However, between two sexes, the symbionts exhibited high similarity in species composition. In addition, our results suggested that E. balteatus obtainded Serratia mainly through horizontal transmission by feeding on prey aphids, whereas it acquired Wolbachia mainly through intergeneration vertical transmission. Taken together, our study revealed the effects of development stages, diet types and genders of E. balteatus on symbionts, and explored transmission modes of dominant bacteria Serratia and Wolbachia. Discussion Our findings lay a foundation for further studying the roles of symbiotic bacteria in E. balteatus life cycle, which will benefit for revealing the co-adaptation mechanisms of insects and symbiotic bacteria.
Collapse
Affiliation(s)
- Xiaoyun Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ningbo Huangfu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lulu Chen
- Xinjiang Tianyu Agricultural Science Modern Agricultural Industrialization Development Co., Ltd., Xinjiang, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongyang Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xueke Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bingbing Li
- Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Li Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jichao Ji
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Junyu Luo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Serbus LR. A Light in the Dark: Uncovering Wolbachia-Host Interactions Using Fluorescence Imaging. Methods Mol Biol 2024; 2739:349-373. [PMID: 38006562 DOI: 10.1007/978-1-0716-3553-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The success of microbial endosymbionts, which reside naturally within a eukaryotic "host" organism, requires effective microbial interaction with, and manipulation of, the host cells. Fluorescence microscopy has played a key role in elucidating the molecular mechanisms of endosymbiosis. For 30 years, fluorescence analyses have been a cornerstone in studies of endosymbiotic Wolbachia bacteria, focused on host colonization, maternal transmission, reproductive parasitism, horizontal gene transfer, viral suppression, and metabolic interactions in arthropods and nematodes. Fluorescence-based studies stand to continue informing Wolbachia-host interactions in increasingly detailed and innovative ways.
Collapse
Affiliation(s)
- Laura Renee Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
6
|
Abstract
Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.
Collapse
Affiliation(s)
- Jillian Porter
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
7
|
Riparbelli MG, Pratelli A, Callaini G. Wolbachia Induces Structural Defects Harmful to Drosophila simulans Riverside Spermiogenesis. Cells 2023; 12:2337. [PMID: 37830551 PMCID: PMC10571642 DOI: 10.3390/cells12192337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
The relationship between cytoplasmic incompatibility and the obligate intracellular alphaproteobacteria Wolbachia has for a long time been reported. Although the molecular mechanisms responsible for this reproductive alteration are beginning to be understood, the effects of Wolbachia on germ cell structure and dynamics have not yet been fully investigated. We report here that the presence of Wolbachia in infected cysts of elongating spermatids is associated with major structural defects that become more evident in mature sperm. We find mitochondrial defects, an improper axoneme structure, reduced sperm numbers, and individualization failures. The large heterogeneous variety of the ultrastructural defects found in elongating spermatids and mature sperm provide the first cytological evidence for the reduced fertility associated with Wolbachia infection in Drosophila simulans males. The observed abnormalities could be the result of the mechanical stress induced by the high bacteria numbers during the process of spermatid elongation, rather than the result of the released factors affecting the proper morphogenesis of the germ cells. Moreover, high Wolbachia densities in male germ cells may not be appropriate for causing cytoplasmic incompatibility as the bacteria are harmful for spermatid differentiation, leading to abnormal sperm that is unlikely to be functional.
Collapse
Affiliation(s)
| | | | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (A.P.)
| |
Collapse
|
8
|
Ajayi OM, Wynne NE, Chen SC, Vinauger C, Benoit JB. Sleep: An Essential and Understudied Process in the Biology of Blood-Feeding Arthropods. Integr Comp Biol 2023; 63:530-547. [PMID: 37429615 PMCID: PMC10503478 DOI: 10.1093/icb/icad097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Understanding the biology of blood-feeding arthropods is critical to managing them as vectors of etiological agents. Circadian rhythms act in the regulation of behavioral and physiological aspects such as blood feeding, immunity, and reproduction. However, the impact of sleep on these processes has been largely ignored in blood-feeding arthropods, but recent studies in mosquitoes show that sleep-like states directly impact host landing and blood feeding. Our focus in this review is on discussing the relationship between sleep and circadian rhythms in blood-feeding arthropods along with how unique aspects such as blood gluttony and dormancy can impact sleep-like states. We highlight that sleep-like states are likely to have profound impacts on vector-host interactions but will vary between lineages even though few direct studies have been conducted. A myriad of factors, such as artificial light, could directly impact the time and levels of sleep in blood-feeding arthropods and their roles as vectors. Lastly, we discuss underlying factors that make sleep studies in blood-feeding arthropods difficult and how these can be bypassed. As sleep is a critical factor in the fitness of animal systems, a lack of focus on sleep in blood-feeding arthropods represents a significant oversight in understanding their behavior and its role in pathogen transmission.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
9
|
Zhou JC, Shang D, Liu SM, Zhang C, Huo LX, Zhang LS, Dong H. Wolbachia-infected Trichogramma dendrolimi is outcompeted by its uninfected counterpart in superparasitism but does not have developmental delay. PEST MANAGEMENT SCIENCE 2023; 79:1005-1017. [PMID: 36317957 DOI: 10.1002/ps.7269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/25/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Wolbachia infection increases the superparasitism frequency of Trichogramma females and provides an opportunity for horizontal intraspecific transmission. However, superparasitism may lead to interstrain competition between Wolbachia-infected Trichogramma offspring and their uninfected counterparts. This study investigated the outcome of interstrain intrinsic competition between Wolbachia-infected thelytokous strain (W) and uninfected bisexual strain (B) of Trichogramma dendrolimi. To determine the developmental rate of both strains, the sizes of immature stages of T. dendrolimi offspring at different times after parasitisation were measured in single parasitism and superparasitism conditions. RESULTS The results reflect increased superparasitism by Wolbachia-infected females compared with uninfected females. Trichogramma females did not discriminate between host eggs previously parasitised by either B or W females. When the first oviposition was performed by B females, the B offspring outcompeted W offspring deposited later. Although when W offspring was deposited 8 h earlier than the B offspring, it gained no advantage over B offspring. Regardless of parasitism conditions, differences in the development rate between W and B offspring were not significant. CONCLUSION The results reconfirmed that W females presented a higher tendency for superparasitism than B females, and showed that B offspring outcompeted W offspring even when the latter was deposited 8 h earlier. The inferiority of Wolbachia-infected Trichogramma compared with their uninfected counterparts is not due to the developmental delay. This study provides insights into the effects of intrinsic competition on the control efficacy of Wolbachia-infected Trichogramma against pests in biological control programs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Cheng Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, People's Republic of China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Dan Shang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Shi-Meng Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Chen Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Liang-Xiao Huo
- College of Plant Protection, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Li-Sheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Hui Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, People's Republic of China
| |
Collapse
|
10
|
Wolbachia-Driven Memory Loss in a Parasitic Wasp Increases Superparasitism to Enhance Horizontal Transmission. mBio 2022; 13:e0236222. [PMID: 36214563 PMCID: PMC9765423 DOI: 10.1128/mbio.02362-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal transmission of the endosymbiont, Wolbachia, may occur during superparasitism when parasitoid females deposit a second clutch of eggs on a host. Wolbachia may increase the superparasitism tendency of Trichogramma wasps by depriving their memory. To test this hypothesis, we investigated the effects of conditioning experience and memory inhibitors (actinomycin D [ACD] and anisomycin [ANI]) on memory capacity, and expressions of memory-related genes (CREB1 and PKA), and superparasitism frequency of Wolbachia-infected (TDW) and uninfected (TD) lines of Trichogramma dendrolimi after conditioning with lemon or peppermint odor. We detected the presence of Wolbachia in eggs, larvae, pre-pupae, pupae, and adults of Trichogramma by using fluorescence in situ hybridization. The results showed that TDW females had a more reduced memory capacity than TD females after conditioning. Compared with TD females, TDW females showed a higher proportion of superparasitism and a downregulation of CREB1 and PKA genes after conditioning. TD females fed ACD or ANI showed a higher tendency for superparasitism and a downregulation of CREB1 and PKA, along with memory loss after conditioning than TD females fed honey solution only. The presence of Wolbachia was detected in the anterior region of the larva, pre-pupa, and pupa, but was not found in the head of the adult. The results provide evidence of host behavioral manipulation of Wolbachia by depriving memory of host Trichogramma wasps based on Poulin' s criteria. These host behavioral changes led by Wolbachia may be caused by the virulence of Wolbachia on the nervous system of the host. IMPORTANCE The endosymbiotic bacteria, Wolbachia, live widely within cells of arthropods. Wolbachia are not only transmitted vertically from host mother to offspring, but are also transmitted horizontally among host individuals. Horizontal transmission is expected to occur during superparasitism when host parasitoid females deposit a clutch of eggs on a host previously parasitized by the same parasitoid species. Thus, a question is proposed regarding whether superparasitism behavior is a behavior modification induced by the symbiont to favor symbiont transmission. This study highlights behavioral mechanisms of Wolbachia-induced superparasitism in Trichogramma wasps and the manipulation of symbionts on host parasitoids.
Collapse
|
11
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
12
|
Strunov A, Schmidt K, Kapun M, Miller WJ. Restriction of Wolbachia Bacteria in Early Embryogenesis of Neotropical Drosophila Species via Endoplasmic Reticulum-Mediated Autophagy. mBio 2022; 13:e0386321. [PMID: 35357208 PMCID: PMC9040723 DOI: 10.1128/mbio.03863-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 01/20/2023] Open
Abstract
Wolbachia are maternally transmitted intracellular bacteria that are not only restricted to the reproductive organs but also found in various somatic tissues of their native hosts. The abundance of the endosymbiont in the soma, usually a dead end for vertically transmitted bacteria, causes a multitude of effects on life history traits of their hosts, which are still not well understood. Thus, deciphering the host-symbiont interactions on a cellular level throughout a host's life cycle is of great importance to understand their homeostatic nature, persistence, and spreading success. Using fluorescent and transmission electron microscopy, we conducted a comprehensive analysis of Wolbachia tropism in soma and germ line of six Drosophila species at the intracellular level during host development. Our data uncovered diagnostic patterns of infections to embryonic primordial germ cells and to particular cells of the soma in three different neotropical Drosophila species that have apparently evolved independently. We further found that restricted patterns of Wolbachia tropism are determined in early embryogenesis via selective autophagy, and their spatially restricted infection patterns are preserved in adult flies. We observed tight interactions of Wolbachia with membranes of the endoplasmic reticulum, which might play a scaffolding role for autophagosome formation and subsequent elimination of the endosymbiont. Finally, by analyzing D. simulans lines transinfected with nonnative Wolbachia, we uncovered that the host genetic background regulates tissue tropism of infection. Our data demonstrate a novel and peculiar mechanism to limit and spatially restrict bacterial infection in the soma during a very early stage of host development. IMPORTANCE All organisms are living in close and intimate interactions with microbes that cause conflicts but also cooperation between both unequal genetic partners due to their different innate interests of primarily enhancing their own fitness. However, stable symbioses often result in homeostatic interaction, named mutualism, by balancing costs and benefits, where both partners profit. Mechanisms that have evolved to balance and stably maintain homeostasis in mutualistic relationships are still quite understudied; one strategy is to "domesticate" potentially beneficial symbionts by actively controlling their replication rate below a critical and, hence, costly threshold, and/or to spatially and temporally restrict their localization in the host organism, which, in the latter case, in its most extreme form, is the formation of a specialized housing organ for the microbe (bacteriome). However, questions remain: how do these mutualistic associations become established in their first place, and what are the mechanisms for symbiont control and restriction in their early stages? Here, we have uncovered an unprecedented symbiont control mechanism in neotropical Drosophila species during early embryogenesis. The fruit fly evolved selective autophagy to restrict and control the proliferation of its intracellular endosymbiont Wolbachia in a defined subset of the stem cells as soon as the host's zygotic genome is activated.
Collapse
Affiliation(s)
- Anton Strunov
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Katy Schmidt
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum Vienna, Vienna, Austria
| | - Wolfgang J. Miller
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Ponce GE, Fuse M, Chan A, Connor EF. The Localization of Phytohormones within the Gall-inducing Insect Eurosta solidaginis (Diptera: Tephritidae). ARTHROPOD-PLANT INTERACTIONS 2021; 15:375-385. [PMID: 34149963 PMCID: PMC8211092 DOI: 10.1007/s11829-021-09817-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The phytohormone production hypothesis suggests that organisms, including insects, induce galls by producing and secreting plant growth hormones. Auxins and cytokinins are classes of phytohormones that induce cell growth and cell division, which could contribute to the plant tissue proliferation which constitutes the covering gall. Bacteria, symbiotic with insects, may also play a part in gall induction by insects through the synthesis of phytohormones or other effectors. Past studies have shown that concentrations of cytokinins and auxins in gall-inducing insects are higher than in their host plants. However, these analyses have involved whole-body extractions. Using immunolocalization of cytokinin and auxin, in the gall inducing stage of Eurosta solidaginis, we found both phytohormones to localize almost exclusively to the salivary glands. Co-localization of phytohormone label with a nucleic acid stain in the salivary glands revealed the absence of Wolbachia sp., the bacterial symbiont of E. solidaginis, which suggests that phytohormone production is symbiont independent. Our findings are consistent with the hypothesis that phytohormones are synthesized in and secreted from the salivary glands of E. solidaginis into host-plant tissues for the purpose of manipulating the host plant.
Collapse
Affiliation(s)
- Gabriela E Ponce
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA USA 94132
| | - Megumi Fuse
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA USA 94132
| | - Annette Chan
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA USA 94132
| | - Edward F Connor
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA USA 94132
| |
Collapse
|
14
|
Hague MTJ, Woods HA, Cooper BS. Pervasive effects of Wolbachia on host activity. Biol Lett 2021; 17:20210052. [PMID: 33947218 PMCID: PMC8097217 DOI: 10.1098/rsbl.2021.0052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Heritable symbionts have diverse effects on the physiology, reproduction and fitness of their hosts. Maternally transmitted Wolbachia are one of the most common endosymbionts in nature, infecting about half of all insect species. We test the hypothesis that Wolbachia alter host behaviour by assessing the effects of 14 different Wolbachia strains on the locomotor activity of nine Drosophila host species. We find that Wolbachia alter the activity of six different host genotypes, including all hosts in our assay infected with wRi-like Wolbachia strains (wRi, wSuz and wAur), which have rapidly spread among Drosophila species in about the last 14 000 years. While Wolbachia effects on host activity were common, the direction of these effects varied unpredictably and sometimes depended on host sex. We hypothesize that the prominent effects of wRi-like Wolbachia may be explained by patterns of Wolbachia titre and localization within host somatic tissues, particularly in the central nervous system. Our findings support the view that Wolbachia have wide-ranging effects on host behaviour. The fitness consequences of these behavioural modifications are important for understanding the evolution of host-symbiont interactions, including how Wolbachia spread within host populations.
Collapse
Affiliation(s)
- Michael T. J. Hague
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| |
Collapse
|
15
|
Mangold CA, Hughes DP. Insect Behavioral Change and the Potential Contributions of Neuroinflammation-A Call for Future Research. Genes (Basel) 2021; 12:465. [PMID: 33805190 PMCID: PMC8064348 DOI: 10.3390/genes12040465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022] Open
Abstract
Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communication on host behavior and reflect on its potential role as an important tool in the "neuro-engineer" toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune communication. We close by identifying opportunities for integrating research in insect innate immunity, glial cell physiology, and neurobiology in the investigation of behavioral manipulation.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - David P. Hughes
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
16
|
Abrun P, Ashouri A, Duplouy A, Farahani HK. Wolbachia impairs post-eclosion host preference in a parasitoid wasp. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2021; 108:13. [PMID: 33760987 DOI: 10.1007/s00114-021-01727-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
Abstract
Host preference behavior can result in adaptive advantages with important consequences for the fitness of individuals. Hopkin's host-selection principle (HHSP) suggests that organisms at higher trophic levels demonstrate a preference for the host species on which they developed during their own larval stage. Although investigated in many herbivorous and predatory insects, the HHSP has, to our knowledge, never been tested in the context of insects hosting selfish endosymbiotic passengers. Here, we investigated the effect of infection with the facultative bacterial symbiont Wolbachia on post-eclosion host preference in the parasitoid wasp Trichogramma brassicae (Hymenoptera: Trichogrammatidae). We compared host preference in Wolbachia-infected individuals and uninfected adult female parasitoids after rearing them on two different Lepidopteran hosts, namely the flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) or the grain moth Sitotroga cerealella (Lepidoptera: Gelechiidae) in choice and no choice experimental design (n = 120 wasps per each choice/no choice experiments). We showed that in T. brassicae, Wolbachia affects the post-eclosion host preference of female wasps. Wolbachia-infected wasps did not show any host preference and more frequently switched hosts in the laboratory, while uninfected wasps significantly preferred to lay eggs on the host species they developed on. Additionally, Wolbachia significantly improved the emergence rate of infected wasps when reared on new hosts. Altogether, our results revealed that the wasp's infection with Wolbachia may lead to impairment of post-eclosion host preference and facilitates growing up on different host species. The impairment of host preference by Wolbachia may allow T. brassicae to shift between hosts, a behavior that might have important evolutionary consequences for the wasp and its symbiont.
Collapse
Affiliation(s)
- Pouria Abrun
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ashouri
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Anne Duplouy
- Department of Biology, Lund University, Lund, Sweden.,Organismal and Evolutionary Biology Research Program, The University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
17
|
Currin-Ross D, Husdell L, Pierens GK, Mok NE, O'Neill SL, Schirra HJ, Brownlie JC. The Metabolic Response to Infection With Wolbachia Implicates the Insulin/Insulin-Like-Growth Factor and Hypoxia Signaling Pathways in Drosophila melanogaster. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.623561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The endosymbiotic bacteria, Wolbachia, are best known for their ability to manipulate insect-host reproduction systems that enhance their vertical transmission within host populations. Increasingly, Wolbachia have been shown to depend on their hosts' metabolism for survival and in turn provision metabolites to their host. Wolbachia depends completely on the host for iron and as such iron has been speculated to be a fundamental aspect of Wolbachia-host interplay. However, the mechanisms by which dietary iron levels, Wolbachia, and its host interact remain to be elucidated. To understand the metabolic dependence of Wolbachia on its host, the possibility of metabolic provisioning and extraction, and the interplay with available dietary iron, we have used NMR-based metabolomics and compared metabolite profiles of Wolbachia-infected and uninfected Drosophila melanogaster flies raised on varying levels of dietary iron. We observed marked metabolite differences in the affected metabolite pathways between Wolbachia-infected and uninfected Drosophila, which were dependent on the dietary iron levels. Excess iron led to lipid accumulation, whereas iron deficiency led to changes in carbohydrate levels. This represents a major metabolic shift triggered by alterations in iron levels. Lipids, some amino acids, carboxylic acids, and nucleosides were the major metabolites altered by infection. The metabolic response to infection showed a reprogramming of the mitochondrial metabolism in the host. Based on these observations, we developed a physiological model which postulates that the host's insulin/insulin-like-growth factor pathway is depressed and the hypoxia signaling pathway is activated upon Wolbachia infection. This reprogramming leads to predominantly non-oxidative metabolism in the host, whereas Wolbachia maintains oxidative metabolism. Our data also support earlier predictions of the extraction of alanine from the host while provisioning riboflavin and ATP to the host.
Collapse
|
18
|
Bacterial Composition and Diversity of the Digestive Tract of Odontomachus monticola Emery and Ectomomyrmex javanus Mayr. INSECTS 2021; 12:insects12020176. [PMID: 33671250 PMCID: PMC7922086 DOI: 10.3390/insects12020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary Bacteria are considered to be one of the compelling participants in ant dietary differentiation. The digestive tract of ants is characterized by a developed crop, an elaborate proventriculus, and an infrabuccal pocket, which is a special filtrating structure in the mouthparts, adapting to their special trophallaxis behavior. Ponerine ants are true predators and a primitive ant group; notably, their gut bacterial communities get less attention than herbivorous ants. In this study, we investigated the composition and diversity of bacterial communities in the digestive tract and the infrabuccal pockets of two widely distributed ponerine species (Odontomachus monticola Emery and Ectomomyrmex javanus Mayr) in northwestern China using high-throughput sequencing of the bacterial 16S rRNA gene. The results revealed that, not only do the gut bacterial communities display significant interspecies differences, but they also possess apparent intercolony characteristics. Within each colony, the bacterial communities were highly similar between each gut section (crops, midguts, and hindguts) of workers, but significantly different from their infrabuccal pockets, which were similar to bacterial communities in larvae of O. monticola. The relationship of the bacterial communities among the infrabuccal pockets, gut sections and larvae provide meaningful information to understand the social life and feeding behavior of ants. Abstract Ponerine ants are generalist predators feeding on a variety of small arthropods, annelids, and isopods; however, knowledge of their bacterial communities is rather limited. This study investigated the bacterial composition and diversity in the digestive tract (different gut sections and the infrabuccal pockets (IBPs)) of two ponerine ant species (Odontomachus monticola Emery and Ectomomyrmex javanus Mayr) distributed in northwestern China using high-throughput sequencing. We found that several dominant bacteria that exist in other predatory ants were also detected in these two ponerine ant species, including Wolbachia, Mesoplasma, and Spiroplasma. Bacterial communities of these two ant species were differed significantly from each other, and significant differences were also observed across their colonies, showing distinctive inter-colony characteristics. Moreover, bacterial communities between the gut sections (crops, midguts, and hindguts) of workers were highly similar within colony, but they were clearly different from those in IBPs. Further, bacterial communities in the larvae of O. monticola were similar to those in the IBPs of workers, but significantly different from those in gut sections. We presume that the bacterial composition and diversity in ponerine ants are related to their social behavior and feeding habits, and bacterial communities in the IBPs may play a potential role in their social life.
Collapse
|
19
|
Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts. Results Probl Cell Differ 2021; 69:497-536. [PMID: 33263885 DOI: 10.1007/978-3-030-51849-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector.
Collapse
|
20
|
|
21
|
Tissue Tropisms and Transstadial Transmission of a Rickettsia Endosymbiont in the Highland Midge, Culicoides impunctatus (Diptera: Ceratopogonidae). Appl Environ Microbiol 2020; 86:AEM.01492-20. [PMID: 32801177 PMCID: PMC7531967 DOI: 10.1128/aem.01492-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/31/2020] [Indexed: 11/20/2022] Open
Abstract
Microbial symbionts of disease vectors have garnered recent attention due to their ability to alter vectorial capacity. Their consideration as a means of arbovirus control depends on symbiont vertical transmission, which leads to spread of the bacteria through a population. Previous work has identified a Rickettsia symbiont present in several species of biting midges (Culicoides spp.), which transmit bluetongue and Schmallenberg arboviruses. However, symbiont transmission strategies and host effects remain underexplored. In this study, we describe the presence of Rickettsia in the ovarian suspensory ligament of Culicoides impunctatus. Infection of this organ suggests the connective tissue surrounding developing eggs is important for ensuring vertical transmission of the symbiont in midges and possibly other insects. Additionally, our results indicate Rickettsia localization in the fat body of Culicoides impunctatus. As the arboviruses spread by midges often replicate in the fat body, this location implies possible symbiont-virus interactions to be further investigated. Rickettsia is a genus of intracellular bacteria which can manipulate host reproduction and alter sensitivity to natural enemy attack in a diverse range of arthropods. The maintenance of Rickettsia endosymbionts in insect populations can be achieved through both vertical and horizontal transmission routes. For example, the presence of the symbiont in the follicle cells and salivary glands of Bemisia whiteflies allows Belli group Rickettsia transmission via the germ line and plants, respectively. However, the transmission routes of other Rickettsia bacteria, such as those in the Torix group of the genus, remain underexplored. Through fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) screening, this study describes the pattern of Torix Rickettsia tissue tropisms in the highland midge, Culicoides impunctatus (Diptera: Ceratopogonidae). Of note is the high intensity of infection of the ovarian suspensory ligament, suggestive of a novel germ line targeting strategy. Additionally, localization of the symbiont in tissues of several developmental stages suggests transstadial transmission is a major route for ensuring maintenance of Rickettsia within C. impunctatus populations. Aside from providing insights into transmission strategies, the presence of Rickettsia bacteria in the fat body of larvae indicates potential host fitness and vector capacity impacts to be investigated in the future. IMPORTANCE Microbial symbionts of disease vectors have garnered recent attention due to their ability to alter vectorial capacity. Their consideration as a means of arbovirus control depends on symbiont vertical transmission, which leads to spread of the bacteria through a population. Previous work has identified a Rickettsia symbiont present in several species of biting midges (Culicoides spp.), which transmit bluetongue and Schmallenberg arboviruses. However, symbiont transmission strategies and host effects remain underexplored. In this study, we describe the presence of Rickettsia in the ovarian suspensory ligament of Culicoides impunctatus. Infection of this organ suggests the connective tissue surrounding developing eggs is important for ensuring vertical transmission of the symbiont in midges and possibly other insects. Additionally, our results indicate Rickettsia localization in the fat body of Culicoides impunctatus. As the arboviruses spread by midges often replicate in the fat body, this location implies possible symbiont-virus interactions to be further investigated.
Collapse
|
22
|
Bi J, Wang Y. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. INSECT SCIENCE 2020; 27:846-858. [PMID: 31631529 PMCID: PMC7496987 DOI: 10.1111/1744-7917.12731] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/25/2019] [Accepted: 09/10/2019] [Indexed: 05/10/2023]
Abstract
As one of the most successful intracellular symbiotic bacteria, Wolbachia can infect many arthropods and nematodes. Wolbachia infection usually affects the reproduction of their hosts to promote their own proliferation and transmission. Currently, most of the studies focus on the mechanisms of Wolbachia interactions with host reproduction. However, in addition to distribution in the reproductive tissues, Wolbachia also infect various somatic tissues of their hosts, including the brain. This raises the potential that Wolbachia may influence some somatic processes, such as behaviors in their hosts. So far, information about the effects of Wolbachia infection on host behavior is still very limited. The present review presents the current literature on different aspects of the influence of Wolbachia on various behaviors, including sleep, learning and memory, mating, feeding and aggression in their insect hosts. We then highlight ongoing scientific efforts in the field that need addressing to advance this field, which can have significant implications for further developing Wolbachia as environmentally friendly biocontrol agents to control insect-borne diseases and agricultural pests.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal UniversityWuhanChina
| | - Yu‐Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal UniversityWuhanChina
| |
Collapse
|
23
|
Diallo AB, Coiffard B, Leone M, Mezouar S, Mege JL. For Whom the Clock Ticks: Clinical Chronobiology for Infectious Diseases. Front Immunol 2020; 11:1457. [PMID: 32733482 PMCID: PMC7363845 DOI: 10.3389/fimmu.2020.01457] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
The host defense against pathogens varies among individuals. Among the factors influencing host response, those associated with circadian disruptions are emerging. These latter depend on molecular clocks, which control the two partners of host defense: microbes and immune system. There is some evidence that infections are closely related to circadian rhythms in terms of susceptibility, clinical presentation and severity. In this review, we overview what is known about circadian rhythms in infectious diseases and update the knowledge about circadian rhythms in immune system, pathogens and vectors. This heuristic approach opens a new fascinating field of time-based personalized treatment of infected patients.
Collapse
Affiliation(s)
- Aïssatou Bailo Diallo
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Benjamin Coiffard
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Univ, AP-HM, Hôpital Nord, Médecine Intensive-Réanimation, Marseille, France
| | - Marc Leone
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Univ, AP-HM, CHU Hôpital Nord, Service d'Anesthésie et de Réanimation, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,AP-HM, UF Immunologie, Marseille, France
| |
Collapse
|
24
|
Wedell N. Selfish genes and sexual selection: the impact of genomic parasites on host reproduction. J Zool (1987) 2020. [DOI: 10.1111/jzo.12780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- N. Wedell
- Biosciences University of Exeter, Penryn Campus Penryn UK
| |
Collapse
|
25
|
Conte CA, Segura DF, Milla FH, Augustinos A, Cladera JL, Bourtzis K, Lanzavecchia SB. Wolbachia infection in Argentinean populations of Anastrepha fraterculus sp1: preliminary evidence of sex ratio distortion by one of two strains. BMC Microbiol 2019; 19:289. [PMID: 31870290 PMCID: PMC6929328 DOI: 10.1186/s12866-019-1652-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Wolbachia, one of the most abundant taxa of intracellular Alphaproteobacteria, is widespread among arthropods and filarial nematodes. The presence of these maternally inherited bacteria is associated with modifications of host fitness, including a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, host feminization and male-killing. Wolbachia has attracted much interest for its role in biological, ecological and evolutionary processes as well as for its potential use in novel and environmentally-friendly strategies for the control of insect pests and disease vectors including a major agricultural pest, the South American fruit fly, Anastrepha fraterculus Wiedemann (Diptera: Tephritidae). Results We used wsp, 16S rRNA and a multilocus sequence typing (MLST) scheme including gatB, coxA, hcpA, fbpA, and ftsZ genes to detect and characterize the Wolbachia infection in laboratory strains and wild populations of A. fraterculus from Argentina. Wolbachia was found in all A. fraterculus individuals studied. Nucleotide sequences analysis of wsp gene allowed the identification of two Wolbachia nucleotide variants (named wAfraCast1_A and wAfraCast2_A). After the analysis of 76 individuals, a high prevalence of the wAfraCast2_A variant was found both, in laboratory (82%) and wild populations (95%). MLST analysis identified both Wolbachia genetic variants as sequence type 13. Phylogenetic analysis of concatenated MLST datasets clustered wAfraCast1/2_A in the supergroup A. Paired-crossing experiments among single infected laboratory strains showed a phenotype specifically associated to wAfraCast1_A that includes slight detrimental effects on larval survival, a female-biased sex ratio; suggesting the induction of male-killing phenomena, and a decreased proportion of females producing descendants that appears attributable to the lack of sperm in their spermathecae. Conclusions We detected and characterized at the molecular level two wsp gene sequence variants of Wolbachia both in laboratory and wild populations of A. fraterculus sp.1 from Argentina. Crossing experiments on singly-infected A. fraterculus strains showed evidence of a male killing-like mechanism potentially associated to the wAfraCast1_A - A. fraterculus interactions. Further mating experiments including antibiotic treatments and the analysis of early and late immature stages of descendants will contribute to our understanding of the phenotypes elicited by the Wolbachia variant wAfraCast1_A in A. fraterculus sp.1.
Collapse
Affiliation(s)
- Claudia Alejandra Conte
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Diego Fernando Segura
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT), Buenos Aires, Argentina
| | - Fabian Horacio Milla
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Antonios Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jorge Luis Cladera
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Silvia Beatriz Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Morón-Oset J, Supèr T, Esser J, Isaacs AM, Grönke S, Partridge L. Glycine-alanine dipeptide repeats spread rapidly in a repeat length- and age-dependent manner in the fly brain. Acta Neuropathol Commun 2019; 7:209. [PMID: 31843021 PMCID: PMC6916080 DOI: 10.1186/s40478-019-0860-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hexanucleotide repeat expansions of variable size in C9orf72 are the most prevalent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Sense and antisense transcripts of the expansions are translated by repeat-associated non-AUG translation into five dipeptide repeat proteins (DPRs). Of these, the polyGR, polyPR and, to a lesser extent, polyGA DPRs are neurotoxic, with polyGA the most abundantly detected DPR in patient tissue. Trans-cellular transmission of protein aggregates has recently emerged as a major driver of toxicity in various neurodegenerative diseases. In vitro evidence suggests that the C9 DPRs can spread. However, whether this phenomenon occurs under more complex in vivo conditions remains unexplored. Here, we used the adult fly brain to investigate whether the C9 DPRs can spread in vivo upon expression in a subset of neurons. We found that only polyGA can progressively spread throughout the brain, which accumulates in the shape of aggregate-like puncta inside recipient cells. Interestingly, GA transmission occurred as early as 3 days after expression induction. By comparing the spread of 36, 100 and 200 polyGA repeats, we found that polyGA spread is enhanced upon expression of longer GA DPRs. Transmission of polyGA is greater in older flies, indicating that age-associated factors exacerbate the spread. These data highlight a unique propensity of polyGA to spread throughout the brain, which could contribute to the greater abundance of polyGA in patient tissue. In addition, we present a model of early GA transmission that is suitable for genetic screens to identify mechanisms of spread and its consequences in vivo.
Collapse
|
27
|
Bi J, Zheng Y, Wang RF, Ai H, Haynes PR, Brownlie JC, Yu XQ, Wang YF. Wolbachia infection may improve learning and memory capacity of Drosophila by altering host gene expression through microRNA. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:47-54. [PMID: 30468769 DOI: 10.1016/j.ibmb.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Wolbachia are endosymbiotic bacteria present in a wide range of invertebrates. Although their dramatic effects on host reproductive biology have been well studied, little is known about the effects of Wolbachia on the learning and memory capacity (LMC) of hosts, despite their distribution in the host nervous system, including brain. In this study, we found that Wolbachia infection significantly enhanced LMC in both Drosophila melanogaster and D. simulans. Expression of LMC-related genes was significantly increased in the head of D. melanogaster infected with the wMel strain, and among these genes, crebA was up-regulated the most. Knockdown of crebA in Wolbachia-infected flies significantly decreased LMC, while overexpression of crebA in Wolbachia-free flies significantly enhanced the LMC of flies. More importantly, a microRNA (miRNA), dme-miR-92b, was identified to be complementary to the 3'UTR of crebA. Wolbachia infection was correlated with reduced expression of dme-miR-92b in D. melanogaster, and dme-miR-92b negatively regulated crebA through binding to its 3'UTR region. Overexpression of dme-miR-92b in Wolbachia-infected flies by microinjection of agomirs caused a significant decrease in crebA expression and LMC, while inhibition of dme-miR-92b in Wolbachia-free flies by microinjection of antagomirs resulted in a significant increase in crebA expression and LMC. These results suggest that Wolbachia may improve LMC in Drosophila by altering host gene expression through a miRNA-target pathway. Our findings help better understand the host-endosymbiont interactions and, in particular, the impact of Wolbachia on cognitive processes in invertebrate hosts.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Fang Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Paula R Haynes
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeremy C Brownlie
- School of Natural Science, Griffith University, Nathan, QLD 4111, Australia
| | - Xiao-Qiang Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China; School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
28
|
Nighttime activities and peripheral clock oscillations depend on Wolbachia endosymbionts in flies. Sci Rep 2018; 8:15432. [PMID: 30337547 PMCID: PMC6194088 DOI: 10.1038/s41598-018-33522-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Wolbachia are ubiquitous bacterial endosymbionts of arthropods and affect host gene expression. Although Wolbachia infections were suggested to modulate sleep in flies, their influence on the circadian clock remained obscure. Here, we screened bacterial symbionts in a laboratory Drosophila melanogaster colony, and observed widespread infections of wMel strain Wolbachia. We established a Wolbachia-free strain from a clock gene reporter strain, period-luciferase (per-luc). Temperature (19-29 °C)-compensated free-running periods were detected regardless of infections which may reflect the lack of wMel infections in central circadian pacemaker neurons. However, locomotor activity levels during the night or subjective night were significantly amplified in uninfected flies. Moreover, the behavioral phenotype of F1 offspring of an uninfected female and infected male resembled that of uninfected flies. This trait is consistent with maternal transmission of Wolbachia infection. Interestingly, per-luc activities in headless bodies, as an index of peripheral circadian oscillators, were severely damped in uninfected flies. Additionally, circadian amplitudes of PER immunoreactivities in Malpighian tubules were reduced in uninfected flies. These results demonstrate that Wolbachia boost fly peripheral clock oscillations and diurnal behavioral patterns. Genetic mechanisms underlying behavioral rhythms have been widely analyzed using mutant flies whereas screening of Wolbachia will be necessary for future studies.
Collapse
|
29
|
Liu QQ, Zhang TS, Li CX, Gu JW, Hou JB, Dong H. Decision-making in a bisexual line and a thelytokous Wolbachia-infected line of Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) regarding behavior toward their hosts. PEST MANAGEMENT SCIENCE 2018; 74:1720-1727. [PMID: 29363888 DOI: 10.1002/ps.4867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND The use of thelytokous Wolbachia-infected Trichogramma (parasitic wasps) has long been considered as a way to enhance the efficacy of biocontrol. However, Wolbachia can affect the host physiology. We compared decision-making between bisexual and thelytokous Wolbachia-infected lines of Trichogramma dendrolimi Matsumura regarding behavior toward fresh and old eggs of Corcyra cephalonica at 25 ± 1 °C and 70 ± 5% relative humidity. RESULTS The behavioral patterns and sequences of the two lines were basically the same. The durations of various behavioral patterns and values of fitness indicators of the bisexual line on fresh eggs were generally significantly shorter and better, respectively, than on old eggs, whereas the thelytokous line behaved similarly toward the two types of eggs, and differences in most fitness indicators between fresh and old eggs were not significant. On fresh eggs, the durations of various behaviors in the bisexual line were generally significantly shorter than in the thelytokous line and the fitness indicators were generally significantly better. CONCLUSION Wolbachia affected the fitness of T. dendrolimi negatively. The potential of the thelytokous line as a biocontrol agent would not be as good as that of the bisexual line when decision-making only is considered. Therefore, further evaluations need to be carried out before the thelytokous line can be used in practical biocontrol. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Quan-Quan Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Tong-Shu Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chun-Xue Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jun-Wen Gu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jie-Bin Hou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hui Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Bi J, Sehgal A, Williams JA, Wang YF. Wolbachia affects sleep behavior in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:81-88. [PMID: 29499213 DOI: 10.1016/j.jinsphys.2018.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Wolbachia are endosymbiotic bacteria present in a wide range of insects. Although their dramatic effects on host reproductive biology have been well studied, the effects of Wolbachia on sleep behavior of insect hosts are not well documented. In this study, we report that Wolbachia infection caused an increase of total sleep time in both male and female Drosophila melanogaster. The increase in sleep was associated with an increase in the number of nighttime sleep bouts or episodes, but not in sleep bout duration. Correspondingly, Wolbachia infection also reduced the arousal threshold of their fly hosts. However, neither circadian rhythm nor sleep rebound following deprivation was influenced by Wolbachia infection. Transcriptional analysis of the dopamine biosynthesis pathway revealed that two essential genes, Pale and Ddc, were significantly upregulated in Wolbachia-infected flies. Together, these results indicate that Wolbachia mediates the expression of dopamine related genes, and decreases the sleep quality of their insect hosts. Our findings help better understand the host-endosymbiont interactions and in particular the Wolbachia's impact on behaviors, and thus on ecology and evolution in insect hosts.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie A Williams
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
31
|
Abstract
Wolbachia, a maternally transmitted bacterium globally present in arthropods, favors its own transmission by producing dramatic changes in host reproduction. Insight into the underlying molecular and cellular mechanisms comes from the identification of the Wolbachia effector protein TomO, which maintains host germline stem cells in an undifferentiated state.
Collapse
Affiliation(s)
- William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95066, USA.
| |
Collapse
|
32
|
Kishani Farahani H, Ashouri A, Goldansaz SH, Shapiro MS, Pierre JS, van Baaren J. Decrease of memory retention in a parasitic wasp: an effect of host manipulation by Wolbachia? INSECT SCIENCE 2017; 24:569-583. [PMID: 27090067 DOI: 10.1111/1744-7917.12348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Several factors, such as cold exposure, aging, the number of experiences and viral infection, have been shown to affect learning ability in different organisms. Wolbachia has been found worldwide as an arthropod parasite/mutualist symbiont in a wide range of species, including insects. Differing effects have been identified on physiology and behavior by Wolbachia. However, the effect of Wolbachia infection on the learning ability of their host had never previously been studied. The current study carried out to compare learning ability and memory duration in 2 strains of the parasitoid Trichogramma brassicae: 1 uninfected and 1 infected by Wolbachia. Both strains were able to associate the novel odors with the reward of an oviposition into a host egg. However, the percentage of females that responded to the experimental design and displayed an ability to learn in these conditions was higher in the uninfected strain. Memory duration was longer in uninfected wasps (23.8 and 21.4 h after conditioning with peppermint and lemon, respectively) than in infected wasps (18.9 and 16.2 h after conditioning with peppermint and lemon, respectively). Memory retention increased in response to the number of conditioning sessions in both strains, but memory retention was always shorter in the infected wasps than in the uninfected ones. Wolbachia infection may select for reduced memory retention because shorter memory induces infected wasps to disperse in new environments and avoid competition with uninfected wasps by forgetting cues related to previously visited environments, thus increasing transmission of Wolbachia in new environments.
Collapse
Affiliation(s)
- Hossein Kishani Farahani
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Ahmad Ashouri
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Seyed Hossein Goldansaz
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Martin S Shapiro
- Department of Psychology, California State University, Fresno, USA
| | - Jean-Sebastien Pierre
- UMR-CNRS 6553 EcoBio, University of Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Joan van Baaren
- UMR-CNRS 6553 EcoBio, University of Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042, Rennes Cedex, France
| |
Collapse
|
33
|
Pontieri L, Schmidt AM, Singh R, Pedersen JS, Linksvayer TA. Artificial selection on ant female caste ratio uncovers a link between female-biased sex ratios and infection by Wolbachia endosymbionts. J Evol Biol 2016; 30:225-234. [PMID: 27859964 DOI: 10.1111/jeb.13012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/27/2016] [Accepted: 11/08/2016] [Indexed: 01/13/2023]
Abstract
Social insect sex and caste ratios are well-studied targets of evolutionary conflicts, but the heritable factors affecting these traits remain unknown. To elucidate these factors, we carried out a short-term artificial selection study on female caste ratio in the ant Monomorium pharaonis. Across three generations of bidirectional selection, we observed no response for caste ratio, but sex ratios rapidly became more female-biased in the two replicate high selection lines and less female-biased in the two replicate low selection lines. We hypothesized that this rapid divergence for sex ratio was caused by changes in the frequency of infection by the heritable bacterial endosymbiont Wolbachia, because the initial breeding stock varied for Wolbachia infection, and Wolbachia is known to cause female-biased sex ratios in other insects. Consistent with this hypothesis, the proportions of Wolbachia-infected colonies in the selection lines changed rapidly, mirroring the sex ratio changes. Moreover, the estimated effect of Wolbachia on sex ratio (~13% female bias) was similar in colonies before and during artificial selection, indicating that this Wolbachia effect is likely independent of the effects of artificial selection on other heritable factors. Our study provides evidence for the first case of endosymbiont sex ratio manipulation in a social insect.
Collapse
Affiliation(s)
- L Pontieri
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark
| | - A M Schmidt
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark
| | - R Singh
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - J S Pedersen
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark
| | - T A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Pietri JE, DeBruhl H, Sullivan W. The rich somatic life of Wolbachia. Microbiologyopen 2016; 5:923-936. [PMID: 27461737 PMCID: PMC5221451 DOI: 10.1002/mbo3.390] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 01/18/2023] Open
Abstract
Wolbachia is an intracellular endosymbiont infecting most arthropod and some filarial nematode species that is vertically transmitted through the maternal lineage. Due to this primary mechanism of transmission, most studies have focused on Wolbachia interactions with the host germline. However, over the last decade many studies have emerged highlighting the prominence of Wolbachia in somatic tissues, implicating somatic tissue tropism as an important aspect of the life history of this endosymbiont. Here, we review our current understanding of Wolbachia-host interactions at both the cellular and organismal level, with a focus on Wolbachia in somatic tissues.
Collapse
Affiliation(s)
- Jose E Pietri
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, California, USA
| | - Heather DeBruhl
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - William Sullivan
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, California, USA
| |
Collapse
|
35
|
Strunov A, Schneider DI, Albertson R, Miller WJ. Restricted distribution and lateralization of mutualistic Wolbachia in the Drosophila brain. Cell Microbiol 2016; 19. [PMID: 27353950 DOI: 10.1111/cmi.12639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/17/2016] [Accepted: 06/24/2016] [Indexed: 12/28/2022]
Abstract
Microbial symbionts are universal entities of all living organisms that can significantly affect host fitness traits in manifold ways but, even more fascinating, also their behaviour. Although better known from parasitic symbionts, we currently lack any cases where 'neurotrophic' symbionts have co-evolved mutualistic behavioural interactions from which both partners profit. By theory, most mutualistic associations have originated from ancestral parasitic ones during their long-term co-evolution towards a cost-benefit equilibrium. To manipulate host behaviour in a way where both partners benefit in a reciprocal manner, the symbiont has to target and remain restricted to defined host brain regions to minimize unnecessary fitness costs. By using the classic Drosophila paulistorum model system we demonstrate that (i) mutualistic Wolbachia are restricted to various Drosophila brain areas, (ii) form bacteriocyte-like structures within the brain, (iii) exhibit strictly lateral tropism, and (iv) finally propose that their selective neuronal infection affects host sexual behaviour adaptively.
Collapse
Affiliation(s)
- Anton Strunov
- Department of Cell Biology, Institute of Cytology and Genetics, Novosibirsk, Russia.,Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Daniela I Schneider
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Strunov A, Kiseleva E. Drosophila melanogaster brain invasion: pathogenic Wolbachia in central nervous system of the fly. INSECT SCIENCE 2016; 23:253-264. [PMID: 25394184 DOI: 10.1111/1744-7917.12187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
The pathogenic Wolbachia strain wMelPop rapidly over-replicates in the brain, muscles, and retina of Drosophila melanogaster, causing severe tissue degeneration and premature death of the host. The unique features of this endosymbiont make it an excellent tool to be used for biological control of insects, pests, and vectors of human diseases. To follow the dynamics of bacterial morphology and titer in the nerve cells we used transmission electron microscopy of 3-d-old female brains. The neurons and glial cells from central brain of the fly had different Wolbachia titers ranging from single bacteria to large accumulations, tearing cell apart and invading extracellular space. The neuropile regions of the brain were free of wMelPop. Wolbachia tightly interacted with host cell organelles and underwent several morphological changes in nerve cells. Based on different morphological types of bacteria described we propose for the first time a scheme of wMelPop dynamics within the somatic tissue of the host.
Collapse
Affiliation(s)
- Anton Strunov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Elena Kiseleva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| |
Collapse
|
37
|
Flores HA, Bubnell JE, Aquadro CF, Barbash DA. The Drosophila bag of marbles Gene Interacts Genetically with Wolbachia and Shows Female-Specific Effects of Divergence. PLoS Genet 2015; 11:e1005453. [PMID: 26291077 PMCID: PMC4546362 DOI: 10.1371/journal.pgen.1005453] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/20/2015] [Indexed: 01/09/2023] Open
Abstract
Many reproductive proteins from diverse taxa evolve rapidly and adaptively. These proteins are typically involved in late stages of reproduction such as sperm development and fertilization, and are more often functional in males than females. Surprisingly, many germline stem cell (GSC) regulatory genes, which are essential for the earliest stages of reproduction, also evolve adaptively in Drosophila. One example is the bag of marbles (bam) gene, which is required for GSC differentiation and germline cyst development in females and for regulating mitotic divisions and entry to spermatocyte differentiation in males. Here we show that the extensive divergence of bam between Drosophila melanogaster and D. simulans affects bam function in females but has no apparent effect in males. We further find that infection with Wolbachia pipientis, an endosymbiotic bacterium that can affect host reproduction through various mechanisms, partially suppresses female sterility caused by bam mutations in D. melanogaster and interacts differentially with bam orthologs from D. melanogaster and D. simulans. We propose that the adaptive evolution of bam has been driven at least in part by the long-term interactions between Drosophila species and Wolbachia. More generally, we suggest that microbial infections of the germline may explain the unexpected pattern of evolution of several GSC regulatory genes.
Collapse
Affiliation(s)
- Heather A. Flores
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jaclyn E. Bubnell
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Wolbachia Influences the Production of Octopamine and Affects Drosophila Male Aggression. Appl Environ Microbiol 2015; 81:4573-80. [PMID: 25934616 DOI: 10.1128/aem.00573-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/10/2015] [Indexed: 12/26/2022] Open
Abstract
Wolbachia bacteria are endosymbionts that infect approximately 40% of all insect species and are best known for their ability to manipulate host reproductive systems. Though the effect Wolbachia infection has on somatic tissues is less well understood, when present in cells of the adult Drosophila melanogaster brain, Wolbachia exerts an influence over behaviors related to olfaction. Here, we show that a strain of Wolbachia influences male aggression in flies, which is critically important in mate competition. A specific strain of Wolbachia was observed to reduce the initiation of aggressive encounters in Drosophila males compared to the behavior of their uninfected controls. To determine how Wolbachia was able to alter aggressive behavior, we investigated the role of octopamine, a neurotransmitter known to influence male aggressive behavior in many insect species. Transcriptional analysis of the octopamine biosynthesis pathway revealed that two essential genes, the tyrosine decarboxylase and tyramine β-hydroxylase genes, were significantly downregulated in Wolbachia-infected flies. Quantitative chemical analysis also showed that total octopamine levels were significantly reduced in the adult heads.
Collapse
|
39
|
Serbus LR, White PM, Silva JP, Rabe A, Teixeira L, Albertson R, Sullivan W. The impact of host diet on Wolbachia titer in Drosophila. PLoS Pathog 2015; 11:e1004777. [PMID: 25826386 PMCID: PMC4380406 DOI: 10.1371/journal.ppat.1004777] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022] Open
Abstract
While a number of studies have identified host factors that influence endosymbiont titer, little is known concerning environmental influences on titer. Here we examined nutrient impact on maternally transmitted Wolbachia endosymbionts in Drosophila. We demonstrate that Drosophila reared on sucrose- and yeast-enriched diets exhibit increased and reduced Wolbachia titers in oogenesis, respectively. The yeast-induced Wolbachia depletion is mediated in large part by the somatic TOR and insulin signaling pathways. Disrupting TORC1 with the small molecule rapamycin dramatically increases oocyte Wolbachia titer, whereas hyper-activating somatic TORC1 suppresses oocyte titer. Furthermore, genetic ablation of insulin-producing cells located in the Drosophila brain abolished the yeast impact on oocyte titer. Exposure to yeast-enriched diets altered Wolbachia nucleoid morphology in oogenesis. Furthermore, dietary yeast increased somatic Wolbachia titer overall, though not in the central nervous system. These findings highlight the interactions between Wolbachia and germline cells as strongly nutrient-sensitive, and implicate conserved host signaling pathways by which nutrients influence Wolbachia titer.
Collapse
Affiliation(s)
- Laura R. Serbus
- Department of Biological Sciences, Florida International University Modesto A. Maidique Campus, Miami, Florida, United States of America
- Biomolecular Sciences Institute, Florida International University Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Pamela M. White
- Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jessica Pintado Silva
- Department of Biological Sciences, Florida International University Modesto A. Maidique Campus, Miami, Florida, United States of America
- Biomolecular Sciences Institute, Florida International University Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Amanda Rabe
- Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | | | - Roger Albertson
- Biology Department, Albion College, Albion, Michigan, United States of America
| | - William Sullivan
- Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
40
|
Kosmidis S, Missirlis F, Botella JA, Schneuwly S, Rouault TA, Skoulakis EMC. Behavioral decline and premature lethality upon pan-neuronal ferritin overexpression in Drosophila infected with a virulent form of Wolbachia. Front Pharmacol 2014; 5:66. [PMID: 24772084 PMCID: PMC3983519 DOI: 10.3389/fphar.2014.00066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/20/2014] [Indexed: 12/31/2022] Open
Abstract
Iron is required for organismal growth. Therefore, limiting iron availability may be a key part of the host’s innate immune response to various pathogens, for example, in Drosophila infected with Zygomycetes. One way the host can transiently reduce iron bioavailability is by ferritin overexpression. To study the effects of neuronal-specific ferritin overexpression on survival and neurodegeneration we generated flies simultaneously over-expressing transgenes for both ferritin subunits in all neurons. We used two independent recombinant chromosomes bearing UAS-Fer1HCH, UAS-Fer2LCH transgenes and obtained qualitatively different levels of late-onset behavioral and lifespan declines. We subsequently discovered that one parental strain had been infected with a virulent form of the bacterial endosymbiont Wolbachia, causing widespread neuronal apoptosis and premature death. This phenotype was exacerbated by ferritin overexpression and was curable by antibiotic treatment. Neuronal ferritin overexpression in uninfected flies did not cause evident neurodegeneration but resulted in a late-onset behavioral decline, as previously reported for ferritin overexpression in glia. The results suggest that ferritin overexpression in the central nervous system of flies is tolerated well in young individuals with adverse manifestations appearing only late in life or under unrelated pathophysiological conditions.
Collapse
Affiliation(s)
- Stylianos Kosmidis
- Neuroscience Division, Biomedical Sciences Research Centre "Alexander Fleming" Vari, Greece ; Department of Neuroscience, Columbia University New York, NY, USA
| | - Fanis Missirlis
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA ; Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, México
| | - Jose A Botella
- Institute of Zoology, University of Regensburg Regensburg, Germany
| | | | - Tracey A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | | |
Collapse
|
41
|
|