1
|
Kapsetaki SE, Cisneros LH, Maley CC. Cell-in-cell phenomena across the tree of life. Sci Rep 2024; 14:7535. [PMID: 38553457 PMCID: PMC10980697 DOI: 10.1038/s41598-024-57528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Cells in obligately multicellular organisms by definition have aligned fitness interests, minimum conflict, and cannot reproduce independently. However, some cells eat other cells within the same body, sometimes called cell cannibalism. Such cell-in-cell events have not been thoroughly discussed in the framework of major transitions to multicellularity. We performed a systematic screening of 508 articles, from which we chose 115 relevant articles in a search for cell-in-cell events across the tree of life, the age of cell-in-cell-related genes, and whether cell-in-cell events are associated with normal multicellular development or cancer. Cell-in-cell events are found across the tree of life, from some unicellular to many multicellular organisms, including non-neoplastic and neoplastic tissue. Additionally, out of the 38 cell-in-cell-related genes found in the literature, 14 genes were over 2.2 billion years old, i.e., older than the common ancestor of some facultatively multicellular taxa. All of this suggests that cell-in-cell events may have originated before the origins of obligate multicellularity. Thus, our results show that cell-in-cell events exist in obligate multicellular organisms, but are not a defining feature of them. The idea of eradicating cell-in-cell events from obligate multicellular organisms as a way of treating cancer, without considering that cell-in-cell events are also part of normal development, should be abandoned.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, USA.
| | - Luis H Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
2
|
Kim LW, Osorio-Castillo V. Quantitative Analysis of the Inactivation Process of Internalized Bacteria in Dictyostelium Cells. Methods Mol Biol 2024; 2814:89-96. [PMID: 38954199 DOI: 10.1007/978-1-0716-3894-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The understanding of the inactivation process of ingested bacteria by phagocytes is a key focus in the field of host-pathogen interactions. Dictyostelium is a model organism that has been at the forefront of uncovering the mechanisms underlying this type of interaction. In this study, we describe an assay designed to measure the inactivation of Klebsiella aerogenes in the phagosomes of Dictyostelium discoideum.
Collapse
Affiliation(s)
- Lou W Kim
- Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| | - Victor Osorio-Castillo
- Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
3
|
Steele MI, Peiser JM, Shreenidhi PM, Strassmann JE, Queller DC. Predation-resistant Pseudomonas bacteria engage in symbiont-like behavior with the social amoeba Dictyostelium discoideum. THE ISME JOURNAL 2023; 17:2352-2361. [PMID: 37884792 PMCID: PMC10689837 DOI: 10.1038/s41396-023-01535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance.
Collapse
Affiliation(s)
- Margaret I Steele
- Biology Department, Washington University in St. Louis, St. Louis, MO, USA.
| | - Jessica M Peiser
- Biology Department, Washington University in St. Louis, St. Louis, MO, USA
| | - P M Shreenidhi
- Biology Department, Washington University in St. Louis, St. Louis, MO, USA
| | - Joan E Strassmann
- Biology Department, Washington University in St. Louis, St. Louis, MO, USA
| | - David C Queller
- Biology Department, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Wang X, Dai Z, Zhao H, Hu L, Dahlgren RA, Xu J. Heavy metal effects on multitrophic level microbial communities and insights for ecological restoration of an abandoned electroplating factory site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121548. [PMID: 37011779 DOI: 10.1016/j.envpol.2023.121548] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The response of soil microbes to heavy metal pollution provides a metric to evaluate the soil health and ecological risks associated with heavy metal contamination. However, a multitrophic level perspective of how soil microbial communities and their functions respond to long-term exposure of multiple heavy metals remains unclear. Herein, we examined variations in soil microbial (including protists and bacteria) diversity, functional guilds and interactions along a pronounced metal pollution gradient in a field surrounding an abandoned electroplating factory. Given the stressful soil environment resulting from extremely high heavy metal concentrations and low nutrients, beta diversity of protist increased, but that of bacteria decreased, at high versus low pollution sites. Additionally, the bacteria community showed low functional diversity and redundancy at the highly polluted sites. We further identified indicative genus and "generalists" in response to heavy metal pollution. Predatory protists in Cercozoa were the most sensitive protist taxa with respect to heavy metal pollution, whereas photosynthetic protists showed a tolerance for metal pollution and nutrient deficiency. The complexity of ecological networks increased, but the communication among the modules disappeared with increasing metal pollution levels. Subnetworks of tolerant bacteria displaying functional versatility (Blastococcus, Agromyces and Opitutus) and photosynthetic protists (microalgae) became more complex with increasing metal pollution levels, indicating their potential for use in bioremediation and restoration of abandoned industrial sites contaminated by heavy metals.
Collapse
Affiliation(s)
- Xuehua Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Crespo-Yanez X, Oddy J, Lamrabet O, Jauslin T, Marchetti A, Cosson P. Sequential action of antibacterial effectors in Dictyostelium discoideum phagosomes. Mol Microbiol 2023; 119:74-85. [PMID: 36416195 PMCID: PMC10107278 DOI: 10.1111/mmi.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Mammalian professional phagocytic cells ingest and kill invading microorganisms and prevent the development of bacterial infections. Our understanding of the sequence of events that results in bacterial killing and permeabilization in phagosomes is still largely incomplete. In this study, we used the Dictyostelium discoideum amoeba as a model phagocyte to study the fate of the bacteria Klebsiella pneumoniae inside phagosomes. Our analysis distinguishes three consecutive phases: bacteria first lose their ability to divide (killing), then their cytosolic content is altered (permeabilization), and finally their DNA is degraded (digestion). Phagosomal acidification and production of free radicals are necessary for rapid killing, membrane-permeabilizing proteins BpiC and AlyL are required for efficient permeabilization. These results illustrate how a combination of genetic and microscopical tools can be used to finely dissect the molecular events leading to bacterial killing and permeabilization in a maturing phagosome.
Collapse
Affiliation(s)
- Xènia Crespo-Yanez
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joseph Oddy
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tania Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Bajgar A, Krejčová G. On the origin of the functional versatility of macrophages. Front Physiol 2023; 14:1128984. [PMID: 36909237 PMCID: PMC9998073 DOI: 10.3389/fphys.2023.1128984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Macrophages represent the most functionally versatile cells in the animal body. In addition to recognizing and destroying pathogens, macrophages remove senescent and exhausted cells, promote wound healing, and govern tissue and metabolic homeostasis. In addition, many specialized populations of tissue-resident macrophages exhibit highly specialized functions essential for the function of specific organs. Sometimes, however, macrophages cease to perform their protective function and their seemingly incomprehensible response to certain stimuli leads to pathology. In this study, we address the question of the origin of the functional versatility of macrophages. To this end, we have searched for the evolutionary origin of macrophages themselves and for the emergence of their characteristic properties. We hypothesize that many of the characteristic features of proinflammatory macrophages evolved in the unicellular ancestors of animals, and that the functional repertoire of macrophage-like amoebocytes further expanded with the evolution of multicellularity and the increasing complexity of tissues and organ systems. We suggest that the entire repertoire of macrophage functions evolved by repurposing and diversification of basic functions that evolved early in the evolution of metazoans under conditions barely comparable to that in tissues of multicellular organisms. We believe that by applying this perspective, we may find an explanation for the otherwise counterintuitive behavior of macrophages in many human pathologies.
Collapse
Affiliation(s)
- Adam Bajgar
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
7
|
Wu C, Chao Y, Shu L, Qiu R. Interactions between soil protists and pollutants: An unsolved puzzle. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128297. [PMID: 35077968 DOI: 10.1016/j.jhazmat.2022.128297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Soil protists are essential but often overlooked in soils, although they play crucial functional roles in the terrestrial ecosystem. While soil protists have drawn increased attention to their functional role in soils, their interaction with soil pollutants remains unresolved. This review provides a first overview of the current understanding of interactions between soil protists and major pollutants (heavy metals, organic pollutants, nanoparticles, and soil pathogens). We summarize how soil pollutants affect protists and vice versa, showing that we are just beginning to understand their complex interactions. In addition, we identify five research gaps, including hidden diversity, adaptive mechanisms, species interactions, soil bioindicators and environmental applications, and we hope that our review will help promote and build research guidelines for the future. In conclusion, a better understanding of soil pollutant-protist interactions will significantly increase our knowledge of the pollution ecology in the soil and how soil organisms respond and adapt to environmental pollution, which will contribute to the bioremediation and environmental applications of protists in soil.
Collapse
Affiliation(s)
- Chenyuan Wu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Shu L, He Z, Guan X, Yang X, Tian Y, Zhang S, Wu C, He Z, Yan Q, Wang C, Shi Y. A dormant amoeba species can selectively sense and predate on different soil bacteria. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Longfei Shu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Sun Yat‐Sen University Guangzhou China
| | - Zhenzhen He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Xueqin Yang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Yuehui Tian
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Siyi Zhang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Chenyuan Wu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Zhili He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Qingyun Yan
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Cheng Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Yijing Shi
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Sun Yat‐Sen University Guangzhou China
- School of Environment Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment SCNU Environmental Research InstituteSouth China Normal University Guangzhou China
| |
Collapse
|
9
|
Abstract
Amoebae are protists that have complicated relationships with bacteria, covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contribute to the study of predation, symbiosis, pathogenesis, and human health. Given the complexity of their relationships, it is necessary to understand the ecology and evolution of their interactions. In this paper, we provide an updated review of the current understanding of amoeba-bacterium interactions. We start by discussing the diversity of amoebae and their bacterial partners. We also define three types of ecological interactions between amoebae and bacteria and discuss their different outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on human health, horizontal gene transfer, drinking water safety, and the evolution of symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems to investigate a wide range of scientific questions. Future studies should utilize advanced techniques to address research gaps, such as detecting hidden diversity, lack of amoeba genomes, and the impacts of amoeba predation on the microbiome.
Collapse
|
10
|
Bosmani C, Leuba F, Hanna N, Bach F, Burdet F, Pagni M, Hagedorn M, Soldati T. Vacuolins and myosin VII are required for phagocytic uptake and phagosomal membrane recycling in Dictyostelium discoideum. J Cell Sci 2020; 133:jcs242974. [PMID: 32482795 DOI: 10.1242/jcs.242974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Flotillins are lipid raft residents involved in membrane trafficking and recycling of plasma membrane proteins. Dictyostelium discoideum uses phagocytosis to kill, digest and feed on bacteria. It possesses three flotillin-like vacuolins that are strongly associated with membranes and that gradually accumulate on maturing phagosomes. Absence of vacuolins reduced adhesion and particle recognition resulting in a drastic reduction in the uptake of various types of particles. This was caused by a block in the recycling of plasma membrane components and the absence of their specific cortex-associated proteins. In addition, absence of vacuolins also impaired phagolysosome biogenesis, without significantly impacting killing and digestion of a range of bacteria. Strikingly, both absence and overexpression of vacuolins induced a strong downregulation of myosin VII (also known as MyoI) expression, as well as its binding partner talin A. Episomal expression of myosin VII fully rescued defects in uptake and adhesion but not in phagosome maturation. These results suggest a dual role for vacuolins: a novel mechanism involving membrane microdomains and myosin VII-talin A in clustering phagosomal receptors and adhesion molecules at the plasma membrane, and a role in phagolysosomal biogenesis.
Collapse
Affiliation(s)
- Cristina Bosmani
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| | - Florence Leuba
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| | - Nabil Hanna
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| | - Frauke Bach
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany
| | - Frédéric Burdet
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Monica Hagedorn
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany
| | - Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| |
Collapse
|
11
|
Lamrabet O, Jauslin T, Lima WC, Leippe M, Cosson P. The multifarious lysozyme arsenal of Dictyostelium discoideum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103645. [PMID: 32061941 DOI: 10.1016/j.dci.2020.103645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Dictyostelium discoideum is a free-living soil amoeba which feeds upon bacteria. To bind, ingest, and kill bacteria, D. discoideum uses molecular mechanisms analogous to those found in professional phagocytic cells of multicellular organisms. D. discoideum is equipped with a large arsenal of antimicrobial peptides and proteins including amoebapore-like peptides and lysozymes. This review describes the family of lysozymes in D. discoideum. We identified 22 genes potentially encoding four different types of lysozymes in the D. discoideum genome. Although most of these genes are also present in the genomes of other amoebal species, no other organism is as well-equipped with lysozyme genes as D. discoideum.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland.
| | - Tania Jauslin
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Wanessa Cristina Lima
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Matthias Leippe
- Zoological Institute, Comparative Immunobiology, University of Kiel, Kiel, Germany
| | - Pierre Cosson
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| |
Collapse
|
12
|
Hasni I, Decloquement P, Demanèche S, Mameri RM, Abbe O, Colson P, La Scola B. Insight into the Lifestyle of Amoeba Willaertia magna during Bioreactor Growth Using Transcriptomics and Proteomics. Microorganisms 2020; 8:microorganisms8050771. [PMID: 32455615 PMCID: PMC7285305 DOI: 10.3390/microorganisms8050771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Willaertia magna C2c maky is a thermophilic free-living amoeba strain that showed ability to eliminate Legionella pneumophila, a pathogenic bacterium living in the aquatic environment. The amoeba industry has proposed the use of Willaertia magna as a natural biocide to control L. pneumophila proliferation in cooling towers. Here, transcriptomic and proteomic studies were carried out in order to expand knowledge on W. magna produced in a bioreactor. Illumina RNA-seq generated 217 million raw reads. A total of 8790 transcripts were identified, of which 6179 and 5341 were assigned a function through comparisons with National Center of Biotechnology Information (NCBI) reference sequence and the Clusters of Orthologous Groups of proteins (COG) databases, respectively. To corroborate these transcriptomic data, we analyzed the W. magna proteome using LC–MS/MS. A total of 3561 proteins were identified. The results of transcriptome and proteome analyses were highly congruent. Metabolism study showed that W. magna preferentially consumed carbohydrates and fatty acids to grow. Finally, an in-depth analysis has shown that W. magna produces several enzymes that are probably involved in the metabolism of secondary metabolites. Overall, our multi-omic study of W. magna opens the way to a better understanding of the genetics and biology of this amoeba.
Collapse
Affiliation(s)
- Issam Hasni
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Philippe Decloquement
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
| | - Sandrine Demanèche
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Rayane Mouh Mameri
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Olivier Abbe
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Philippe Colson
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Bernard La Scola
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-9132-4375; Fax: +33-4-9138-7772
| |
Collapse
|
13
|
Lamrabet O, Melotti A, Burdet F, Hanna N, Perrin J, Nitschke J, Pagni M, Hilbi H, Soldati T, Cosson P. Transcriptional Responses of Dictyostelium discoideum Exposed to Different Classes of Bacteria. Front Microbiol 2020; 11:410. [PMID: 32210949 PMCID: PMC7078664 DOI: 10.3389/fmicb.2020.00410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Dictyostelium discoideum amoebae feed by ingesting bacteria, then killing them in phagosomes. Ingestion and killing of different bacteria have been shown to rely on largely different molecular mechanisms. One would thus expect that D. discoideum adapts its ingestion and killing machinery when encountering different bacteria. In this study, we investigated by RNA sequencing if and how D. discoideum amoebae respond to the presence of different bacteria by modifying their gene expression patterns. Each bacterial species analyzed induced a specific modification of the transcriptome. Bacteria such as Bacillus subtilis, Klebsiella pneumoniae, or Mycobacterium marinum induced a specific and different transcriptional response, while Micrococcus luteus did not trigger a significant gene regulation. Although folate has been proposed to be one of the key molecules secreted by bacteria and recognized by hunting amoebae, it elicited a very specific and restricted transcriptional signature, distinct from that triggered by any bacteria analyzed here. Our results indicate that D. discoideum amoebae respond in a highly specific, almost non-overlapping manner to different species of bacteria. We additionally identify specific sets of genes that can be used as reporters of the response of D. discoideum to different bacteria.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Astrid Melotti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédéric Burdet
- Vital-IT Group, SIB, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Mannan T, Rafique MW, Bhatti MH, Matin A, Ahmad I. Type 1 Fimbriae and Motility Play a Pivotal Role During Interactions of Salmonella typhimurium with Acanthamoeba castellanii (T4 Genotype). Curr Microbiol 2020; 77:836-845. [PMID: 31932998 DOI: 10.1007/s00284-019-01868-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Amoebic bacterial interactions are the most ancient form of host pathogen interactions. Here, we investigate the fate of Salmonella typhimurium and Acanthamoeba castellanii T4 genotype upon mutual interactions in a nutrition free environment. The role of type 1 fimbriae and motility of S. typhimurium during interactions with A. castellanii has also been investigated. Deletion of genes encoding the type 1 fimbriae subunit FimA, type 1 fimbriae tip protein FimH, chemotaxis regulatory proteins CheA and CheY and major flagella subunits FliC and FljB was performed through homologous recombination. In vitro association, invasion and survival assays of S. typhimurium wild-type and mutant strains were performed upon co-incubation of bacteria with A. castellanii trophozoites in a nutrition free environment. The deletion gene encoding type 1 fimbriae subunit FimA reduced, whereas the deletion of genes encoding flagella subunits FliC and FljB of flagella enhanced the association capability of S. typhimurium with A. castellanii. Invasion of A. castellanii by Salmonella was significantly reduced upon the loss of type 1 fimbriae subunit FimA and type 1 fimbriae tip protein FimH. Co-incubation of S. typhimurium with A. castellanii in phosphate buffered saline medium stimulated the growth of S. typhimurium wild-type and mutant strains. Viable A. castellanii trophozoites count became significantly reduced upon co-incubation with S. typhimurium within 48 h. Type 1 fimbriae play a pivotal role in the adherence of S. typhimurium to the A. castellanii cell surface. Subsequently, this interaction provides S. typhimurium an advantage in growth.
Collapse
Affiliation(s)
- Talha Mannan
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences Lahore, Lahore, 54600, Pakistan
| | - Muhammad Wasim Rafique
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences Lahore, Lahore, 54600, Pakistan
| | - Muhammad Haroon Bhatti
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences Lahore, Lahore, 54600, Pakistan
| | - Abdul Matin
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia.,Department of Medical Laboratory Technology, University of Haripur, Hattar Road, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Irfan Ahmad
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences Lahore, Lahore, 54600, Pakistan.
| |
Collapse
|
15
|
Functional Characterization of Ubiquitin-Like Core Autophagy Protein ATG12 in Dictyostelium discoideum. Cells 2019; 8:cells8010072. [PMID: 30669443 PMCID: PMC6356199 DOI: 10.3390/cells8010072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved intracellular degradative pathway that is crucial for cellular homeostasis. During autophagy, the core autophagy protein ATG12 plays, together with ATG5 and ATG16, an essential role in the expansion of the autophagosomal membrane. In this study we analyzed gene replacement mutants of atg12 in Dictyostelium discoideum AX2 wild-type and ATG16‾ cells. RNAseq analysis revealed a strong enrichment of, firstly, autophagy genes among the up-regulated genes and, secondly, genes implicated in cell motility and phagocytosis among the down-regulated genes in the generated ATG12‾, ATG16‾ and ATG12‾/16‾ cells. The mutant strains showed similar defects in fruiting body formation, autolysosome maturation, and cellular viability, implying that ATG12 and ATG16 act as a functional unit in canonical autophagy. In contrast, ablation of ATG16 or of ATG12 and ATG16 resulted in slightly more severe defects in axenic growth, macropinocytosis, and protein homeostasis than ablation of only ATG12, suggesting that ATG16 fulfils an additional function in these processes. Phagocytosis of yeast, spore viability, and maximal cell density were much more affected in ATG12‾/16‾ cells, indicating that both proteins also have cellular functions independent of each other. In summary, we show that ATG12 and ATG16 fulfil autophagy-independent functions in addition to their role in canonical autophagy.
Collapse
|
16
|
Rubin M, Miller AD, Katoh-Kurasawa M, Dinh C, Kuspa A, Shaulsky G. Cooperative predation in the social amoebae Dictyostelium discoideum. PLoS One 2019; 14:e0209438. [PMID: 30625171 PMCID: PMC6326426 DOI: 10.1371/journal.pone.0209438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/05/2018] [Indexed: 12/05/2022] Open
Abstract
The eukaryotic amoeba Dictyostelium discoideum is commonly used to study sociality. The amoebae cooperate during development, exhibiting altruism, cheating, and kin-discrimination, but growth while preying on bacteria has been considered asocial. Here we show that Dictyostelium are cooperative predators. Using mutants that grow poorly on Gram-negative bacteria but grow well on Gram-positive bacteria, we show that growth depends on cell-density and on prey type. We also found synergy, by showing that pairwise mixes of different mutants grow well on live Gram-negative bacteria. Moreover, wild-type amoebae produce diffusible factors that facilitate mutant growth and some mutants exploit the wild type in mixed cultures. Finding cooperative predation in D. discoideum should facilitate studies of this fascinating phenomenon, which has not been amenable to genetic analysis before.
Collapse
Affiliation(s)
- Michelle Rubin
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States of America
| | - Amber D. Miller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Christopher Dinh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Adam Kuspa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
17
|
Shu L, Brock DA, Geist KS, Miller JW, Queller DC, Strassmann JE, DiSalvo S. Symbiont location, host fitness, and possible coadaptation in a symbiosis between social amoebae and bacteria. eLife 2018; 7:e42660. [PMID: 30596477 PMCID: PMC6336404 DOI: 10.7554/elife.42660] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/30/2018] [Indexed: 12/14/2022] Open
Abstract
Recent symbioses, particularly facultative ones, are well suited for unravelling the evolutionary give and take between partners. Here we look at variation in natural isolates of the social amoeba Dictyostelium discoideum and their relationships with bacterial symbionts, Burkholderia hayleyella and Burkholderia agricolaris. Only about a third of field-collected amoebae carry a symbiont. We cured and cross-infected amoebae hosts with different symbiont association histories and then compared host responses to each symbiont type. Before curing, field-collected clones did not vary significantly in overall fitness, but infected hosts produced morphologically different multicellular structures. After curing and reinfecting, host fitness declined. However, natural B. hayleyella hosts suffered fewer fitness costs when reinfected with B. hayleyella, indicating that they have evolved mechanisms to tolerate their symbiont. Our work suggests that amoebae hosts have evolved mechanisms to tolerate specific acquired symbionts; exploring host-symbiont relationships that vary within species may provide further insights into disease dynamics.
Collapse
Affiliation(s)
- Longfei Shu
- Environmental Microbiomics Research Center and Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouChina
- Department of BiologyWashington UniversitySt LouisUnited States
| | - Debra A Brock
- Department of BiologyWashington UniversitySt LouisUnited States
| | | | - Jacob W Miller
- Department of Biological SciencesSouthern Illinois UniversityEdwardsvilleUnited States
| | - David C Queller
- Department of BiologyWashington UniversitySt LouisUnited States
| | | | - Susanne DiSalvo
- Department of Biological SciencesSouthern Illinois UniversityEdwardsvilleUnited States
| |
Collapse
|
18
|
Sattler N, Bosmani C, Barisch C, Guého A, Gopaldass N, Dias M, Leuba F, Bruckert F, Cosson P, Soldati T. Functions of the Dictyostelium LIMP-2 and CD36 homologues in bacteria uptake, phagolysosome biogenesis and host cell defence. J Cell Sci 2018; 131:jcs218040. [PMID: 30054386 DOI: 10.1242/jcs.218040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2023] Open
Abstract
Phagocytic cells take up, kill and digest microbes by a process called phagocytosis. To this end, these cells bind the particle, rearrange their actin cytoskeleton, and orchestrate transport of digestive factors to the particle-containing phagosome. The mammalian lysosomal membrane protein LIMP-2 (also known as SCARB2) and CD36, members of the class B of scavenger receptors, play a crucial role in lysosomal enzyme trafficking and uptake of mycobacteria, respectively, and generally in host cell defences against intracellular pathogens. Here, we show that the Dictyostelium discoideum LIMP-2 homologue LmpA regulates phagocytosis and phagolysosome biogenesis. The lmpA knockdown mutant is highly affected in actin-dependent processes, such as particle uptake, cellular spreading and motility. Additionally, the cells are severely impaired in phagosomal acidification and proteolysis, likely explaining the higher susceptibility to infection with the pathogenic bacterium Mycobacterium marinum, a close cousin of the human pathogen Mycobacterium tuberculosis Furthermore, we bring evidence that LmpB is a functional homologue of CD36 and specifically mediates uptake of mycobacteria. Altogether, these data indicate a role for LmpA and LmpB, ancestors of the family of which LIMP-2 and CD36 are members, in lysosome biogenesis and host cell defence.
Collapse
Affiliation(s)
- Natascha Sattler
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Cristina Bosmani
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Caroline Barisch
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Aurélie Guého
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Navin Gopaldass
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Marco Dias
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Florence Leuba
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Franz Bruckert
- Laboratoire des Matériaux et du Génie Physique (LMGP), Grenoble Institute of Technology, 3 parvis Louis Néel, BP 257, 38016 Grenoble cedex 1, France
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| |
Collapse
|
19
|
Nicolussi A, Dunn JD, Mlynek G, Bellei M, Zamocky M, Battistuzzi G, Djinović-Carugo K, Furtmüller PG, Soldati T, Obinger C. Secreted heme peroxidase from Dictyostelium discoideum: Insights into catalysis, structure, and biological role. J Biol Chem 2017; 293:1330-1345. [PMID: 29242189 PMCID: PMC5787809 DOI: 10.1074/jbc.ra117.000463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Oxidation of halides and thiocyanate by heme peroxidases to antimicrobial oxidants is an important cornerstone in the innate immune system of mammals. Interestingly, phylogenetic and physiological studies suggest that homologous peroxidases are already present in mycetozoan eukaryotes such as Dictyostelium discoideum This social amoeba kills bacteria via phagocytosis for nutrient acquisition at its single-cell stage and for antibacterial defense at its multicellular stages. Here, we demonstrate that peroxidase A from D. discoideum (DdPoxA) is a stable, monomeric, glycosylated, and secreted heme peroxidase with homology to mammalian peroxidases. The first crystal structure (2.5 Å resolution) of a mycetozoan peroxidase of this superfamily shows the presence of a post-translationally-modified heme with one single covalent ester bond between the 1-methyl heme substituent and Glu-236. The metalloprotein follows the halogenation cycle, whereby compound I oxidizes iodide and thiocyanate at high rates (>108 m-1 s-1) and bromide at very low rates. It is demonstrated that DdPoxA is up-regulated and likely secreted at late multicellular development stages of D. discoideum when migrating slugs differentiate into fruiting bodies that contain persistent spores on top of a cellular stalk. Expression of DdPoxA is shown to restrict bacterial contamination of fruiting bodies. Structure and function of DdPoxA are compared with evolutionary-related mammalian peroxidases in the context of non-specific immune defense.
Collapse
Affiliation(s)
- Andrea Nicolussi
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Joe Dan Dunn
- the Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Genève, Switzerland
| | - Georg Mlynek
- the Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | | | - Marcel Zamocky
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria.,the Institute of Molecular Biology, Slovak Academy of Sciences, 84551 Bratislava, Slovakia, and
| | - Gianantonio Battistuzzi
- Chemistry and Geology, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Kristina Djinović-Carugo
- the Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria.,the Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Paul G Furtmüller
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Thierry Soldati
- the Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Genève, Switzerland
| | - Christian Obinger
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria,
| |
Collapse
|
20
|
Mathavarajah S, Flores A, Huber RJ. Dictyostelium discoideum
: A Model System for Cell and Developmental Biology. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/cpet.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Ana Flores
- Department of Biology, Trent University Peterborough Ontario Canada
| | - Robert J. Huber
- Department of Biology, Trent University Peterborough Ontario Canada
| |
Collapse
|
21
|
Kissing S, Saftig P, Haas A. Vacuolar ATPase in phago(lyso)some biology. Int J Med Microbiol 2017; 308:58-67. [PMID: 28867521 DOI: 10.1016/j.ijmm.2017.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Many eukaryotic cells ingest extracellular particles in a process termed phagocytosis which entails the generation of a new intracellular compartment, the phagosome. Phagosomes change their composition over time and this maturation process culminates in their fusion with acidic, hydrolase-rich lysosomes. During the maturation process, degradation and, when applicable, killing of the cargo may ensue. Many of the events that are pathologically relevant depend on strong acidification of phagosomes by the 'vacuolar' ATPase (V-ATPase). This protein complex acidifies the lumen of some intracellular compartments at the expense of ATP hydrolysis. We discuss here the roles and importance of V-ATPase in intracellular trafficking, its distribution, inhibition and activities, its role in the defense against microorganisms and the counteractivities of pathogens.
Collapse
Affiliation(s)
- Sandra Kissing
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| | - Albert Haas
- Institut für Zellbiologie, Friedrich-Wilhelms-Universität Bonn, Ulrich-Haberland-Str. 61A, D-53121 Bonn, Germany.
| |
Collapse
|
22
|
Maisonneuve E, Cateau E, Leveque N, Kaaki S, Beby-Defaux A, Rodier MH. Acanthamoeba castellanii is not be an adequate model to study human adenovirus interactions with macrophagic cells. PLoS One 2017; 12:e0178629. [PMID: 28591183 PMCID: PMC5462383 DOI: 10.1371/journal.pone.0178629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022] Open
Abstract
Free living amoebae (FLA) including Acanthamoeba castellanii, are protozoa that feed on different microorganisms including viruses. These microorganisms show remarkable similarities with macrophages in cellular structures, physiology or ability to phagocyte preys, and some authors have therefore wondered whether Acanthamoeba and macrophages are evolutionary related. It has been considered that this amoeba may be an in vitro model to investigate relationships between pathogens and macrophagic cells. So, we intended in this study to compare the interactions between a human adenovirus strain and A. castellanii or THP-1 macrophagic cells. The results of molecular and microscopy techniques following co-cultures experiments have shown that the presence of the adenovirus decreased the viability of macrophages, while it has no effect on amoebic viability. On another hand, the viral replication occurred only in macrophages. These results showed that this amoebal model is not relevant to explore the relationships between adenoviruses and macrophages in in vitro experiments.
Collapse
Affiliation(s)
- Elodie Maisonneuve
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l’Eau, UMR CNRS 7267, Université de Poitiers, Poitiers, France
- * E-mail:
| | - Estelle Cateau
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l’Eau, UMR CNRS 7267, Université de Poitiers, Poitiers, France
- Laboratoire de parasitologie et mycologie médicale, CHU La Milètrie, Poitiers, France
| | - Nicolas Leveque
- Laboratoire de virologie et mycobactériologie, CHU La Milètrie, Poitiers, France
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Sihem Kaaki
- Unité de pathologie ultrastructurale et expérimentale, Laboratoire d’anatomie et cytologie pathologiques, CHU la Milètrie, Poitiers, France
| | - Agnès Beby-Defaux
- Laboratoire de virologie et mycobactériologie, CHU La Milètrie, Poitiers, France
| | - Marie-Hélène Rodier
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l’Eau, UMR CNRS 7267, Université de Poitiers, Poitiers, France
- Laboratoire de parasitologie et mycologie médicale, CHU La Milètrie, Poitiers, France
| |
Collapse
|
23
|
Abstract
Long before bacteria infected humans, they infected amoebas, which remain a potentially important reservoir for human disease. Diverse soil amoebas including Dictyostelium and Acanthamoeba can host intracellular bacteria. Though the internal environment of free-living amoebas is similar in many ways to that of mammalian macrophages, they differ in a number of important ways, including temperature. A new study in PLOS Biology by Taylor-Mulneix et al. demonstrates that Bordetella bronchiseptica has two different gene suites that are activated depending on whether the bacterium finds itself in a hot mammalian or cool amoeba host environment. This study specifically shows that B. bronchiseptica not only inhabits amoebas but can persist and multiply through the social stage of an amoeba host, Dictyostelium discoideum.
Collapse
|
24
|
An observational study of phagocytes and Klebsiella pneumoniae relationships: different behaviors. Microbes Infect 2017; 19:259-266. [DOI: 10.1016/j.micinf.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
|
25
|
Leiba J, Sabra A, Bodinier R, Marchetti A, Lima WC, Melotti A, Perrin J, Burdet F, Pagni M, Soldati T, Lelong E, Cosson P. Vps13F links bacterial recognition and intracellular killing in Dictyostelium. Cell Microbiol 2017; 19. [PMID: 28076662 PMCID: PMC5484366 DOI: 10.1111/cmi.12722] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Bacterial sensing, ingestion, and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. The cellular mechanisms involved in intracellular killing, their relative importance, and their specificity towards different bacteria are however poorly defined. In this study, we used Dictyostelium discoideum, a phagocytic cell model amenable to genetic analysis, to identify new gene products involved in intracellular killing. A random genetic screen led us to identify the role of Vps13F in intracellular killing of Klebsiella pneumoniae. Vps13F knock‐out (KO) cells exhibited a delayed intracellular killing of K. pneumoniae, although the general organization of the phagocytic and endocytic pathway appeared largely unaffected. Transcriptomic analysis revealed that vps13F KO cells may be functionally similar to previously characterized fspA KO cells, shown to be defective in folate sensing. Indeed, vps13F KO cells showed a decreased chemokinetic response to various stimulants, suggesting a direct or indirect role of Vps13F in intracellular signaling. Overstimulation with excess folate restored efficient killing in vps13F KO cells. Finally, genetic inactivation of Far1, the folate receptor, resulted in inefficient intracellular killing of K. pneumoniae. Together, these observations show that stimulation of Dictyostelium by bacterial folate is necessary for rapid intracellular killing of K. pneumoniae.
Collapse
Affiliation(s)
- Jade Leiba
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ayman Sabra
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Romain Bodinier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Wanessa C Lima
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Astrid Melotti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederic Burdet
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Emmanuelle Lelong
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Huber RJ. Using the social amoeba Dictyostelium to study the functions of proteins linked to neuronal ceroid lipofuscinosis. J Biomed Sci 2016; 23:83. [PMID: 27881166 PMCID: PMC5122030 DOI: 10.1186/s12929-016-0301-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL), also known as Batten disease, is a debilitating neurological disorder that affects both children and adults. Thirteen genetically distinct genes have been identified that when mutated, result in abnormal lysosomal function and an excessive accumulation of ceroid lipofuscin in neurons, as well as other cell types outside of the central nervous system. The NCL family of proteins is comprised of lysosomal enzymes (PPT1/CLN1, TPP1/CLN2, CTSD/CLN10, CTSF/CLN13), proteins that peripherally associate with membranes (DNAJC5/CLN4, KCTD7/CLN14), a soluble lysosomal protein (CLN5), a protein present in the secretory pathway (PGRN/CLN11), and several proteins that display different subcellular localizations (CLN3, CLN6, MFSD8/CLN7, CLN8, ATP13A2/CLN12). Unfortunately, the precise functions of many of the NCL proteins are still unclear, which has made targeted therapy development challenging. The social amoeba Dictyostelium discoideum has emerged as an excellent model system for studying the normal functions of proteins linked to human neurological disorders. Intriguingly, the genome of this eukaryotic soil microbe encodes homologs of 11 of the 13 known genes linked to NCL. The genetic tractability of the organism, combined with its unique life cycle, makes Dictyostelium an attractive model system for studying the functions of NCL proteins. Moreover, the ability of human NCL proteins to rescue gene-deficiency phenotypes in Dictyostelium suggests that the biological pathways regulating NCL protein function are likely conserved from Dictyostelium to human. In this review, I will discuss each of the NCL homologs in Dictyostelium in turn and describe how future studies can exploit the advantages of the system by testing new hypotheses that may ultimately lead to effective therapy options for this devastating and currently untreatable neurological disorder.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
| |
Collapse
|
27
|
Vermamoeba vermiformis-Aspergillus fumigatus relationships and comparison with other phagocytic cells. Parasitol Res 2016; 115:4097-4105. [PMID: 27381330 DOI: 10.1007/s00436-016-5182-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
Free living amoebae (FLA) are protists ubiquitously present in the environment. Aspergillus fumigatus is a mould responsible for severe deep-seated infections, and that can be recovered in the same habitats as the FLA. By conducting coculture experiments and fungal incubation with amoebal supernatants, we report herein that Vermamoeba vermiformis, a FLA present in hospital water systems, promotes filamentation and growth of A. fumigatus. This finding is of particular importance to institutions whose water systems might harbor FLA and could potentially be used by immunocompromised patients. Also, the relationships between V. vermiformis and A. fumigatus were compared to those between this fungus and two other phagocytic cells: Acanthamoeba castellanii, another FLA, and macrophage-like THP-1 cells. After 4 h of coincubation, the percentages of the three phagocytic cell types with adhered conidia were similar, even though the types of receptors between FLA and macrophagic cell seemed different. However, the percentage of THP-1 with internalized conidia was considerably lower (40 %) in comparison with the two other cell types (100 %). Thus, this study revealed that interactions between A. fumigatus and these three phagocytic cell types show similarities, even though it is premature to extrapolate these results to interpret relationships between A. fumigatus and macrophages.
Collapse
|
28
|
Paquet VE, Charette SJ. Amoeba-resisting bacteria found in multilamellar bodies secreted by Dictyostelium discoideum: social amoebae can also package bacteria. FEMS Microbiol Ecol 2016; 92:fiw025. [PMID: 26862140 DOI: 10.1093/femsec/fiw025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 11/14/2022] Open
Abstract
Many bacteria can resist phagocytic digestion by various protozoa. Some of these bacteria (all human pathogens) are known to be packaged in multilamellar bodies produced in the phagocytic pathway of the protozoa and that are secreted into the extracellular milieu. Packaged bacteria are protected from harsh conditions, and the packaging process is suspected to promote bacterial persistence in the environment. To date, only a limited number of protozoa, belonging to free-living amoebae and ciliates, have been shown to perform bacteria packaging. It is still unknown if social amoebae can do bacteria packaging. The link between the capacity of 136 bacterial isolates to resist the grazing of the social amoeba Dictyostelium discoideum and to be packaged by this amoeba was investigated in the present study. The 45 bacterial isolates displaying a resisting phenotype were tested for their capacity to be packaged. A total of seven isolates from Cupriavidus, Micrococcus, Microbacterium and Rathayibacter genera seemed to be packaged and secreted by D. discoideum based on immunofluorescence results. Electron microscopy confirmed that the Cupriavidus and Rathayibacter isolates were formally packaged. These results show that social amoebae can package some bacteria from the environment revealing a new aspect of microbial ecology.
Collapse
Affiliation(s)
- Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Hôpital Laval, Quebec City, QC, G1V 4G5, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Hôpital Laval, Quebec City, QC, G1V 4G5, Canada Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
29
|
Hillmann F, Novohradská S, Mattern DJ, Forberger T, Heinekamp T, Westermann M, Winckler T, Brakhage AA. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ Microbiol 2015; 17:2858-69. [PMID: 25684622 DOI: 10.1111/1462-2920.12808] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 02/06/2023]
Abstract
Filamentous fungi represent classical examples for environmentally acquired human pathogens whose major virulence mechanisms are likely to have emerged long before the appearance of innate immune systems. In natural habitats, amoeba predation could impose a major selection pressure towards the acquisition of virulence attributes. To test this hypothesis, we exploited the amoeba Dictyostelium discoideum to study its interaction with Aspergillus fumigatus, two abundant soil inhabitants for which we found co-occurrence in various sites. Fungal conidia were efficiently taken up by D. discoideum, but ingestion was higher when conidia were devoid of the green fungal spore pigment dihydroxynaphtalene melanin, in line with earlier results obtained for immune cells. Conidia were able to survive phagocytic processing, and intracellular germination was initiated only after several hours of co-incubation which eventually led to a lethal disruption of the host cell. Besides phagocytic interactions, both amoeba and fungus secreted cross inhibitory factors which suppressed fungal growth or induced amoeba aggregation with subsequent cell lysis, respectively. On the fungal side, we identified gliotoxin as the major fungal factor killing Dictyostelium, supporting the idea that major virulence attributes, such as escape from phagocytosis and the secretion of mycotoxins are beneficial to escape from environmental predators.
Collapse
Affiliation(s)
- Falk Hillmann
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | - Silvia Novohradská
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | - Derek J Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | - Tilmann Forberger
- Department of Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | | | - Thomas Winckler
- Department of Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| |
Collapse
|