1
|
Ren B, Haase R, Patray S, Nguyen Q, Maco B, Dos Santos Pacheco N, Chang YW, Soldati-Favre D. Architecture of the Toxoplasma gondii apical polar ring and its role in gliding motility and invasion. Proc Natl Acad Sci U S A 2024; 121:e2416602121. [PMID: 39514309 PMCID: PMC11573658 DOI: 10.1073/pnas.2416602121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
In Toxoplasma gondii, the conoid comprises a cone with spiraling tubulin fibers, preconoidal rings, and intraconoidal microtubules. This dynamic organelle undergoes extension and retraction through the apical polar ring (APR) during egress, gliding, and invasion. The forces involved in conoid extrusion are beginning to be understood, and its role in directing F-actin flux to the pellicular space, thereby controlling parasite motility, has been proposed. However, the contribution of the APR and its interactions with the conoid remain unclear. To gain insight into the APR architecture, ultrastructure expansion microscopy was applied to pinpoint known and newly identified APR proteins (APR2 to APR7). Our results revealed that the APR is constructed as a fixed multilayered structure. Notably, conditional depletion of APR2 resulted in significant impairments in motility and invasion. Electron microscopy and cryoelectron tomography revealed that depletion of APR2 alters APR integrity, affecting conoid extrusion and causing cytosolic leakage of F-actin. These findings implicate the APR structure in directing the apico-basal flux of F-actin to regulate parasite motility and invasion.
Collapse
Affiliation(s)
- Bingjian Ren
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Sharon Patray
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Quynh Nguyen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| |
Collapse
|
2
|
Back PS, Senthilkumar V, Choi CP, Quan JJ, Lou Q, Snyder AK, Ly AM, Lau JG, Zhou ZH, Ward GE, Bradley PJ. Alveolin proteins in the Toxoplasma inner membrane complex form a highly interconnected structure that maintains parasite shape and replication. PLoS Biol 2024; 22:e3002809. [PMID: 39264987 PMCID: PMC11421793 DOI: 10.1371/journal.pbio.3002809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/24/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
Apicomplexan parasites possess several specialized structures to invade their host cells and replicate successfully. One of these is the inner membrane complex (IMC), a peripheral membrane-cytoskeletal system underneath the plasma membrane. It is composed of a series of flattened, membrane-bound vesicles and a cytoskeletal subpellicular network (SPN) comprised of intermediate filament-like proteins called alveolins. While the alveolin proteins are conserved throughout the Apicomplexa and the broader Alveolata, their precise functions and interactions remain poorly understood. Here, we describe the function of one of these alveolin proteins in Toxoplasma, IMC6. Disruption of IMC6 resulted in striking morphological defects that led to aberrant invasion and replication but surprisingly minor effects on motility. Deletion analyses revealed that the alveolin domain alone is largely sufficient to restore localization and partially sufficient for function. As this highlights the importance of the IMC6 alveolin domain, we implemented unnatural amino acid photoreactive crosslinking to the alveolin domain and identified multiple binding interfaces between IMC6 and 2 other cytoskeletal IMC proteins-IMC3 and ILP1. This provides direct evidence of protein-protein interactions in the alveolin domain and supports the long-held hypothesis that the alveolin domain is responsible for filament formation. Collectively, our study features the conserved alveolin proteins as critical components that maintain the parasite's structural integrity and highlights the alveolin domain as a key mediator of SPN architecture.
Collapse
Affiliation(s)
- Peter S Back
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Vignesh Senthilkumar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Charles P Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Justin J Quan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Qing Lou
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Anne K Snyder
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Andrew M Ly
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Justin G Lau
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Z Hong Zhou
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Peter J Bradley
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Wang F, Holmes MJ, Hong HJ, Thaprawat P, Kannan G, Huynh MH, Schultz TL, Licon MH, Lourido S, Dong W, Brito Querido J, Sullivan WJ, O'Leary SE, Carruthers VB. Translation initiation factor eIF1.2 promotes Toxoplasma stage conversion by regulating levels of key differentiation factors. Nat Commun 2024; 15:4385. [PMID: 38782906 PMCID: PMC11116398 DOI: 10.1038/s41467-024-48685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The parasite Toxoplasma gondii persists in its hosts by converting from replicating tachyzoites to latent bradyzoites housed in tissue cysts. The molecular mechanisms that mediate T. gondii differentiation remain poorly understood. Through a mutagenesis screen, we identified translation initiation factor eIF1.2 as a critical factor for T. gondii differentiation. A F97L mutation in eIF1.2 or the genetic ablation of eIF1.2 (∆eif1.2) markedly impeded bradyzoite cyst formation in vitro and in vivo. We demonstrated, at single-molecule level, that the eIF1.2 F97L mutation impacts the scanning process of the ribosome preinitiation complex on a model mRNA. RNA sequencing and ribosome profiling experiments unveiled that ∆eif1.2 parasites are defective in upregulating bradyzoite induction factors BFD1 and BFD2 during stress-induced differentiation. Forced expression of BFD1 or BFD2 significantly restored differentiation in ∆eif1.2 parasites. Together, our findings suggest that eIF1.2 functions by regulating the translation of key differentiation factors necessary to establish chronic toxoplasmosis.
Collapse
Affiliation(s)
- Fengrong Wang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Michael J Holmes
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hea Jin Hong
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Pariyamon Thaprawat
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Geetha Kannan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - My-Hang Huynh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | | | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA, 02142, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Wenzhao Dong
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jailson Brito Querido
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - William J Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Seán E O'Leary
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, CA, 92521, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Konishi R, Fukuda K, Kuriyama S, Masatani T, Xuan X, Fujita A. Unique asymmetric distribution of phosphatidylserine and phosphatidylethanolamine in Toxoplasma gondii revealed by nanoscale analysis. Histochem Cell Biol 2023; 160:279-291. [PMID: 37477836 DOI: 10.1007/s00418-023-02218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2023] [Indexed: 07/22/2023]
Abstract
Toxoplasma gondii is a highly prevalent obligate apicomplexan parasite that is important in clinical and veterinary medicine. It is known that glycerophospholipids phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn), especially their expression levels and flip-flops between cytoplasmic and exoplasmic leaflets, in the membrane of T. gondii play important roles in efficient growth in host mammalian cells, but their distributions have still not been determined because of technical difficulties in studying intracellular lipid distribution at the nanometer level. In this study, we developed an electron microscopy method that enabled us to determine the distributions of PtdSer and PtdEtn in individual leaflets of cellular membranes by using quick-freeze freeze-fracture replica labeling. Our findings show that PtdSer and PtdEtn are asymmetrically distributed, with substantial amounts localized at the luminal leaflet of the inner membrane complex (IMC), which comprises flattened vesicles located just underneath the plasma membrane (see Figs. 2B and 7). We also found that PtdSer was absent in the cytoplasmic leaflet of the inner IMC membrane, but was present in considerable amounts in the cytoplasmic leaflet of the middle IMC membrane, suggesting a barrier-like mechanism preventing the diffusion of PtdSer in the cytoplasmic leaflets of the two membranes. In addition, the expression levels of both PtdSer and PtdEtn in the luminal leaflet of the IMC membrane in the highly virulent RH strain were higher than those in the less virulent PLK strain. We also found that the amount of glycolipid GM3, a lipid raft component, was higher in the RH strain than in the PLK strain. These results suggest a correlation between lipid raft maintenance, virulence, and the expression levels of PtdSer and PtdEtn in T. gondii.
Collapse
Affiliation(s)
- Rikako Konishi
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Kayoko Fukuda
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Sayuri Kuriyama
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Tatsunori Masatani
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, 080-8555, Japan
| | - Akikazu Fujita
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan.
| |
Collapse
|
5
|
Back PS, Senthilkumar V, Choi CP, Ly AM, Snyder AK, Lau JG, Ward GE, Bradley PJ. The Toxoplasma subpellicular network is highly interconnected and defines parasite shape for efficient motility and replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552545. [PMID: 37609316 PMCID: PMC10441382 DOI: 10.1101/2023.08.10.552545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Apicomplexan parasites possess several specialized structures to invade their host cells and replicate successfully. One of these is the inner membrane complex (IMC), a peripheral membrane-cytoskeletal system underneath the plasma membrane. It is composed of a series of flattened, membrane-bound vesicles and a cytoskeletal subpellicular network (SPN) comprised of intermediate filament-like proteins called alveolins. While the alveolin proteins are conserved throughout the Apicomplexa and the broader Alveolata, their precise functions and interactions remain poorly understood. Here, we describe the function of one of these alveolin proteins, TgIMC6. Disruption of IMC6 resulted in striking morphological defects that led to aberrant motility, invasion, and replication. Deletion analyses revealed that the alveolin domain alone is largely sufficient to restore localization and partially sufficient for function. As this highlights the importance of the IMC6 alveolin domain, we implemented unnatural amino acid photoreactive crosslinking to the alveolin domain and identified multiple binding interfaces between IMC6 and two other cytoskeletal proteins - IMC3 and ILP1. To our knowledge, this provides the first direct evidence of protein-protein interactions in the alveolin domain and supports the long-held hypothesis that the alveolin domain is responsible for filament formation. Collectively, our study features the conserved alveolin proteins as critical components that maintain the parasite's structural integrity and highlights the alveolin domain as a key mediator of SPN architecture.
Collapse
|
6
|
Roumégous C, Abou Hammoud A, Fuster D, Dupuy JW, Blancard C, Salin B, Robinson DR, Renesto P, Tardieux I, Frénal K. Identification of new components of the basal pole of Toxoplasma gondii provides novel insights into its molecular organization and functions. Front Cell Infect Microbiol 2022; 12:1010038. [PMID: 36310866 PMCID: PMC9613666 DOI: 10.3389/fcimb.2022.1010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The Toxoplasma gondii tachyzoite is a singled-cell obligate intracellular parasite responsible for the acute phase of toxoplasmosis. This polarized cell exhibits an apical complex, a hallmark of the phylum Apicomplexa, essential for motility, invasion, and egress from the host cell. Located on the opposite end of the cell is the basal complex, an elaborated cytoskeletal structure that also plays critical roles in the lytic cycle of the parasite, being involved in motility, cell division, constriction and cytokinesis, as well as intravacuolar cell-cell communication. Nevertheless, only a few proteins of this structure have been described and functionally assessed. In this study, we used spatial proteomics to identify new basal complex components (BCC), and in situ imaging, including ultrastructure expansion microscopy, to position them. We thus confirmed the localization of nine BCCs out of the 12 selected candidates and assigned them to different sub-compartments of the basal complex, including two new domains located above the basal ring and below the posterior cup. Their functional investigation revealed that none of these BCCs are essential for parasite growth in vitro. However, one BCC is critical for constricting of the basal complex, likely through direct interaction with the class VI myosin heavy chain J (MyoJ), and for gliding motility. Four other BCCs, including a phosphatase and a guanylate-binding protein, are involved in the formation and/or maintenance of the intravacuolar parasite connection, which is required for the rosette organization and synchronicity of cell division.
Collapse
Affiliation(s)
- Chloé Roumégous
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Aya Abou Hammoud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Damien Fuster
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | | | - Corinne Blancard
- Univ. Bordeaux, CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Bénédicte Salin
- Univ. Bordeaux, CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Derrick R. Robinson
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Patricia Renesto
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Isabelle Tardieux
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Karine Frénal
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- *Correspondence: Karine Frénal,
| |
Collapse
|
7
|
Engelberg K, Bechtel T, Michaud C, Weerapana E, Gubbels MJ. Proteomic characterization of the Toxoplasma gondii cytokinesis machinery portrays an expanded hierarchy of its assembly and function. Nat Commun 2022; 13:4644. [PMID: 35941170 PMCID: PMC9360017 DOI: 10.1038/s41467-022-32151-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/15/2022] [Indexed: 12/01/2022] Open
Abstract
The basal complex (BC) is essential for T. gondii cell division but mechanistic details are lacking. Here we report a reciprocal proximity based biotinylation approach to map the BC’s proteome. We interrogate the resulting map for spatiotemporal dynamics and function by disrupting the expression of components. This highlights four architecturally distinct BC subcomplexes, the compositions of which change dynamically in correlation with changes in BC function. We identify BCC0 as a protein undergirding BC formation in five foci that precede the same symmetry seen in the apical annuli and IMC sutures. Notably, daughter budding from BCC0 progresses bidirectionally: the apical cap in apical and the rest of the IMC in basal direction. Furthermore, the essential role of the BC in cell division is contained in BCC4 and MORN1 that form a ‘rubber band’ to sequester the basal end of the assembling daughter cytoskeleton. Finally, we assign BCC1 to the non-essential, final BC constriction step. The basal complex is orchestrating Toxoplasma gondii cell division steps. Here, the authors use proximity biotinylation to map the proteome of this contractile ring, identify components acting on its formation, stability and constriction, and reveal bidirectional daughter budding.
Collapse
Affiliation(s)
| | - Tyler Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Cynthia Michaud
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | | | | |
Collapse
|
8
|
Vigetti L, Labouré T, Roumégous C, Cannella D, Touquet B, Mayer C, Couté Y, Frénal K, Tardieux I, Renesto P. The BCC7 Protein Contributes to the Toxoplasma Basal Pole by Interfacing between the MyoC Motor and the IMC Membrane Network. Int J Mol Sci 2022; 23:5995. [PMID: 35682673 PMCID: PMC9181098 DOI: 10.3390/ijms23115995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
T. gondii is a eukaryotic parasite that has evolved a stage called tachyzoite which multiplies in host cells by producing two daughter cells internally. These nascent tachyzoites bud off their mother and repeat the division process until the expanding progenies escape to settle and multiply in other host cells. Over these intra- and extra-cellular phases, the tachyzoite maintains an essential apicobasal polarity that emerges through a unique bidirectional budding process of the elongating cells. This process requires the assembly of several molecular complexes that, at the nascent pole, encompass structural and myosin motor elements. To characterize a recently identified basal pole marker named BCC7 with respect to the posterior myosin J and myosin C motors, we used conventional biochemistry as well as advanced proteomic and in silico analysis in conjunction with live and super resolution microscopy of transgenic fluorescent tachyzoites. We document that BCC7 forms a ribbed ring below which myosin C motor entities distribute regularly. In addition, we identified-among 13 BCC7 putative partners-two novel and five known members of the inner membrane complex (IMC) family which ends at the apical side of the ring. Therefore, BCC7 could assist the stabilization of the IMC plaques and contribute to the parasite biomechanical properties.
Collapse
Affiliation(s)
- Luis Vigetti
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Tatiana Labouré
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Chloé Roumégous
- Université de Bordeaux, Team Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, 33000 Bordeaux, France; (C.R.); (K.F.)
| | - Dominique Cannella
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France;
| | - Bastien Touquet
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Claudine Mayer
- Université Paris Cité, 75013 Paris, France;
- ICube-UMR7357, CSTB, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
| | - Yohann Couté
- INSERM, University of Grenoble Alpes, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France;
| | - Karine Frénal
- Université de Bordeaux, Team Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, 33000 Bordeaux, France; (C.R.); (K.F.)
| | - Isabelle Tardieux
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Patricia Renesto
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| |
Collapse
|
9
|
Mitra P, Deshmukh AS, Banerjee S, Khandavalli C, Choudhury C. A functionally divergent transcription elongation factor 1-like protein in Toxoplasma gondii. FEBS Lett 2022; 596:112-127. [PMID: 34820838 DOI: 10.1002/1873-3468.14241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022]
Abstract
Zinc ribbons, one of the largest fold groups among zinc fingers, often include proteins involved in the transcription machinery. Here, we identify and characterize one such zinc ribbon-bearing protein in the apicomplexan parasite Toxoplasma gondii, annotated as putative transcription elongation factor 1 (ELF1), with predicted functions in transcription and chromatin maintenance. We show that this ELF1 homolog, referred to as T. gondii ELF1-like divergent (TgELD), is expressed in both tachyzoite and bradyzoite developmental stages. TgELD associates with the cytoskeleton in the tachyzoites, while it transiently becomes a part of the cyst wall in the early bradyzoites, followed by a cytosolic and peripheral localization in late bradyzoites. TgELD is phosphorylated by a casein kinase 2-like protein, which has potential implications for its localization and function in the parasite.
Collapse
Affiliation(s)
- Pallabi Mitra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Sneha Banerjee
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Chinmayee Choudhury
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Research and Education, Chandigarh, India
| |
Collapse
|
10
|
Alama-Bermejo G, Meyer E, Atkinson SD, Holzer AS, Wiśniewska MM, Kolísko M, Bartholomew JL. Transcriptome-Wide Comparisons and Virulence Gene Polymorphisms of Host-Associated Genotypes of the Cnidarian Parasite Ceratonova shasta in Salmonids. Genome Biol Evol 2021; 12:1258-1276. [PMID: 32467979 PMCID: PMC7487138 DOI: 10.1093/gbe/evaa109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Ceratonova shasta is an important myxozoan pathogen affecting the health of salmonid fishes in the Pacific Northwest of North America. Ceratonova shasta exists as a complex of host-specific genotypes, some with low to moderate virulence, and one that causes a profound, lethal infection in susceptible hosts. High throughput sequencing methods are powerful tools for discovering the genetic basis of these host/virulence differences, but deep sequencing of myxozoans has been challenging due to extremely fast molecular evolution of this group, yielding strongly divergent sequences that are difficult to identify, and unavoidable host contamination. We designed and optimized different bioinformatic pipelines to address these challenges. We obtained a unique set of comprehensive, host-free myxozoan RNA-seq data from C. shasta genotypes of varying virulence from different salmonid hosts. Analyses of transcriptome-wide genetic distances and maximum likelihood multigene phylogenies elucidated the evolutionary relationship between lineages and demonstrated the limited resolution of the established Internal Transcribed Spacer marker for C. shasta genotype identification, as this marker fails to differentiate between biologically distinct genotype II lineages from coho salmon and rainbow trout. We further analyzed the data sets based on polymorphisms in two gene groups related to virulence: cell migration and proteolytic enzymes including their inhibitors. The developed single-nucleotide polymorphism-calling pipeline identified polymorphisms between genotypes and demonstrated that variations in both motility and protease genes were associated with different levels of virulence of C. shasta in its salmonid hosts. The prospective use of proteolytic enzymes as promising candidates for targeted interventions against myxozoans in aquaculture is discussed. We developed host-free transcriptomes of a myxozoan model organism from strains that exhibited different degrees of virulence, as a unique source of data that will foster functional gene analyses and serve as a base for the development of potential therapeutics for efficient control of these parasites.
Collapse
Affiliation(s)
- Gema Alama-Bermejo
- Department of Microbiology, Oregon State University.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), CCT CONICET - CENPAT, San Antonio Oeste, Argentina
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University
| | | | - Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Monika M Wiśniewska
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | |
Collapse
|
11
|
Hamie M, Tawil N, El Hajj R, Najm R, Moodad S, Hleihel R, Karam M, El Sayyed S, Besteiro S, El-Sabban M, Dubremetz JF, Lebrun M, El Hajj H. P18 (SRS35/TgSAG4) Plays a Role in the Invasion and Virulence of Toxoplasma gondii. Front Immunol 2021; 12:643292. [PMID: 34262559 PMCID: PMC8273438 DOI: 10.3389/fimmu.2021.643292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasmosis is a prevalent parasitic disease caused by Toxoplasma gondii (T. gondii). Under the control of the host immune system, T. gondii persists as latent bradyzoite cysts. Immunosuppression leads to their reactivation, a potentially life-threatening condition. Interferon-gamma (IFN-γ) controls the different stages of toxoplasmosis. Here, we addressed the role of the parasite surface antigen P18, belonging to the Surface-Antigen 1 (SAG-1) Related Sequence (SRS) family, in a cyst-forming strain. Deletion of P18 gene (KO P18) impaired the invasion of parasites in macrophages and IFN-γ-mediated activation of macrophages further reduced the invasion capacity of this KO, as compared to WT strain. Mice infected by KO P18, showed a marked decrease in virulence during acute toxoplasmosis. This was consequent to less parasitemia, accompanied by a substantial recruitment of dendritic cells, macrophages and natural killer cells (NK). Furthermore, KO P18 resulted in a higher number of bradyzoite cysts, and a stronger inflammatory response. A prolonged survival of mice was observed upon immunosuppression of KO P18 infected BALB/c mice or upon oral infection of Severe Combined Immunodeficiency (SCID) mice, with intact macrophages and natural killer (NK) cells. In stark contrast, oral infection of NSG (NOD/Shi-scid/IL-2Rγnull) mice, defective in macrophages and NK cells, with KO P18, was as lethal as that of the control strain showing that the conversion from bradyzoites to tachyzoites is intact and, suggesting a role of P18 in the response to host IFN-γ. Collectively, these data demonstrate a role for P18 surface antigen in the invasion of macrophages and in the virulence of the parasite, during acute and chronic toxoplasmosis.
Collapse
Affiliation(s)
- Maguy Hamie
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadim Tawil
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Rania Najm
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sara Moodad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rita Hleihel
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Martin Karam
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sana El Sayyed
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Maryse Lebrun
- LPHI UMR5235, Univ Montpellier, CNRS, Montpellier, France
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
12
|
Ferreira JL, Heincke D, Wichers JS, Liffner B, Wilson DW, Gilberger TW. The Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite. Front Cell Infect Microbiol 2021; 10:611801. [PMID: 33489940 PMCID: PMC7820811 DOI: 10.3389/fcimb.2020.611801] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Apicomplexan parasites, such as human malaria parasites, have complex lifecycles encompassing multiple and diverse environmental niches. Invading, replicating, and escaping from different cell types, along with exploiting each intracellular niche, necessitate large and dynamic changes in parasite morphology and cellular architecture. The inner membrane complex (IMC) is a unique structural element that is intricately involved with these distinct morphological changes. The IMC is a double membrane organelle that forms de novo and is located beneath the plasma membrane of these single-celled organisms. In Plasmodium spp. parasites it has three major purposes: it confers stability and shape to the cell, functions as an important scaffolding compartment during the formation of daughter cells, and plays a major role in motility and invasion. Recent years have revealed greater insights into the architecture, protein composition and function of the IMC. Here, we discuss the multiple roles of the IMC in each parasite lifecycle stage as well as insights into its sub-compartmentalization, biogenesis, disassembly and regulation during stage conversion of P. falciparum.
Collapse
Affiliation(s)
- Josie Liane Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Heinrich Pette Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Dorothee Heincke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
The Riveting Cellular Structures of Apicomplexan Parasites. Trends Parasitol 2020; 36:979-991. [PMID: 33011071 DOI: 10.1016/j.pt.2020.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Parasitic protozoa of the phylum Apicomplexa cause a range of human and animal diseases. Their complex life cycles - often heteroxenous with sexual and asexual phases in different hosts - rely on elaborate cytoskeletal structures to enable morphogenesis and motility, organize cell division, and withstand diverse environmental forces. This review primarily focuses on studies using Toxoplasma gondii and Plasmodium spp. as the best studied apicomplexans; however, many cytoskeletal adaptations are broadly conserved and predate the emergence of the parasitic phylum. After decades cataloguing the constituents of such structures, a dynamic picture is emerging of the assembly and maintenance of apicomplexan cytoskeletons, illuminating how they template and orient critical processes during infection. These observations impact our view of eukaryotic diversity and offer future challenges for cell biology.
Collapse
|
14
|
Dogga SK, Frénal K. Two palmitoyl acyltransferases involved sequentially in the biogenesis of the inner membrane complex of Toxoplasma gondii. Cell Microbiol 2020; 22:e13212. [PMID: 32329212 DOI: 10.1111/cmi.13212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 01/05/2023]
Abstract
The phylum Apicomplexa includes a number of significant human pathogens like Toxoplasma gondii and Plasmodium species. These obligate intracellular parasites possess a membranous structure, the inner membrane complex (IMC), composed of flattened vesicles apposed to the plasma membrane. Numerous proteins associated with the IMC are anchored via a lipid post-translational modification termed palmitoylation. This acylation is catalysed by multi-membrane spanning protein S-acyl-transferases (PATs) containing a catalytic Asp-His-His-Cys (DHHC) motif, commonly referred to as DHHCs. Contrasting the redundancy observed in other organisms, several PATs are essential for T. gondii tachyzoite survival; 2 of them, TgDHHC2 and TgDHHC14 being IMC-resident. Disruption of either of these TgDHHCs results in a rapid collapse of the IMC in the developing daughter cells leading to dramatic morphological defects of the parasites while the impact on the other organelles is limited to their localisation but not to their biogenesis. The acyl-transferase activity of TgDHHC2 and TgDHHC14 is involved sequentially in the formation of the sub-compartments of the IMC. Investigation of proteins known to be palmitoylated and localised to these sub-compartments identified TgISP1/3 as well as TgIAP1/2 to lose their membrane association revealing them as likely substrates of TgDHHC2, while these proteins are not impacted by TgDHHC14 depletion.
Collapse
Affiliation(s)
- Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Li ZY, Guo HT, Tan J, Geng ZY, Zhu XQ. Devitalization of the immune mapped protein 1 undermines the intracellular proliferation of Toxoplasma gondii. Exp Parasitol 2020; 211:107843. [PMID: 32044321 DOI: 10.1016/j.exppara.2020.107843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/15/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022]
Abstract
The intracellular protozoan Toxoplasma gondii infects approximately one-third of the world's population as well as various animals, causing toxoplasmosis. However, there remains a need to define the functions of newly identified genes of T. gondii. In the present study, a novel molecule, immune mapped protein 1 of T. gondii (TgIMP1), was devitalized by CRISPR/Cas9 system to investigate the phenotypic changes of the parasite. We found that the virulence of ΔTgIMP1 knockout strain was reduced in comparison with wild-type GT1 tachyzoites, showing a statistically decreased plaque in HFF cells and a significantly prolonged survival period of mice (P < 0.05). Moreover, the data of phenotype analyses in vitro showed a different level of the intracellular proliferation and the subsequent egress between ΔTgIMP1 and wild-type GT1 strain (P < 0.05); while no statistically significant difference was detected during the process of attachment or invasion. These results suggested that TgIMP1 is closely associated with the intracellular proliferation of this parasite.
Collapse
Affiliation(s)
- Zhong-Yuan Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, PR China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Hai-Ting Guo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, PR China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, PR China
| | - Zhao-Yu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, PR China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, PR China.
| |
Collapse
|
16
|
Engelberg K, Chen CT, Bechtel T, Sánchez Guzmán V, Drozda AA, Chavan S, Weerapana E, Gubbels MJ. The apical annuli of Toxoplasma gondii are composed of coiled-coil and signalling proteins embedded in the inner membrane complex sutures. Cell Microbiol 2019; 22:e13112. [PMID: 31470470 DOI: 10.1111/cmi.13112] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
The apical annuli are among the most intriguing and understudied structures in the cytoskeleton of the apicomplexan parasite Toxoplasma gondii. We mapped the proteome of the annuli in Toxoplasma by reciprocal proximity biotinylation (BioID), and validated five apical annuli proteins (AAP1-5), Centrin2, and an apical annuli methyltransferase. Moreover, inner membrane complex (IMC) suture proteins connecting the alveolar vesicles were also detected and support annuli residence within the sutures. Super-resolution microscopy identified a concentric organisation comprising four rings with diameters ranging from 200 to 400 nm. The high prevalence of domain signatures shared with centrosomal proteins in the AAPs together with Centrin2 suggests that the annuli are related and/or derived from the centrosomes. Phylogenetic analysis revealed that the AAPs are conserved narrowly in coccidian, apicomplexan parasites that multiply by an internal budding mechanism. This suggests a role in replication, for example, to provide pores in the mother IMC permitting exchange of building blocks and waste products. However, presence of multiple signalling domains and proteins are suggestive of additional functions. Knockout of AAP4, the most conserved compound forming the largest ring-like structure, modestly decreased parasite fitness in vitro but had no significant impact on acute virulence in vivo. In conclusion, the apical annuli are composed of coiled-coil and signalling proteins assembled in a pore-like structure crossing the IMC barrier maintained during internal budding.
Collapse
Affiliation(s)
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.,Precision Medicine Center, Department of Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Tyler Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Victoria Sánchez Guzmán
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.,Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Allison A Drozda
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | - Suyog Chavan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | | | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| |
Collapse
|
17
|
Suarez C, Lentini G, Ramaswamy R, Maynadier M, Aquilini E, Berry-Sterkers L, Cipriano M, Chen AL, Bradley P, Striepen B, Boulanger MJ, Lebrun M. A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites. Nat Commun 2019; 10:4041. [PMID: 31492901 PMCID: PMC6731292 DOI: 10.1038/s41467-019-11979-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
Members of the Apicomplexa phylum, including Plasmodium and Toxoplasma, have two types of secretory organelles (micronemes and rhoptries) whose sequential release is essential for invasion and the intracellular lifestyle of these eukaryotes. During invasion, rhoptries inject an array of invasion and virulence factors into the cytoplasm of the host cell, but the molecular mechanism mediating rhoptry exocytosis is unknown. Here we identify a set of parasite specific proteins, termed rhoptry apical surface proteins (RASP) that cap the extremity of the rhoptry. Depletion of RASP2 results in loss of rhoptry secretion and completely blocks parasite invasion and therefore parasite proliferation in both Toxoplasma and Plasmodium. Recombinant RASP2 binds charged lipids and likely contributes to assembling the machinery that docks/primes the rhoptry to the plasma membrane prior to fusion. This study provides important mechanistic insight into a parasite specific exocytic pathway, essential for the establishment of infection. Plasmodium and Toxoplasma parasites rely on rhoptry exocytosis for invasion, but the underlying mechanism is not known. Here, Suarez et al. characterize rhoptry apical surface proteins (RASP) that localize to the rhoptry cap and bind charged lipids, and are essential for rhoptry secretion and invasion.
Collapse
Affiliation(s)
- Catherine Suarez
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Gaëlle Lentini
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Raghavendran Ramaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | | | - Eleonora Aquilini
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | | | - Michael Cipriano
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Allan L Chen
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Bradley
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin J Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France.
| |
Collapse
|
18
|
Lentini G, Dubois DJ, Maco B, Soldati-Favre D, Frénal K. The roles of Centrin 2 and Dynein Light Chain 8a in apical secretory organelles discharge of Toxoplasma gondii. Traffic 2019; 20:583-600. [PMID: 31206964 DOI: 10.1111/tra.12673] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022]
Abstract
To efficiently enter host cells, apicomplexan parasites such as Toxoplasma gondii rely on an apical complex composed of tubulin-based structures as well as two sets of secretory organelles named micronemes and rhoptries. The trafficking and docking of these organelles to the apical pole of the parasite is crucial for the discharge of their contents. Here, we describe two proteins typically associated with microtubules, Centrin 2 (CEN2) and Dynein Light Chain 8a (DLC8a), that are required for efficient host cell invasion. CEN2 localizes to four different compartments, and remarkably, conditional depletion of the protein occurs in stepwise manner, sequentially depleting the protein pools from each location. This phenomenon allowed us to discern the essential function of the apical pool of CEN2 for microneme secretion, motility, invasion and egress. DLC8a localizes to the conoid, and its depletion also perturbs microneme exocytosis in addition to the apical docking of the rhoptry organelles, causing a severe defect in host cell invasion. Phenotypic characterization of CEN2 and DLC8a indicates that while both proteins participate in microneme secretion, they likely act at different steps along the cascade of events leading to organelle exocytosis.
Collapse
Affiliation(s)
- Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - David J Dubois
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.,Microbiologie Fondamentale et Pathogénicité, University of Bordeaux, CNRS UMR 5234, Bordeaux Cedex, France
| |
Collapse
|
19
|
Lesage KM, Huot L, Mouveaux T, Courjol F, Saliou JM, Gissot M. Cooperative binding of ApiAP2 transcription factors is crucial for the expression of virulence genes in Toxoplasma gondii. Nucleic Acids Res 2018; 46:6057-6068. [PMID: 29788176 PMCID: PMC6159514 DOI: 10.1093/nar/gky373] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/27/2018] [Indexed: 01/28/2023] Open
Affiliation(s)
- Kevin M Lesage
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France
| | - Ludovic Huot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France
| | - Thomas Mouveaux
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France
| | - Flavie Courjol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France
| | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France
| |
Collapse
|
20
|
Lentini G, El Hajj H, Papoin J, Fall G, Pfaff AW, Tawil N, Braun-Breton C, Lebrun M. Characterization of Toxoplasma DegP, a rhoptry serine protease crucial for lethal infection in mice. PLoS One 2017; 12:e0189556. [PMID: 29244879 PMCID: PMC5731766 DOI: 10.1371/journal.pone.0189556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
During the infection process, Apicomplexa discharge their secretory organelles called micronemes, rhoptries and dense granules to sustain host cell invasion, intracellular replication and to modulate host cell pathways and immune responses. Herein, we describe the Toxoplasma gondii Deg-like serine protein (TgDegP), a rhoptry protein homologous to High temperature requirement A (HtrA) or Deg-like family of serine proteases. TgDegP undergoes processing in both types I and II strains as most of the rhoptries proteins. We show that genetic disruption of the degP gene does not impact the parasite lytic cycle in vitro but affects virulence in mice. While in a type I strain DegPI appears dispensable for the establishment of an infection, removal of DegPII in a type II strain dramatically impairs the virulence. Finally, we show that KO-DegPII parasites kill immunodeficient mice as efficiently as the wild-type strain indicating that the protease might be involved in the complex crosstalk that the parasite engaged with the host immune response. Thus, this study unravels a novel rhoptry protein in T. gondii important for the establishment of lethal infection.
Collapse
Affiliation(s)
- Gaelle Lentini
- UMR 5235 CNRS, Université de Montpellier, Montpellier, France
| | - Hiba El Hajj
- Department of Internal Medicine and Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Julien Papoin
- UMR 5235 CNRS, Université de Montpellier, Montpellier, France
| | - Gamou Fall
- UMR 5235 CNRS, Université de Montpellier, Montpellier, France
| | - Alexander W. Pfaff
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Nadim Tawil
- Department of Internal Medicine and Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | | | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
21
|
Frénal K, Jacot D, Hammoudi PM, Graindorge A, Maco B, Soldati-Favre D. Myosin-dependent cell-cell communication controls synchronicity of division in acute and chronic stages of Toxoplasma gondii. Nat Commun 2017; 8:15710. [PMID: 28593938 PMCID: PMC5477499 DOI: 10.1038/ncomms15710] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/17/2017] [Indexed: 01/20/2023] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii possesses a repertoire of 11 myosins. Three class XIV motors participate in motility, invasion and egress, whereas the class XXII myosin F is implicated in organelle positioning and inheritance of the apicoplast. Here we provide evidence that TgUNC acts as a chaperone dedicated to the folding, assembly and function of all Toxoplasma myosins. The conditional ablation of TgUNC recapitulates the phenome of the known myosins and uncovers two functions in parasite basal complex constriction and synchronized division within the parasitophorous vacuole. We identify myosin J and centrin 2 as essential for the constriction. We demonstrate the existence of an intravacuolar cell–cell communication ensuring synchronized division, a process dependent on myosin I. This connectivity contributes to the delayed death phenotype resulting from loss of the apicoplast. Cell–cell communication is lost in activated macrophages and during bradyzoite differentiation resulting in asynchronized, slow division in the cysts. The mechanism by which Toxoplasma gondii achieves synchronized cell division is incompletely understood. Here, the authors identify an intravacuolar cell-cell communication that ensures synchronized division and depends on myosin I.
Collapse
Affiliation(s)
- Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Arnault Graindorge
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| |
Collapse
|
22
|
Chen AL, Moon AS, Bell HN, Huang AS, Vashisht AA, Toh JY, Lin AH, Nadipuram SM, Kim EW, Choi CP, Wohlschlegel JA, Bradley PJ. Novel insights into the composition and function of the Toxoplasma IMC sutures. Cell Microbiol 2017; 19:10.1111/cmi.12678. [PMID: 27696623 PMCID: PMC5909696 DOI: 10.1111/cmi.12678] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 09/28/2016] [Indexed: 12/29/2022]
Abstract
The Toxoplasma inner membrane complex (IMC) is a specialized organelle underlying the parasite's plasma membrane that consists of flattened rectangular membrane sacs that are sutured together and positioned atop a supportive cytoskeleton. We have previously identified a novel class of proteins localizing to the transverse and longitudinal sutures of the IMC, which we named IMC sutures components (ISCs). Here, we have used proximity-dependent biotin identification at the sutures to better define the composition of this IMC subcompartment. Using ISC4 as bait, we demonstrate biotin-dependent labeling of the sutures and have uncovered two new ISCs. We also identified five new proteins that exclusively localize to the transverse sutures that we named transverse sutures components (TSCs), demonstrating that components of the IMC sutures consist of two groups: those that localize to the transverse and longitudinal sutures (ISCs) and those residing only in the transverse sutures (TSCs). In addition, we functionally analyze the ISC protein ISC3 and demonstrate that ISC3-null parasites have morphological defects and reduced fitness in vitro. Most importantly, Δisc3 parasites exhibit a complete loss of virulence in vivo. These studies expand the known composition of the IMC sutures and highlight the contribution of ISCs to the ability of the parasite to proliferate and cause disease.
Collapse
Affiliation(s)
- Allan L. Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Andy S. Moon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Hannah N. Bell
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Amy S. Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Ajay A. Vashisht
- Department of Biological Chemistry and Institute of Genomics and Proteomics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Justin Y. Toh
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Andrew H. Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Santhosh M. Nadipuram
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Elliot W. Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Charles P. Choi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - James A. Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Peter J. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA 90095
| |
Collapse
|
23
|
Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation. J Proteomics 2016; 148:12-9. [DOI: 10.1016/j.jprot.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
|
24
|
Berry L, Chen CT, Reininger L, Carvalho TG, El Hajj H, Morlon-Guyot J, Bordat Y, Lebrun M, Gubbels MJ, Doerig C, Daher W. The conserved apicomplexan Aurora kinase TgArk3 is involved in endodyogeny, duplication rate and parasite virulence. Cell Microbiol 2016; 18:1106-1120. [PMID: 26833682 DOI: 10.1111/cmi.12571] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/25/2022]
Abstract
Aurora kinases are eukaryotic serine/threonine protein kinases that regulate key events associated with chromatin condensation, centrosome and spindle function and cytokinesis. Elucidating the roles of Aurora kinases in apicomplexan parasites is crucial to understand the cell cycle control during Plasmodium schizogony or Toxoplasma endodyogeny. Here, we report on the localization of two previously uncharacterized Toxoplasma Aurora-related kinases (Ark2 and Ark3) in tachyzoites and of the uncharacterized Ark3 orthologue in Plasmodium falciparum erythrocytic stages. In Toxoplasma gondii, we show that TgArk2 and TgArk3 concentrate at specific sub-cellular structures linked to parasite division: the mitotic spindle and intranuclear mitotic structures (TgArk2), and the outer core of the centrosome and the budding daughter cells cytoskeleton (TgArk3). By tagging the endogenous PfArk3 gene with the green fluorescent protein in live parasites, we show that PfArk3 protein expression peaks late in schizogony and localizes at the periphery of budding schizonts. Disruption of the TgArk2 gene reveals no essential function for tachyzoite propagation in vitro, which is surprising giving that the P. falciparum and P. berghei orthologues are essential for erythrocyte schizogony. In contrast, knock-down of TgArk3 protein results in pronounced defects in parasite division and a major growth deficiency. TgArk3-depleted parasites display several defects, such as reduced parasite growth rate, delayed egress and parasite duplication, defect in rosette formation, reduced parasite size and invasion efficiency and lack of virulence in mice. Our study provides new insights into cell cycle control in Toxoplasma and malaria parasites and highlights Aurora kinase 3 as potential drug target.
Collapse
Affiliation(s)
- Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Luc Reininger
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, INSERM U1016, Institut Cochin, Paris, France
| | - Teresa G Carvalho
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia, 3800
| | - Hiba El Hajj
- Department of Internal Medicine and Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Yann Bordat
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia, 3800
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
25
|
Harding CR, Egarter S, Gow M, Jiménez-Ruiz E, Ferguson DJP, Meissner M. Gliding Associated Proteins Play Essential Roles during the Formation of the Inner Membrane Complex of Toxoplasma gondii. PLoS Pathog 2016; 12:e1005403. [PMID: 26845335 PMCID: PMC4742064 DOI: 10.1371/journal.ppat.1005403] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/24/2015] [Indexed: 11/18/2022] Open
Abstract
The inner membrane complex (IMC) of apicomplexan parasites is a specialised structure localised beneath the parasite’s plasma membrane, and is important for parasite stability and intracellular replication. Furthermore, it serves as an anchor for the myosin A motor complex, termed the glideosome. While the role of this protein complex in parasite motility and host cell invasion has been well described, additional roles during the asexual life cycle are unknown. Here, we demonstrate that core elements of the glideosome, the gliding associated proteins GAP40 and GAP50 as well as members of the GAPM family, have critical roles in the biogenesis of the IMC during intracellular replication. Deletion or disruption of these genes resulted in the rapid collapse of developing parasites after initiation of the cell cycle and led to redistribution of other glideosome components. Toxoplasma gondii is an important parasite of humans and animals that must actively invade host cells in order to replicate. Beneath the surface of the parasite lies the inner membrane complex (IMC) which is important in maintaining the stability of the parasite, as well as acting as a base for a protein complex known as the glideosome. This assembly of proteins has an important role in allowing the parasite to invade host cells. Here, we examined the function of proteins known to be part of the glideosome, GAP40, GAP50 and five proteins of the GAPM family. We found that in the absence of GAP40 or GAP50, the parasite is able to start replication but is unable to complete it, suggesting that these proteins have a structural role in maintaining the stability of the developing IMC during replication. We also saw that disruption of some members of the GAPM protein family led to a loss of parasite structure. Our study demonstrates that some components of the glideosome have multiple roles in T. gondii biology and gives us new insights into how cells are constructed during parasite replication.
Collapse
Affiliation(s)
- Clare R. Harding
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (CRH); (MM)
| | - Saskia Egarter
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew Gow
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elena Jiménez-Ruiz
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, Oxford University, Oxford, United Kingdom
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (CRH); (MM)
| |
Collapse
|
26
|
Abstract
The inner membrane complex (IMC) of Toxoplasma gondii is a peripheral membrane system that is composed of flattened alveolar sacs that underlie the plasma membrane, coupled to a supporting cytoskeletal network. The IMC plays important roles in parasite replication, motility, and host cell invasion. Despite these central roles in the biology of the parasite, the proteins that constitute the IMC are largely unknown. In this study, we have adapted a technique named proximity-dependent biotin identification (BioID) for use in T. gondii to identify novel components of the IMC. Using IMC proteins in both the alveoli and the cytoskeletal network as bait, we have uncovered a total of 19 new IMC proteins in both of these suborganellar compartments, two of which we functionally evaluate by gene knockout. Importantly, labeling of IMC proteins using this approach has revealed a group of proteins that localize to the sutures of the alveolar sacs that have been seen in their entirety in Toxoplasma species only by freeze fracture electron microscopy. Collectively, our study greatly expands the repertoire of known proteins in the IMC and experimentally validates BioID as a strategy for discovering novel constituents of specific cellular compartments of T. gondii. The identification of binding partners is critical for determining protein function within cellular compartments. However, discovery of protein-protein interactions within membrane or cytoskeletal compartments is challenging, particularly for transient or unstable interactions that are often disrupted by experimental manipulation of these compartments. To circumvent these problems, we adapted an in vivo biotinylation technique called BioID for Toxoplasma species to identify binding partners and proximal proteins within native cellular environments. We used BioID to identify 19 novel proteins in the parasite IMC, an organelle consisting of fused membrane sacs and an underlying cytoskeleton, whose protein composition is largely unknown. We also demonstrate the power of BioID for targeted discovery of proteins within specific compartments, such as the IMC cytoskeleton. In addition, we uncovered a new group of proteins localizing to the alveolar sutures of the IMC. BioID promises to reveal new insights on protein constituents and interactions within cellular compartments of Toxoplasma.
Collapse
|
27
|
Targeting Toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen. EUKARYOTIC CELL 2014; 14:2-12. [PMID: 25380753 DOI: 10.1128/ec.00225-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes serious opportunistic infections, birth defects, and blindness in humans. Microtubules are critically important components of diverse structures that are used throughout the Toxoplasma life cycle. As in other eukaryotes, spindle microtubules are required for chromosome segregation during replication. Additionally, a set of membrane-associated microtubules is essential for the elongated shape of invasive "zoites," and motility follows a spiral trajectory that reflects the path of these microtubules. Toxoplasma zoites also construct an intricate, tubulin-based apical structure, termed the conoid, which is important for host cell invasion and associates with proteins typically found in the flagellar apparatus. Last, microgametes specifically construct a microtubule-containing flagellar axoneme in order to fertilize macrogametes, permitting genetic recombination. The specialized roles of these microtubule populations are mediated by distinct sets of associated proteins. This review summarizes our current understanding of the role of tubulin, microtubule populations, and associated proteins in Toxoplasma; these components are used for both novel and broadly conserved processes that are essential for parasite survival.
Collapse
|