1
|
Swistak L, Albert M, Valenzuela C, Gokerkucuk EB, Bontems F, Tachon S, Egger KT, Gazi AD, Sartori-Rupp A, Lesser CF, Paul-Gilloteaux P, Tinevez JY, Vos M, Enninga J. The bacterial type three secretion system induces mechanoporation of vacuolar membranes. PLoS Biol 2025; 23:e3003135. [PMID: 40310862 PMCID: PMC12045489 DOI: 10.1371/journal.pbio.3003135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 05/03/2025] Open
Abstract
Endomembrane breaching is a crucial strategy employed by intracellular pathogens enclosed within vacuoles to access the nutrient-rich cytosol for intracellular replication. While bacteria use various mechanisms to compromise host membranes, the specific processes and factors involved are often unknown. Shigella flexneri, a major human pathogen, accesses the cytosol relying on the Type Three Secretion System (T3SS) and secreted effectors. Using in-cell correlative light and electron microscopy, we tracked the sequential steps of Shigella host cell entry. Moreover, we captured the T3SS, which projects a needle from the bacterial surface, in the process of puncturing holes in the vacuolar membrane. This initial puncture ensures disruption of the vacuole. Together this introduces the concept of mechanoporation via a bacterial secretion system as a crucial process for bacterial pathogen-induced membrane damage.
Collapse
Affiliation(s)
- Léa Swistak
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - Marvin Albert
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - Elif Begum Gokerkucuk
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - François Bontems
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology, Paris, France
- Département de Biologie et Chimie Structurales, Institut de Chimie des Substances Naturelles, CNRS UPR2301, Gif-sur-Yvette, France
| | - Stéphane Tachon
- Institut Pasteur, Université Paris Cité, NanoImaging Core Facility, Paris, France
| | - Keith T. Egger
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - Anastasia D. Gazi
- Institut Pasteur, Université Paris Cité, Ultrastructural BioImaging Core Facility, Paris, France
| | - Anna Sartori-Rupp
- Institut Pasteur, Université Paris Cité, NanoImaging Core Facility, Paris, France
| | - Cammie F. Lesser
- Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Matthijn Vos
- Institut Pasteur, Université Paris Cité, NanoImaging Core Facility, Paris, France
| | - Jost Enninga
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| |
Collapse
|
2
|
Salgado-Morales R, Barba-Xochipa K, Martínez-Ocampo F, Dantán-González E, Hernández-Mendoza A, Quiterio-Trenado M, Rodríguez-Santiago M, Rivera-Ramírez A. Pangenome-Wide Association Study in the Chlamydiaceae Family Reveals Key Evolutionary Aspects of Their Relationship with Their Hosts. Int J Mol Sci 2024; 25:12671. [PMID: 39684382 DOI: 10.3390/ijms252312671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
The Chlamydiaceae are a family of obligate intracellular bacteria known for their unique biphasic developmental cycle. Chlamydial are associated with various host organisms, including humans, and have been proposed as emerging pathogens. Genomic studies have significantly enhanced our understanding of chlamydial biology, host adaptation, and evolutionary processes. In this study, we conducted a complete pangenome association analysis (pan-GWAS) using 101 genomes from the Chlamydiaceae family to identify differentially represented genes in Chlamydia and Chlamydophila, revealing their distinct evolutionary strategies for interacting with eukaryotic hosts. Our analysis identified 289 genes with differential abundance between the two clades: 129 showed a strong association with Chlamydia and 160 with Chlamydophila. Most genes in Chlamydia were related to the type III secretion system, while Chlamydophila genes corresponded to various functional categories, including translation, replication, transport, and metabolism. These findings suggest that Chlamydia has developed a high dependence on mammalian cells for replication, facilitated by a complex T3SS for intracellular manipulation. In contrast, the metabolic and functional diversity in Chlamydophila allows it to colonize a broad range of hosts, such as birds, reptiles, amphibians, and mammals, making it a less specialized clade.
Collapse
Affiliation(s)
- Rosalba Salgado-Morales
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Karla Barba-Xochipa
- Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Universidad 1, Tlaxcala de Xicohténcatl CP 90000, Mexico
| | - Fernando Martínez-Ocampo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
- Programa de Estancias Posdoctorales por México 2022(3), Modalidad Académica-Inicial, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez CP 03940, Mexico
| | - Edgar Dantán-González
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Armando Hernández-Mendoza
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Manuel Quiterio-Trenado
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca CP 62100, Mexico
| | - Magdalena Rodríguez-Santiago
- Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Universidad 1, Tlaxcala de Xicohténcatl CP 90000, Mexico
| | - Abraham Rivera-Ramírez
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| |
Collapse
|
3
|
Giménez A, Del Giudice MG, López PV, Guaimas F, Sámano-Sánchez H, Gibson TJ, Chemes LB, Arregui CO, Ugalde JE, Czibener C. Brucella NpeA is a secreted Type IV effector containing an N-WASP-binding short linear motif that promotes niche formation. mBio 2024; 15:e0072624. [PMID: 38847540 PMCID: PMC11253601 DOI: 10.1128/mbio.00726-24] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/01/2024] [Indexed: 07/18/2024] Open
Abstract
The modulation of actin polymerization is a common theme among microbial pathogens. Even though microorganisms show a wide repertoire of strategies to subvert the activity of actin, most of them converge in the ones that activate nucleating factors, such as the Arp2/3 complex. Brucella spp. are intracellular pathogens capable of establishing chronic infections in their hosts. The ability to subvert the host cell response is dependent on the capacity of the bacterium to attach, invade, avoid degradation in the phagocytic compartment, replicate in an endoplasmic reticulum-derived compartment and egress. Even though a significant number of mechanisms deployed by Brucella in these different phases have been identified and characterized, none of them have been described to target actin as a cellular component. In this manuscript, we describe the identification of a novel virulence factor (NpeA) that promotes niche formation. NpeA harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP and stabilizes the autoinhibited state. Our results show that NpeA is secreted in a Type IV secretion system-dependent manner and that deletion of the gene diminishes the intracellular replication capacity of the bacterium. In vitro and ex vivo experiments demonstrate that NpeA binds N-WASP and that the short linear motif is required for the biological activity of the protein.IMPORTANCEThe modulation of actin-binding effectors that regulate the activity of this fundamental cellular protein is a common theme among bacterial pathogens. The neural Wiskott-Aldrich syndrome protein (N-WASP) is a protein that several pathogens target to hijack actin dynamics. The highly adapted intracellular bacterium Brucella has evolved a wide repertoire of virulence factors that modulate many activities of the host cell to establish successful intracellular replication niches, but, to date, no effector proteins have been implicated in the modulation of actin dynamics. We present here the identification of a virulence factor that harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP stabilizing its autoinhibited state. We demonstrate that this protein is a Type IV secretion effector that targets N-WASP-promoting intracellular survival and niche formation.
Collapse
Affiliation(s)
- Agostina Giménez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Mariela G. Del Giudice
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Paula V. López
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Francisco Guaimas
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Hugo Sámano-Sánchez
- Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
- Biomedical Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Toby J. Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lucía B. Chemes
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Carlos O. Arregui
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Juan E. Ugalde
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Cecilia Czibener
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
4
|
Romero MD, Carabeo RA. Dynamin-dependent entry of Chlamydia trachomatis is sequentially regulated by the effectors TarP and TmeA. Nat Commun 2024; 15:4926. [PMID: 38858371 PMCID: PMC11164928 DOI: 10.1038/s41467-024-49350-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
Chlamydia invasion of epithelial cells is a pathogen-driven process involving two functionally distinct effectors - TarP and TmeA. They collaborate to promote robust actin dynamics at sites of entry. Here, we extend studies on the molecular mechanism of invasion by implicating the host GTPase dynamin 2 (Dyn2) in the completion of pathogen uptake. Importantly, Dyn2 function is modulated by TarP and TmeA at the levels of recruitment and activation through oligomerization, respectively. TarP-dependent recruitment requires phosphatidylinositol 3-kinase and the small GTPase Rac1, while TmeA has a post-recruitment role related to Dyn2 oligomerization. This is based on the rescue of invasion duration and efficiency in the absence of TmeA by the Dyn2 oligomer-stabilizing small molecule activator Ryngo 1-23. Notably, Dyn2 also regulated turnover of TarP- and TmeA-associated actin networks, with disrupted Dyn2 function resulting in aberrant turnover dynamics, thus establishing the interdependent functional relationship between Dyn2 and the effectors TarP and TmeA.
Collapse
Affiliation(s)
- Matthew D Romero
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rey A Carabeo
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Asarnow D, Becker VA, Bobe D, Dubbledam C, Johnston JD, Kopylov M, Lavoie NR, Li Q, Mattingly JM, Mendez JH, Paraan M, Turner J, Upadhye V, Walsh RM, Gupta M, Eng ET. Recent advances in infectious disease research using cryo-electron tomography. Front Mol Biosci 2024; 10:1296941. [PMID: 38288336 PMCID: PMC10822977 DOI: 10.3389/fmolb.2023.1296941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
With the increasing spread of infectious diseases worldwide, there is an urgent need for novel strategies to combat them. Cryogenic sample electron microscopy (cryo-EM) techniques, particularly electron tomography (cryo-ET), have revolutionized the field of infectious disease research by enabling multiscale observation of biological structures in a near-native state. This review highlights the recent advances in infectious disease research using cryo-ET and discusses the potential of this structural biology technique to help discover mechanisms of infection in native environments and guiding in the right direction for future drug discovery.
Collapse
Affiliation(s)
- Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Vada A. Becker
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| | - Daija Bobe
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Charlie Dubbledam
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jake D. Johnston
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | - Mykhailo Kopylov
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Nathalie R. Lavoie
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, United States
| | - Qiuye Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob M. Mattingly
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Joshua H. Mendez
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Mohammadreza Paraan
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jack Turner
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Richard M. Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology and Harvard Medical School, Boston, MA, United States
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Edward T. Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| |
Collapse
|
6
|
Degn LLT, Bech D, Christiansen G, Birkelund S. Lack of neutralization of Chlamydia trachomatis infection by high avidity monoclonal antibodies to surface-exposed major outer membrane protein variable domain IV. Mol Immunol 2023; 163:163-173. [PMID: 37801817 DOI: 10.1016/j.molimm.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/21/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
Chlamydia trachomatis is the leading cause of sexually transmitted diseases causing frequent, long-lasting, and often asymptomatic recurrent infections resulting in severe reproductive complications. C. trachomatis is an intracellular Gram-negative bacterium with a biphasic developmental cycle in which extracellular, infectious elementary bodies (EB) alternate with the intracellular replicating reticulate bodies (RB). The outer membrane of EB consists of a tight disulfide cross-linking protein network. The most essential protein is the 42 kDa major outer membrane protein (MOMP) that contributes to the rigid structural integrity of the outer membrane. MOMP is a transmembrane protein with a β-barrel structure consisting of four variable domains (VD) separated by five constant domains. VDIV possesses surface-exposed species-specific epitopes recognized by the immune system and, therefore, functions as a candidate for vaccine development. To analyze the protective contribution of antibodies for a MOMP vaccine, we investigated the specificity and binding characteristics of two monoclonal antibodies (MAb)224.2 and MAb244.4 directed against C. trachomatis serovar D MOMP. By immunoelectron microscopy, we found that both MAb bind to the surface of C. trachomatis EB. By epitope mapping, we characterized the MOMP epitope as linear consisting of 6 amino acids: 322TIAGAGD328. By ELISA it was shown that both antibodies bind with a higher avidity to the chlamydial surface compared to binding to monomeric MOMP, indicating that the antibodies bind divalently to the surface of C. trachomatis EB. Despite strong binding to the chlamydial surface, the antibodies only partially reduced the infectivity. This may be explained by the observation that even though both MAb covered the EB surface, antibodies could not be regularly detected on EB after the uptake into the host cell.
Collapse
Affiliation(s)
- Laura Lind Throne Degn
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark; Department of Clinical Medicine, Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32, 9000 Aalborg, Denmark
| | - Ditte Bech
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark.
| |
Collapse
|
7
|
Zhao C, Lu D, Zhao Q, Ren C, Zhang H, Zhai J, Gou J, Zhu S, Zhang Y, Gong X. Computational methods for in situ structural studies with cryogenic electron tomography. Front Cell Infect Microbiol 2023; 13:1135013. [PMID: 37868346 PMCID: PMC10586593 DOI: 10.3389/fcimb.2023.1135013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/29/2023] [Indexed: 10/24/2023] Open
Abstract
Cryo-electron tomography (cryo-ET) plays a critical role in imaging microorganisms in situ in terms of further analyzing the working mechanisms of viruses and drug exploitation, among others. A data processing workflow for cryo-ET has been developed to reconstruct three-dimensional density maps and further build atomic models from a tilt series of two-dimensional projections. Low signal-to-noise ratio (SNR) and missing wedge are two major factors that make the reconstruction procedure challenging. Because only few near-atomic resolution structures have been reconstructed in cryo-ET, there is still much room to design new approaches to improve universal reconstruction resolutions. This review summarizes classical mathematical models and deep learning methods among general reconstruction steps. Moreover, we also discuss current limitations and prospects. This review can provide software and methods for each step of the entire procedure from tilt series by cryo-ET to 3D atomic structures. In addition, it can also help more experts in various fields comprehend a recent research trend in cryo-ET. Furthermore, we hope that more researchers can collaborate in developing computational methods and mathematical models for high-resolution three-dimensional structures from cryo-ET datasets.
Collapse
Affiliation(s)
- Cuicui Zhao
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Da Lu
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Qian Zhao
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Chongjiao Ren
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Huangtao Zhang
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Jiaqi Zhai
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Jiaxin Gou
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Shilin Zhu
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Yaqi Zhang
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Xinqi Gong
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
- Beijing Academy of Intelligence, Beijing, China
| |
Collapse
|
8
|
Romero MD, Carabeo RA. Dynamin-dependent entry of Chlamydia trachomatis is sequentially regulated by the effectors TarP and TmeA. RESEARCH SQUARE 2023:rs.3.rs-3376558. [PMID: 37841835 PMCID: PMC10571596 DOI: 10.21203/rs.3.rs-3376558/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Chlamydia invasion of epithelial cells is a pathogen-driven process involving two functionally distinct effectors - TarP and TmeA. They collaborate to promote robust actin dynamics at sites of entry. Here, we extend studies on the molecular mechanism of invasion by implicating the host GTPase dynamin 2 (Dyn2) in the completion of pathogen uptake. Importantly, Dyn2 function is modulated by TarP and TmeA at the levels of recruitment and activation through oligomerization, respectively. TarP-dependent recruitment requires phosphatidylinositol 3-kinase and the small GTPase Rac1, while TmeA has a post-recruitment role related to Dyn2 oligomerization. This is based on the rescue of invasion duration and efficiency in the absence of TmeA by the Dyn2 oligomer-stabilizing small molecule activator Ryngo 1-23. Notably, Dyn2 also regulated turnover of TarP- and TmeA-associated actin networks, with disrupted Dyn2 function resulting in aberrant turnover dynamics, thus establishing the interdependent functional relationship between Dyn2 and the effectors TarP and TmeA.
Collapse
Affiliation(s)
- Matthew D. Romero
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
9
|
Abstract
Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.
Collapse
Affiliation(s)
- Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, Omaha, Nebraska, USA
| |
Collapse
|
10
|
Chiarelli TJ, Grieshaber NA, Appa C, Grieshaber SS. Computational Modeling of the Chlamydial Developmental Cycle Reveals a Potential Role for Asymmetric Division. mSystems 2023; 8:e0005323. [PMID: 36927072 PMCID: PMC10134819 DOI: 10.1128/msystems.00053-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that progresses through an essential multicell form developmental cycle. Infection of the host is initiated by the elementary body (EB). Once in the host, the EB cell differentiates into the noninfectious, but replication-competent, reticulate body, or RB. After multiple rounds of replication, RBs undergo secondary differentiation, eventually producing newly infectious EBs. Here, we generated paired cell-type promoter reporter constructs and determined the kinetics of the activities of the euo, hctA, and hctB promoters. The paired constructs revealed that the developmental cycle produces at least three phenotypically distinct cell types, the RB (euoprom+), intermediate body (IB; hctAprom+), and EB (hctBprom+). The kinetic data from the three dual-promoter constructs were used to generate two computational agent-based models to reproduce the chlamydial developmental cycle. Both models simulated EB germination, RB amplification, IB formation, and EB production but differed in the mechanism that generated the IB. The direct conversion and the asymmetric production models predicted different behaviors for the RB population, which were experimentally testable. In agreement with the asymmetric production model, RBs acted as stem cells after the initial amplification stage, producing one IB and self-renewing after every division. We also demonstrated that IBs are a transient cell population, maturing directly into EBs after formation without the need for cell division. The culmination of these results suggests that the developmental cycle can be described by a four-stage model, EB germination, RB amplification/maturation, IB production, and EB formation. IMPORTANCE Chlamydia trachomatis is an obligate intracellular bacterial pathogen responsible for both ocular and sexually transmitted infections. All Chlamydiae are reliant on a complex developmental cycle, consisting of both infectious and noninfectious cell forms. The EB cell form initiates infection, whereas the RB cell replicates. The infectious cycle requires both cell types, as RB replication increases the cell population while EB formation disseminates the infection to new hosts. The mechanisms of RB-to-EB development are largely unknown. Here, we developed unique dual promoter reporters and used live-cell imaging and confocal microscopy to visualize the cycle at the single-cell and kinetic levels. These data were used to develop and test two agent-based models, simulating either direct conversion of RBs to EBs or production of EBs via asymmetric RB division. Our results suggest that RBs mature into a stem cell-like population producing intermediate cell forms through asymmetric division, followed by maturation of the intermediate cell type into the infectious EB. Ultimately, a more complete mechanistic understanding of the developmental cycle will lead to novel therapeutics targeting cell type development to eliminate chlamydial dissemination.
Collapse
Affiliation(s)
| | | | - Cody Appa
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | |
Collapse
|
11
|
Sharafutdinov I, Knorr J, Rottner K, Backert S, Tegtmeyer N. Cortactin: A universal host cytoskeletal target of Gram-negative and Gram-positive bacterial pathogens. Mol Microbiol 2022; 118:623-636. [PMID: 36396951 DOI: 10.1111/mmi.15002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Pathogenic bacteria possess a great potential of causing infectious diseases and represent a serious threat to human and animal health. Understanding the molecular basis of infection development can provide new valuable strategies for disease prevention and better control. In host-pathogen interactions, actin-cytoskeletal dynamics play a crucial role in the successful adherence, invasion, and intracellular motility of many intruding microbial pathogens. Cortactin, a major cellular factor that promotes actin polymerization and other functions, appears as a central regulator of host-pathogen interactions and different human diseases including cancer development. Various important microbes have been reported to hijack cortactin signaling during infection. The primary regulation of cortactin appears to proceed via serine and/or tyrosine phosphorylation events by upstream kinases, acetylation, and interaction with various other host proteins, including the Arp2/3 complex, filamentous actin, the actin nucleation promoting factor N-WASP, focal adhesion kinase FAK, the large GTPase dynamin-2, the guanine nucleotide exchange factor Vav2, and the actin-stabilizing protein CD2AP. Given that many signaling factors can affect cortactin activities, several microbes target certain unique pathways, while also sharing some common features. Here we review our current knowledge of the hallmarks of cortactin as a major target for eminent Gram-negative and Gram-positive bacterial pathogens in humans.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jakob Knorr
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Gundlach KA, Briegel A. Zooming in on host-symbiont interactions: advances in cryo-EM sample processing methods and future application to symbiotic tissues. Symbiosis 2022. [DOI: 10.1007/s13199-022-00859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractAnimals, plants, and fungi live in a microbe-dominated world. Investigating the interactions and processes at the host-microbe interface offers insight to how bacteria influence the development, health, and disease of the host. Optimization of existing imaging technologies and development of novel instrumentation will provide the tools needed to fully understand the dynamic relationship that occurs at the host-microbe interface throughout the lifetime of the host. In this review, we describe the current methods used in cryo-electron microscopy (cryo-EM) including cryo-fixation, sample processing, FIB-SEM, and cryotomography. Further, we highlight the new advances associated with these methods that open the cryo-EM discipline to large, complex multicellular samples, like symbiotic tissues. We describe the advantages and challenges associated with correlative imaging techniques and sample thinning methods like lift-out. By highlighting recent pioneering studies in the large-volume or symbiotic sample workflows, we provide insight into how symbiotic model systems will benefit from cryo-EM methods to provide artefact-free, near-native, macromolecular-scale resolution imaging at the host-microbe interface throughout the development and maintenance of symbiosis. Cryo-EM methods have brought a deep fundamental understanding of prokaryotic biology since its conception. We propose the application of existing and novel cryo-EM techniques to symbiotic systems is the logical next step that will bring an even greater understanding how microbes interact with their host tissues.
Collapse
|
13
|
Jenkins J, Worrall L, Strynadka N. Recent structural advances towards understanding of the bacterial type III secretion injectisome. Trends Biochem Sci 2022; 47:795-809. [DOI: 10.1016/j.tibs.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022]
|
14
|
Vorimore F, Hölzer M, Liebler-Tenorio EM, Barf LM, Delannoy S, Vittecoq M, Wedlarski R, Lécu A, Scharf S, Blanchard Y, Fach P, Hsia RC, Bavoil PM, Rosselló-Móra R, Laroucau K, Sachse K. Evidence for the existence of a new genus Chlamydiifrater gen. nov. inside the family Chlamydiaceae with two new species isolated from flamingo (Phoenicopterus roseus): Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris sp. nov. Syst Appl Microbiol 2021; 44:126200. [PMID: 34298369 DOI: 10.1016/j.syapm.2021.126200] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
Abstract
The family Chlamydiaceae currently comprises a single genus Chlamydia, with 11 validly published species and seven more taxa. It includes the human pathogens Chlamydia (C.) trachomatis, C. pneumoniae and C. psittaci, a zoonotic agent causing avian chlamydiosis and human psittacosis, as well as other proven or potential pathogens in ruminants, birds, snakes, reptiles and turtles. During routine testing of 15 apparently healthy captive flamingos in a zoo in 2011, an atypical strain of Chlamydiaceae was detected by real-time PCR of cloacal swab samples. Sequence analysis of the 16S rRNA gene revealed high similarity to the uncultured Chlamydiales bacterium clone 122, which previously had been found in gulls. As more samples were collected during annual campaigns of the flamingo ringing program in southern France from 2012 to 2015, Chlamydiaceae-specific DNA was detected by PCR in 30.9% of wild birds. From these samples, three strains were successfully grown in cell culture. Ultrastructural analysis, comparison of 16S and 23S rRNA gene sequences, whole-genome analysis based on de novo hybrid-assembled sequences of the new strains as well as subsequent calculation of taxonomic parameters revealed that the relatedness of the flamingo isolates to established members of the family Chlamydiaceae was sufficiently distant to indicate that the three strains belong to two distinct species within a new genus. Based on these data, we propose the introduction of Chlamydiifrater gen. nov., as a new genus, and Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris sp. nov., as two new species of the genus.
Collapse
Affiliation(s)
- F Vorimore
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonoses Unit, Maisons-Alfort, France.
| | - M Hölzer
- Robert Koch Institute, MF1 Bioinformatics, Berlin, Germany
| | - E M Liebler-Tenorio
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Molecular Pathogenesis, Germany
| | - L-M Barf
- Friedrich-Schiller-Universität Jena, RNA Bioinformatics and High-Throughput Analysis, Jena, Germany
| | - S Delannoy
- University Paris-Est, Anses, Food Research Laboratory, IdentyPath Platform, Maisons-Alfort, France
| | - M Vittecoq
- Tour du Valat, Centre de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc, Arles, France
| | - R Wedlarski
- Bioparc - Zoo de Doué la fontaine, 103 rue de Cholet, 49700 Doué la Fontaine, France
| | - A Lécu
- Parc Zoologique de Paris, avenue de Daumesnil, 75012 Paris, France
| | - S Scharf
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Molecular Pathogenesis, Germany
| | - Y Blanchard
- Unit of Viral Genetics and Biosafety, ANSES, Laboratory of Ploufragan, Ploufragan, France
| | - P Fach
- University Paris-Est, Anses, Food Research Laboratory, IdentyPath Platform, Maisons-Alfort, France
| | - R C Hsia
- University of Maryland, Electron Microscopy Core Imaging Facility, Baltimore, MD 21201, USA
| | - P M Bavoil
- University of Maryland, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA
| | - R Rosselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies, 07190 Esporles, Spain
| | - K Laroucau
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonoses Unit, Maisons-Alfort, France
| | - K Sachse
- Friedrich-Schiller-Universität Jena, RNA Bioinformatics and High-Throughput Analysis, Jena, Germany
| |
Collapse
|
15
|
Khakzad H, Happonen L, Tran Van Nhieu G, Malmström J, Malmström L. In vivo Cross-Linking MS of the Complement System MAC Assembled on Live Gram-Positive Bacteria. Front Genet 2021; 11:612475. [PMID: 33488677 PMCID: PMC7820895 DOI: 10.3389/fgene.2020.612475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022] Open
Abstract
Protein–protein interactions are central in many biological processes, but they are challenging to characterize, especially in complex samples. Protein cross-linking combined with mass spectrometry (MS) and computational modeling is gaining increased recognition as a viable tool in protein interaction studies. Here, we provide insights into the structure of the multicomponent human complement system membrane attack complex (MAC) using in vivo cross-linking MS combined with computational macromolecular modeling. We developed an affinity procedure followed by chemical cross-linking on human blood plasma using live Streptococcus pyogenes to enrich for native MAC associated with the bacterial surface. In this highly complex sample, we identified over 100 cross-linked lysine–lysine pairs between different MAC components that enabled us to present a quaternary model of the assembled MAC in its native environment. Demonstrating the validity of our approach, this MAC model is supported by existing X-ray crystallographic and electron cryo-microscopic models. This approach allows the study of protein–protein interactions in native environment mimicking their natural milieu. Its high potential in assisting and refining data interpretation in electron cryo-tomographic experiments will be discussed.
Collapse
Affiliation(s)
- Hamed Khakzad
- Equipe Signalisation Calcique et Infections Microbiennes, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France.,Institut National de la Santé et de la Recherche Médicale U1282, Gif-sur-Yvette, France
| | - Lotta Happonen
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Guy Tran Van Nhieu
- Equipe Signalisation Calcique et Infections Microbiennes, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France.,Institut National de la Santé et de la Recherche Médicale U1282, Gif-sur-Yvette, France
| | - Johan Malmström
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Lars Malmström
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Faris R, McCullough A, Andersen SE, Moninger TO, Weber MM. The Chlamydia trachomatis secreted effector TmeA hijacks the N-WASP-ARP2/3 actin remodeling axis to facilitate cellular invasion. PLoS Pathog 2020; 16:e1008878. [PMID: 32946535 PMCID: PMC7526919 DOI: 10.1371/journal.ppat.1008878] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022] Open
Abstract
As an obligate intracellular pathogen, host cell invasion is paramount to Chlamydia trachomatis proliferation. While the mechanistic underpinnings of this essential process remain ill-defined, it is predicted to involve delivery of prepackaged effector proteins into the host cell that trigger plasma membrane remodeling and cytoskeletal reorganization. The secreted effector proteins TmeA and TarP, have risen to prominence as putative key regulators of cellular invasion and bacterial pathogenesis. Although several studies have begun to unravel molecular details underlying the putative function of TarP, the physiological function of TmeA during host cell invasion is unknown. Here, we show that TmeA employs molecular mimicry to bind to the GTPase binding domain of N-WASP, which results in recruitment of the actin branching ARP2/3 complex to the site of chlamydial entry. Electron microscopy revealed that TmeA mutants are deficient in filopodia capture, suggesting that TmeA/N-WASP interactions ultimately modulate host cell plasma membrane remodeling events necessary for chlamydial entry. Importantly, while both TmeA and TarP are necessary for effective host cell invasion, we show that these effectors target distinct pathways that ultimately converge on activation of the ARP2/3 complex. In line with this observation, we show that a double mutant suffers from a severe entry defect nearly identical to that observed when ARP3 is chemically inhibited or knocked down. Collectively, our study highlights both TmeA and TarP as essential regulators of chlamydial invasion that modulate the ARP2/3 complex through distinct signaling platforms, resulting in plasma membrane remodeling events that are essential for pathogen uptake.
Collapse
Affiliation(s)
- Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alix McCullough
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Shelby E. Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Thomas O. Moninger
- Central Microscopy Research Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| |
Collapse
|
17
|
Gitsels A, Van Lent S, Sanders N, Vanrompay D. Chlamydia: what is on the outside does matter. Crit Rev Microbiol 2020; 46:100-119. [PMID: 32093536 DOI: 10.1080/1040841x.2020.1730300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review summarises major highlights on the structural biology of the chlamydial envelope. Chlamydiae are obligate intracellular bacteria, characterised by a unique biphasic developmental cycle. Depending on the stage of their lifecycle, they appear in the form of elementary or reticulate bodies. Since these particles have distinctive functions, it is not surprising that their envelope differs in lipid as well as in protein content. Vice versa, by identifying surface proteins, specific characteristics of the particles such as rigidity or immunogenicity may be deduced. Detailed information on the bacterial membranes will increase our understanding on the host-pathogen interactions chlamydiae employ to survive and grow and might lead to new strategies to battle chlamydial infections.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah Van Lent
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria-human protein interactions. Med Microbiol Immunol 2020; 209:265-275. [PMID: 32072248 PMCID: PMC7223518 DOI: 10.1007/s00430-020-00663-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/30/2020] [Indexed: 01/01/2023]
Abstract
A central challenge in infection medicine is to determine the structure and function of host-pathogen protein-protein interactions to understand how these interactions facilitate bacterial adhesion, dissemination and survival. In this review, we focus on proteomics, electron cryo-microscopy and structural modeling to showcase instances where affinity-purification (AP) and cross-linking (XL) mass spectrometry (MS) has advanced our understanding of host-pathogen interactions. We highlight cases where XL-MS in combination with structural modeling has provided insight into the quaternary structure of interspecies protein complexes. We further exemplify how electron cryo-tomography has been used to visualize bacterial-human interactions during attachment and infection. Lastly, we discuss how AP-MS, XL-MS and electron cryo-microscopy and -tomography together with structural modeling approaches can be used in future studies to broaden our knowledge regarding the function, dynamics and evolution of such interactions. This knowledge will be of relevance for future drug and vaccine development programs.
Collapse
|
19
|
Castellanos Hernández N, Castañeda Franco YM, Caro Burgos PA, Sánchez Mora RM. Perspectivas en investigación:. NOVA 2020. [DOI: 10.22490/24629448.3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) es una bacteria Gram negativa inmóvil, caracterizada por ser un microorganismo intracelular obligado y por poseer un ciclo reproductivo en el que puede distinguirse una forma infecciosa extracelular metabólicamente inerte (cuerpo elemental - EB’s), y una forma no infecciosa intracelular y activa (cuerpo reticulado - RB’s). C trachomatis se caracteriza por causar infección en humanos, está relacionada con enfermedades de transmisión sexual e infecciones oculares; por lo que puede conllevar a secuelas de interés, si no se da un tratamiento oportuno. El objetivo de este estudio fue optimizar el modelo de infección de C. trachomatis en células HEp-2 con cuerpos elementales (EB’s) de C. trachomatis serovar L2. Inicialmente, se establecieron las condiciones para el crecimiento adecuado de las células HEp-2 en tiempo y con una confluencia del 90%, para continuar con la optimización de un protocolo de infección. La infección fue confirmada a partir de la coloración con Giemsa permitiendo evaluar características morfológicas tanto de las células HEp-2 sin infectar e infectadas, y así mismo, de los cuerpos elementales de C. trachomatis. Finalmente, se corroboró la infección con la técnica de inmunofluorescencia directa que detecta la proteína de membrana MOMP de C. trachomatis. Tras los ensayos realizados se evidenció la presencia de cuerpos elementales próximos y dentro del citoplasma celular, así como células vacuoladas y daño celular causado por la infección.
Collapse
|
20
|
Dearnaley WJ, Schleupner B, Varano AC, Alden NA, Gonzalez F, Casasanta MA, Scharf BE, Dukes MJ, Kelly DF. Liquid-Cell Electron Tomography of Biological Systems. NANO LETTERS 2019; 19:6734-6741. [PMID: 31244227 PMCID: PMC6786937 DOI: 10.1021/acs.nanolett.9b01309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Liquid-cell electron microscopy is a rapidly growing field in the imaging domain. While real-time observations are readily available to analyze materials and biological systems, these measurementshave been limited to the two-dimensional (2-D) image plane. Here, we introduce an exciting technical advance to image materials in 3-D while enclosed in liquid. The development of liquid-cell electron tomography permitted us to observe and quantify host-pathogen interactions in solution while contained in the vacuum system of the electron microscope. In doing so, we demonstrate new insights for the rules of engagement involving a unique bacteriophage and its host bacterium. A deeper analysis of the genetic content of the phage pathogens revealed structural features of the infectious units while introducing a new paradigm for host interactions. Overall, we demonstrate a technological opportunity to elevate research efforts for in situ imaging while providing a new level of dimensionality beyond the current state of the field.
Collapse
Affiliation(s)
- William J. Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Structural Oncology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| | - Beatrice Schleupner
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| | - A. Cameron Varano
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Structural Oncology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| | - Nick A. Alden
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| | - Floricel Gonzalez
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael A. Casasanta
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Structural Oncology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Birgit E. Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Madeline J. Dukes
- Applications Science, Protochips Inc., Morrisville, North Carolina 27560, United States
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Structural Oncology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| |
Collapse
|
21
|
Bugalhão JN, Mota LJ. The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the iceberg. MICROBIAL CELL 2019; 6:414-449. [PMID: 31528632 PMCID: PMC6717882 DOI: 10.15698/mic2019.09.691] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis serovars are obligate intracellular bacterial pathogens mainly causing ocular and urogenital infections that affect millions of people worldwide and which can lead to blindness or sterility. They reside and multiply intracellularly within a membrane-bound vacuolar compartment, known as inclusion, and are characterized by a developmental cycle involving two morphologically and physiologically distinct chlamydial forms. Completion of the developmental cycle involves the secretion of > 70 C. trachomatis proteins that function in the host cell cytoplasm and nucleus, in the inclusion membrane and lumen, and in the extracellular milieu. These proteins can, for example, interfere with the host cell cytoskeleton, vesicular and non-vesicular transport, metabolism, and immune signalling. Generally, this promotes C. trachomatis invasion into, and escape from, host cells, the acquisition of nutrients by the chlamydiae, and evasion of cell-autonomous, humoral and cellular innate immunity. Here, we present an in-depth review on the current knowledge and outstanding questions about these C. trachomatis secreted proteins.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
22
|
Dolat L, Valdivia RH. A renewed tool kit to explore Chlamydia pathogenesis: from molecular genetics to new infection models. F1000Res 2019; 8. [PMID: 31249676 PMCID: PMC6589931 DOI: 10.12688/f1000research.18832.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis is the most prevalent sexually transmitted bacterial pathogen and the leading cause of preventable blindness in the developing world.
C. trachomatis invades the epithelium of the conjunctiva and genital tract and replicates within an intracellular membrane-bound compartment termed the inclusion. To invade and replicate in mammalian cells,
Chlamydia remodels epithelial surfaces by reorganizing the cytoskeleton and cell–cell adhesions, reprograms membrane trafficking, and modulates cell signaling to dampen innate immune responses. If the infection ascends to the upper female genital tract, it can result in pelvic inflammatory disease and tissue scarring.
C. trachomatis infections are associated with infertility, ectopic pregnancies, the fibrotic disorder endometriosis, and potentially cancers of the cervix and uterus. Unfortunately, the molecular mechanisms by which this clinically important human pathogen subverts host cellular functions and causes disease have remained relatively poorly understood because of the dearth of molecular genetic tools to study
Chlamydiae and limitations of both
in vivo and
in vitro infection models. In this review, we discuss recent advances in the experimental molecular tool kit available to dissect
C. trachomatis infections with a special focus on
Chlamydia-induced epithelial barrier disruption by regulating the structure, function, and dynamics of epithelial cell–cell junctions.
Collapse
Affiliation(s)
- Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| |
Collapse
|
23
|
Christensen S, McMahon RM, Martin JL, Huston WM. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Crit Rev Microbiol 2019; 45:33-50. [PMID: 30663449 DOI: 10.1080/1040841x.2018.1538933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disulphide bonds are widely used among all domains of life to provide structural stability to proteins and to regulate enzyme activity. Chlamydia spp. are obligate intracellular bacteria that are especially dependent on the formation and degradation of protein disulphide bonds. Members of the genus Chlamydia have a unique biphasic developmental cycle alternating between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body. The proteins in the envelope of the EB are heavily cross-linked with disulphides and this is known to be critical for this infectious phase. In this review, we provide a comprehensive summary of what is known about the redox state of chlamydial envelope proteins throughout the developmental cycle. We focus especially on the factors responsible for degradation and formation of disulphide bonds in Chlamydia and how this system compares with redox regulation in other organisms. Focussing on the unique biology of Chlamydia enables us to provide important insights into how specialized suites of disulphide bond (Dsb) proteins cater for specific bacterial environments and lifecycles.
Collapse
Affiliation(s)
- Signe Christensen
- a Division of Chemistry and Structural Biology , Institute for Molecular Bioscience, University of Queensland , St. Lucia , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Róisín M McMahon
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Jennifer L Martin
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Wilhelmina M Huston
- c School of Life Sciences , University of Technology Sydney , Ultimo , NSW , Australia
| |
Collapse
|
24
|
Medeiros JM, Böck D, Pilhofer M. Imaging bacteria inside their host by cryo-focused ion beam milling and electron cryotomography. Curr Opin Microbiol 2018; 43:62-68. [DOI: 10.1016/j.mib.2017.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/28/2022]
|
25
|
Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathog 2018; 14:e1007051. [PMID: 29727463 PMCID: PMC5955597 DOI: 10.1371/journal.ppat.1007051] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/16/2018] [Accepted: 04/21/2018] [Indexed: 01/08/2023] Open
Abstract
Pathogens hijack host endocytic pathways to force their own entry into eukaryotic target cells. Many bacteria either exploit receptor-mediated zippering or inject virulence proteins directly to trigger membrane reorganisation and cytoskeletal rearrangements. By contrast, extracellular C. trachomatis elementary bodies (EBs) apparently employ facets of both the zipper and trigger mechanisms and are only ~400 nm in diameter. Our cryo-electron tomography of C. trachomatis entry revealed an unexpectedly diverse array of host structures in association with invading EBs, suggesting internalisation may progress by multiple, potentially redundant routes or several sequential events within a single pathway. Here we performed quantitative analysis of actin organisation at chlamydial entry foci, highlighting filopodial capture and phagocytic cups as dominant and conserved morphological structures early during internalisation. We applied inhibitor-based screening and employed reporters to systematically assay and visualise the spatio-temporal contribution of diverse endocytic signalling mediators to C. trachomatis entry. In addition to the recognised roles of the Rac1 GTPase and its associated nucleation-promoting factor (NPF) WAVE, our data revealed an additional unrecognised pathway sharing key hallmarks of macropinocytosis: i) amiloride sensitivity, ii) fluid-phase uptake, iii) recruitment and activity of the NPF N-WASP, and iv) the localised generation of phosphoinositide-3-phosphate (PI3P) species. Given their central role in macropinocytosis and affinity for PI3P, we assessed the role of SNX-PX-BAR family proteins. Strikingly, SNX9 was specifically and transiently enriched at C. trachomatis entry foci. SNX9-/- cells exhibited a 20% defect in EB entry, which was enhanced to 60% when the cells were infected without sedimentation-induced EB adhesion, consistent with a defect in initial EB-host interaction. Correspondingly, filopodial capture of C. trachomatis EBs was specifically attenuated in SNX9-/- cells, implicating SNX9 as a central host mediator of filopodial capture early during chlamydial entry. Our findings identify an unanticipated complexity of signalling underpinning cell entry by this major human pathogen, and suggest intriguing parallels with viral entry mechanisms. Chlamydia trachomatis remains the leading bacterial agent of sexually transmitted disease worldwide and causes a form of blindness called trachoma in Developing nations, which is recognised by the World Health Organisation as a neglected tropical disease. Despite this burden, we know comparatively little about how it causes disease at a molecular level. Chlamydia must live inside human cells to survive, and here we study the mechanism of how it enters cells, which is critical to the lifecycle. We study how the bacterium exploits signalling pathways inside the cell to its own advantage to deform the cell membrane by reorganising the underlying cell skeleton, and identify new factors involved in this process. Our findings suggest intriguing similarities with how some viruses enter cells. A better understanding of these processes may help to develop future vaccines and new treatments.
Collapse
|
26
|
Cyrklaff M, Frischknecht F, Kudryashev M. Functional insights into pathogen biology from 3D electron microscopy. FEMS Microbiol Rev 2018; 41:828-853. [PMID: 28962014 DOI: 10.1093/femsre/fux041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023] Open
Abstract
In recent years, novel imaging approaches revolutionised our understanding of the cellular and molecular biology of microorganisms. These include advances in fluorescent probes, dynamic live cell imaging, superresolution light and electron microscopy. Currently, a major transition in the experimental approach shifts electron microscopy studies from a complementary technique to a method of choice for structural and functional analysis. Here we review functional insights into the molecular architecture of viruses, bacteria and parasites as well as interactions with their respective host cells gained from studies using cryogenic electron tomography and related methodologies.
Collapse
Affiliation(s)
- Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Strasse 17, 60438 Frankfurt, Germany
| |
Collapse
|
27
|
Weiss GL, Medeiros JM, Pilhofer M. In Situ Imaging of Bacterial Secretion Systems by Electron Cryotomography. Methods Mol Biol 2018; 1615:353-375. [PMID: 28667625 DOI: 10.1007/978-1-4939-7033-9_27] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The unique property of electron cryotomography (ECT) is its capability to resolve the structure of macromolecular machines in their cellular context. The integration of ECT data with high-resolution structures of purified subcomplexes and live-cell fluorescence light microscopy can generate pseudo-atomic models that lead to a mechanistic understanding across size and time scales. Recent advances in electron detection, sample thinning, data acquisition, and data processing have significantly enhanced the applicability and performance of ECT. Here we describe a detailed workflow for an ECT experiment, including cell culture, vitrification, data acquisition, data reconstruction, tomogram analysis, and subtomogram averaging. This protocol provides an entry point to the technique for students and researchers and indicates the many possible variations arising from specific target properties and the available instrumentation.
Collapse
Affiliation(s)
- Gregor L Weiss
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - João M Medeiros
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Martin Pilhofer
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093, Zürich, Switzerland.
| |
Collapse
|
28
|
|
29
|
Biphasic Metabolism and Host Interaction of a Chlamydial Symbiont. mSystems 2017; 2:mSystems00202-16. [PMID: 28593198 PMCID: PMC5451489 DOI: 10.1128/msystems.00202-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/03/2017] [Indexed: 11/20/2022] Open
Abstract
Chlamydiae are obligate intracellular bacteria comprising well-known human pathogens and ubiquitous symbionts of protists, which are characterized by a unique developmental cycle. Here we comprehensively analyzed gene expression dynamics of Protochlamydia amoebophila during infection of its Acanthamoeba host by RNA sequencing. This revealed a highly dynamic transcriptional landscape, where major transcriptional shifts are conserved among chlamydial symbionts and pathogens. Our data served to propose a time-resolved model for type III protein secretion during the developmental cycle, and we provide evidence for a biphasic metabolism of P. amoebophila during infection, which involves energy parasitism and amino acids as the carbon source during initial stages and a postreplicative switch to endogenous glucose-based ATP production. This fits well with major transcriptional changes in the amoeba host, where upregulation of complex sugar breakdown precedes the P. amoebophila metabolic switch. The biphasic chlamydial metabolism represents a unique adaptation to exploit eukaryotic host cells, which likely contributed to the evolutionary success of this group of microbes. IMPORTANCE Chlamydiae are known as major bacterial pathogens of humans, causing the ancient disease trachoma, but they are also frequently found in the environment where they infect ubiquitous protists such as amoebae. All known chlamydiae require a eukaryotic host cell to thrive. Using the environmental chlamydia Protochlamydia amoebophila within its natural host, Acanthamoeba castellanii, we investigated gene expression dynamics in vivo and throughout the complete chlamydial developmental cycle for the first time. This allowed us to infer how a major virulence mechanism, the type III secretion system, is regulated and employed, and we show that the physiology of chlamydiae undergoes a complete shift regarding carbon metabolism and energy generation. This study provides comprehensive insights into the infection strategy of chlamydiae and reveals a unique adaptation to life within a eukaryotic host cell.
Collapse
|
30
|
Boedeker C, Schüler M, Reintjes G, Jeske O, van Teeseling MCF, Jogler M, Rast P, Borchert D, Devos DP, Kucklick M, Schaffer M, Kolter R, van Niftrik L, Engelmann S, Amann R, Rohde M, Engelhardt H, Jogler C. Determining the bacterial cell biology of Planctomycetes. Nat Commun 2017; 8:14853. [PMID: 28393831 PMCID: PMC5394234 DOI: 10.1038/ncomms14853] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 02/07/2017] [Indexed: 02/08/2023] Open
Abstract
Bacteria of the phylum Planctomycetes have been previously reported to possess several features that are typical of eukaryotes, such as cytosolic compartmentalization and endocytosis-like macromolecule uptake. However, recent evidence points towards a Gram-negative cell plan for Planctomycetes, although in-depth experimental analysis has been hampered by insufficient genetic tools. Here we develop methods for expression of fluorescent proteins and for gene deletion in a model planctomycete, Planctopirus limnophila, to analyse its cell organization in detail. Super-resolution light microscopy of mutants, cryo-electron tomography, bioinformatic predictions and proteomic analyses support an altered Gram-negative cell plan for Planctomycetes, including a defined outer membrane, a periplasmic space that can be greatly enlarged and convoluted, and an energized cytoplasmic membrane. These conclusions are further supported by experiments performed with two other Planctomycetes, Gemmata obscuriglobus and Rhodopirellula baltica. We also provide experimental evidence that is inconsistent with endocytosis-like macromolecule uptake; instead, extracellular macromolecules can be taken up and accumulate in the periplasmic space through unclear mechanisms.
Collapse
Affiliation(s)
| | - Margarete Schüler
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Greta Reintjes
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Olga Jeske
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Muriel C. F. van Teeseling
- Department of Microbiology, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
- Department of Cellular Microbiology, Philipps-University Marburg, Faculty of Biology, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Mareike Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Patrick Rast
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Daniela Borchert
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Damien P. Devos
- Department of Cell biology and Biotechnology, CABD, Pablo de Olavide University-CSIC, Carretera de Utrera km1, 41013 Sevilla, Spain
| | - Martin Kucklick
- Helmholtz Center for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department of Microbial Proteomics, Technical University Braunschweig, Institute for Microbiology, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Laura van Niftrik
- Department of Microbiology, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
| | - Susanne Engelmann
- Helmholtz Center for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department of Microbial Proteomics, Technical University Braunschweig, Institute for Microbiology, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Manfred Rohde
- Helmholtz Center for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Harald Engelhardt
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christian Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
- Department of Microbiology, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
| |
Collapse
|
31
|
Abstract
Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.
Collapse
|
32
|
Abstract
Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens.
Collapse
|
33
|
Oikonomou CM, Chang YW, Jensen GJ. A new view into prokaryotic cell biology from electron cryotomography. Nat Rev Microbiol 2016; 14:205-20. [PMID: 26923112 PMCID: PMC5551487 DOI: 10.1038/nrmicro.2016.7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electron cryotomography (ECT) enables intact cells to be visualized in 3D in an essentially native state to 'macromolecular' (∼4 nm) resolution, revealing the basic architectures of complete nanomachines and their arrangements in situ. Since its inception, ECT has advanced our understanding of many aspects of prokaryotic cell biology, from morphogenesis to subcellular compartmentalization and from metabolism to complex interspecies interactions. In this Review, we highlight how ECT has provided structural and mechanistic insights into the physiology of bacteria and archaea and discuss prospects for the future.
Collapse
Affiliation(s)
- Catherine M Oikonomou
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Yi-Wei Chang
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Grant J Jensen
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| |
Collapse
|
34
|
Gold V, Kudryashev M. Recent progress in structure and dynamics of dual-membrane-spanning bacterial nanomachines. Curr Opin Struct Biol 2016; 39:1-7. [PMID: 26995496 DOI: 10.1016/j.sbi.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 02/05/2023]
Abstract
Advances in hard-ware and soft-ware for electron cryo-microscopy and tomography have provided unprecedented structural insights into large protein complexes in bacterial membranes. Tomographic volumes of native complexes in situ, combined with other structural and functional data, reveal functionally important conformational changes. Here, we review recent progress in elucidating the structure and mechanism of dual-membrane-spanning nanomachines involved in bacterial motility, adhesion, pathogenesis and biofilm formation, including the type IV pilus assembly machinery and the type III and VI secretions systems. We highlight how these new structural data shed light on the assembly and action of such machines and discuss future directions for more detailed mechanistic understanding of these massive, fascinating complexes.
Collapse
Affiliation(s)
- Vicki Gold
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany.
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Str. 17, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
35
|
Engel AC, Herbst F, Kerres A, Galle JN, Hegemann JH. The Type III Secretion System-Related CPn0809 from Chlamydia pneumoniae. PLoS One 2016; 11:e0148509. [PMID: 26895250 PMCID: PMC4760673 DOI: 10.1371/journal.pone.0148509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
Chlamydia pneumoniae is an intracellular Gram-negative bacterium that possesses a type III secretion system (T3SS), which enables the pathogen to deliver, in a single step, effector proteins for modulation of host-cell functions into the human host cell cytosol to establish a unique intracellular niche for replication. The translocon proteins located at the top of the T3SS needle filament are essential for its function, as they form pores in the host-cell membrane. Interestingly, unlike other Gram-negative bacteria, C. pneumoniae has two putative translocon operons, named LcrH_1 and LcrH_2. However, little is known about chlamydial translocon proteins. In this study, we analyzed CPn0809, one of the putative hydrophobic translocators encoded by the LcrH_1 operon, and identified an 'SseC-like family' domain characteristic of T3S translocators. Using bright-field and confocal microscopy, we found that CPn0809 is associated with EBs during early and very late phases of a C. pneumoniae infection. Furthermore, CPn0809 forms oligomers, and interacts with the T3SS chaperone LcrH_1, via its N-terminal segment. Moreover, expression of full-length CPn0809 in the heterologous host Escherichia coli causes a grave cytotoxic effect that leads to cell death. Taken together, our data indicate that CPn0809 likely represents one of the translocon proteins of the C. pneumoniae T3SS, and possibly plays a role in the translocation of effector proteins in the early stages of infection.
Collapse
Affiliation(s)
- Astrid C. Engel
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Frauke Herbst
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Anne Kerres
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jan N. Galle
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Johannes H. Hegemann
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
36
|
Abstract
The lifestyle of Chlamydiae is unique: the bacteria alternate between two morphologically distinct forms, an infectious non-replicative elementary body (EB), and a replicative, non-infectious reticulate body (RB). This review focuses on recent advances in understanding the structure and function of the infectious form of the best-studied member of the phylum, the human pathogen Chlamydia trachomatis. Once considered as an inert particle of little functional capacity, the EB is now perceived as a sophisticated entity that encounters at least three different environments during each infectious cycle. We review current knowledge on its composition and morphology, and emerging metabolic activities. These features confer resistance to the extracellular environment, the ability to penetrate a host cell and ultimately enable the EB to establish a niche enabling bacterial survival and growth. The bacterial and host molecules involved in these processes are beginning to emerge.
Collapse
|
37
|
Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nat Commun 2015; 6:10114. [PMID: 26656452 PMCID: PMC4682100 DOI: 10.1038/ncomms10114] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022] Open
Abstract
Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform–ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking ‘pump-action' conformational changes that underpin effector injection. Bacterial type III secretion systems (T3SSs) inject virulence effector proteins into eukaryotic cells and are activated by host membrane contact. Here the authors report the in situ structure of the Chlamydia trachomatis T3SS in the presence or absence of host membrane, and observe compaction of the basal body embedded in the bacterial envelope.
Collapse
|
38
|
Nans A, Ford C, Hayward RD. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis. Microbes Infect 2015; 17:727-31. [PMID: 26320027 PMCID: PMC4670903 DOI: 10.1016/j.micinf.2015.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022]
Abstract
Chlamydia trachomatis is obligate intracellular bacterial pathogen that remains a significant public health burden worldwide. A critical early event during infection is chlamydial entry into non-phagocytic host epithelial cells. Like other Gram-negative bacteria, C. trachomatis uses a type III secretion system (T3SS) to deliver virulence effector proteins into host cells. These effectors trigger bacterial uptake and promote bacterial survival and replication within the host cell. In this review, we highlight recent cryo-electron tomography that has provided striking insights into the initial interactions between Chlamydia and its host. We describe the polarised structure of extracellular C. trachomatis elementary bodies (EBs), and the supramolecular organisation of T3SS complexes on the EB surface, in addition to the changes in host and pathogen architecture that accompany bacterial internalisation and EB encapsulation into early intracellular vacuoles. Finally, we consider the implications for further understanding the mechanism of C. trachomatis entry and how this might relate to those of other bacteria and viruses.
Collapse
Affiliation(s)
- Andrea Nans
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Charlotte Ford
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Richard D Hayward
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
39
|
Ferrell JC, Fields KA. A working model for the type III secretion mechanism in Chlamydia. Microbes Infect 2015; 18:84-92. [PMID: 26515030 DOI: 10.1016/j.micinf.2015.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 01/09/2023]
Abstract
It has been appreciated for almost 20 years that members of the Chlamydiales possess a virulence-associated type III secretion mechanism. Given the obligate intracellular nature of these bacteria, defining exactly how type III secretion functions to promote pathogenesis has been challenging. We present a working model herein that is based on current evidence.
Collapse
Affiliation(s)
- Joshua C Ferrell
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Kenneth A Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
40
|
de Barsy M, Bertelli C, Jacquier N, Kebbi-Beghdadi C, Greub G. ESCCAR international congress on Rickettsia and other intracellular bacteria. Microbes Infect 2015; 17:680-8. [PMID: 26297854 DOI: 10.1016/j.micinf.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022]
Abstract
The European Society for the study of Chlamydia, Coxiella, Anaplasma and Rickettsia (ESCCAR) held his triennial international meeting in Lausanne. This meeting gathered 165 scientists from 28 countries and all 5 continents, allowing efficient networking and major scientific exchanges. Topics covered include molecular and cellular microbiology, genomics, as well as epidemiology, veterinary and human medicine. Several breakthroughs have been revealed at the meeting, such as (i) the presence of CRISPR (the "prokaryotic immune system") in chlamydiae, (ii) an Anaplasma effector involved in host chromatin remodelling, (iii) the polarity of the type III secretion system of chlamydiae during the entry process revealed by cryo-electron tomography. Moreover, the ESCCAR meeting was a unique opportunity to be exposed to cutting-edge science and to listen to comprehensive talks on current hot topics.
Collapse
Affiliation(s)
- Marie de Barsy
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
41
|
Dumoux M, Menny A, Delacour D, Hayward RD. A Chlamydia effector recruits CEP170 to reprogram host microtubule organization. J Cell Sci 2015. [PMID: 26220855 PMCID: PMC4582400 DOI: 10.1242/jcs.169318] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The obligate intracellular bacterial pathogen Chlamydia trachomatis deploys virulence effectors to subvert host cell functions enabling its replication within a specialized membrane-bound compartment termed an inclusion. The control of the host cytoskeleton is crucial for Chlamydia uptake, inclusion biogenesis and cell exit. Here, we demonstrate how a Chlamydia effector rearranges the microtubule (MT) network by initiating organization of the MTs at the inclusion surface. We identified an inclusion-localized effector that is sufficient to interfere with MT assembly, which we named inclusion protein acting on MTs (IPAM). We established that IPAM recruits and stimulates the centrosomal protein 170 kDa (CEP170) to hijack the MT organizing functions of the host cell. We show that CEP170 is essential for chlamydial control of host MT assembly, and is required for inclusion morphogenesis and bacterial infectivity. Together, we demonstrate how a pathogen effector reprograms the host MT network to support its intracellular development.
Collapse
Affiliation(s)
- Maud Dumoux
- Institute of Structural and Molecular Biology, Birkbeck and University College London, Malet Street, London WC1E 7HX, UK
| | - Anais Menny
- Institute of Structural and Molecular Biology, Birkbeck and University College London, Malet Street, London WC1E 7HX, UK
| | - Delphine Delacour
- Cell Adhesion and Mechanics Group, Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, 15 rue Helene Brion, Paris 75013, France
| | - Richard D Hayward
- Institute of Structural and Molecular Biology, Birkbeck and University College London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
42
|
Yao J, Cherian PT, Frank MW, Rock CO. Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis. J Biol Chem 2015; 290:18874-88. [PMID: 25995447 DOI: 10.1074/jbc.m115.657148] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 11/06/2022] Open
Abstract
The obligate intracellular parasite Chlamydia trachomatis has a reduced genome and is thought to rely on its mammalian host cell for nutrients. Although several lines of evidence suggest C. trachomatis utilizes host phospholipids, the bacterium encodes all the genes necessary for fatty acid and phospholipid synthesis found in free living Gram-negative bacteria. Bacterially derived phospholipids significantly increased in infected HeLa cell cultures. These new phospholipids had a distinct molecular species composition consisting of saturated and branched-chain fatty acids. Biochemical analysis established the role of C. trachomatis-encoded acyltransferases in producing the new disaturated molecular species. There was no evidence for the remodeling of host phospholipids and no change in the size or molecular species composition of the phosphatidylcholine pool in infected HeLa cells. Host sphingomyelin was associated with C. trachomatis isolated by detergent extraction, but it may represent contamination with detergent-insoluble host lipids rather than being an integral bacterial membrane component. C. trachomatis assembles its membrane systems from the unique phospholipid molecular species produced by its own fatty acid and phospholipid biosynthetic machinery utilizing glucose, isoleucine, and serine.
Collapse
Affiliation(s)
| | - Philip T Cherian
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | |
Collapse
|
43
|
Kudryashev M, Diepold A, Amstutz M, Armitage JP, Stahlberg H, Cornelis GR. Y
ersinia enterocolitica
type
III
secretion injectisomes form regularly spaced clusters, which incorporate new machines upon activation. Mol Microbiol 2015; 95:875-84. [DOI: 10.1111/mmi.12908] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Mikhail Kudryashev
- Center for Cellular Imaging and NanoAnalytics (C‐CINA) Biozentrum, University Basel WRO‐1058, Mattenstrasse 26 Basel 4058 Switzerland
- Focal Area Infection Biology Biozentrum, University of Basel Klingelbergstrasse 50/70 Basel 4056 Switzerland
| | - Andreas Diepold
- Department of Biochemistry University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Marlise Amstutz
- Focal Area Infection Biology Biozentrum, University of Basel Klingelbergstrasse 50/70 Basel 4056 Switzerland
| | - Judith P. Armitage
- Department of Biochemistry University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C‐CINA) Biozentrum, University Basel WRO‐1058, Mattenstrasse 26 Basel 4058 Switzerland
| | - Guy R. Cornelis
- Focal Area Infection Biology Biozentrum, University of Basel Klingelbergstrasse 50/70 Basel 4056 Switzerland
- Research Unit in Microorganism Biology University of Namur 61 rue de Bruxelles 5000 Namur Belgium
| |
Collapse
|
44
|
Dumoux M, Nans A, Saibil HR, Hayward RD. Making connections: snapshots of chlamydial type III secretion systems in contact with host membranes. Curr Opin Microbiol 2014; 23:1-7. [PMID: 25461566 DOI: 10.1016/j.mib.2014.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
Chlamydiae are obligate intracellular bacterial pathogens with an unusual biphasic lifecycle, which is underpinned by two bacterial forms of distinct structure and function. Bacterial entry and replication require a type III secretion system (T3SS), a widely conserved nanomachine responsible for the translocation of virulence effectors into host cells. Recent cell biology experiments supported by electron and cryo-electron tomography have provided fresh insights into Chlamydia-host interactions. In this review, we highlight some of the recent advances, particularly the in situ analysis of T3SSs in contact with host membranes during chlamydial entry and intracellular replication, and the role of the host rough endoplasmic reticulum (rER) at the recently described intracellular 'pathogen synapse'.
Collapse
Affiliation(s)
- Maud Dumoux
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Andrea Nans
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Helen R Saibil
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Richard D Hayward
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|