1
|
Yu Q, Tang X, Hart T, Homer R, Belperron AA, Bockenstedt LK, Ring A, Nakamura A, Fikrig E. Secretory leukocyte protease inhibitor influences periarticular joint inflammation in B. burgdorferi-infected mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.24.625079. [PMID: 39651186 PMCID: PMC11623497 DOI: 10.1101/2024.11.24.625079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Lyme disease, caused by Borrelia burgdorferi, is the most common tick-borne infection in the United States. Arthritis is a major clinical manifestation of infection, and synovial tissue damage has been attributed to the excessive pro-inflammatory responses. The secretory leukocyte protease inhibitor (SLPI) promotes tissue repair and exerts anti-inflammatory effects. The role of SLPI in the development of Lyme arthritis in C57BL/6 mice, which can be infected with B. burgdorferi, but only develop mild joint inflammation, was therefore examined. SLPI-deficient C57BL/6 mice challenged with B. burgdorferi had a higher infection load in the tibiotarsal joints and marked periarticular swelling, compared to infected wild type control mice. The ankle joint tissues of B. burgdorferi-infected SLPI-deficient mice contained significantly higher percentages of infiltrating neutrophils and macrophages. B. burgdorferi-infected SLPI-deficient mice also exhibited elevated serum levels of IL-6, neutrophil elastase, and MMP-8. Moreover, using a recently developed BASEHIT (BActerial Selection to Elucidate Host-microbe Interactions in high Throughput) library, we found that SLPI directly interacts with B. burgdorferi. These data demonstrate the importance of SLPI in suppressing periarticular joint inflammation in Lyme disease.
Collapse
Affiliation(s)
- Qian Yu
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Thomas Hart
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Robert Homer
- Department of Pathology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Alexia A. Belperron
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Linda K. Bockenstedt
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Aaron Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Akira Nakamura
- Divisions of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Sigal LH. Proposed Immunopathogenetic Mechanisms Underlying Lyme Arthritis. J Clin Rheumatol 2024; 30:315-325. [PMID: 39730138 DOI: 10.1097/rhu.0000000000002139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
ABSTRACT Lyme disease is commonly associated with musculoskeletal features, inflammatory and noninflammatory. The precise pathogenesis of the clinical features of this infection are complex and often multiple. A better understanding of how Borrelia burgdorferi causes these musculoskeletal manifestations is necessary in order to determine the proper treatment and eschew that which is unlikely to work, often associated with toxicities. The following review seeks to summarize the various immunopathogenic mechanisms that may cause these features of Lyme disease and suggests a series of approaches based on the most likely underlying mechanism(s).
Collapse
Affiliation(s)
- Leonard H Sigal
- From the Gateway Immunosciences and RUTGERS-Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
3
|
Snik ME, Stouthamer NE, Hovius JW, van Gool MM. Bridging the gap: Insights in the immunopathology of Lyme borreliosis. Eur J Immunol 2024; 54:e2451063. [PMID: 39396370 PMCID: PMC11628917 DOI: 10.1002/eji.202451063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato (Bbsl) genospecies transmitted by Ixodes spp. ticks, is a significant public health concern in the Northern Hemisphere. This review highlights the complex interplay between Bbsl infection and host-immune responses, impacting clinical manifestations and long-term immunity. Early localized disease is characterized by erythema migrans (EM), driven by T-helper 1 (Th1) responses and proinflammatory cytokines. Dissemination to the heart and CNS can lead to Lyme carditis and neuroborreliosis respectively, orchestrated by immune cell infiltration and chemokine dysregulation. More chronic manifestations, including acrodermatitis chronica atrophicans and Lyme arthritis, involve prolonged inflammation as well as the development of autoimmunity. In addition, dysregulated immune responses impair long-term immunity, with compromised B-cell memory and antibody responses. Experimental models and clinical studies underscore the role of Th1/Th2 balance, B-cell dysfunction, and autoimmunity in LB pathogenesis. Moreover, LB-associated autoimmunity parallels mechanisms observed in other infectious and autoimmune diseases. Understanding immune dysregulation in LB provides insights into disease heterogeneity and could provide new strategies for diagnosis and treatment.
Collapse
Affiliation(s)
- Marijn E. Snik
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Noor E.I.M. Stouthamer
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Joppe W. Hovius
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamthe Netherlands
- Division of Infectious DiseasesDepartment of Internal MedicineAmsterdam UMC Multidisciplinary Lyme borreliosis CenterAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Melissa M.J. van Gool
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamthe Netherlands
| |
Collapse
|
4
|
Rouse JR, Danner R, Wahhab A, Pereckas M, Nguyen C, McClune ME, Steere AC, Strle K, Jutras BL, Lochhead RB. HLA-DR-Expressing Fibroblast-Like Synoviocytes Are Inducible Antigen Presenting Cells That Present Autoantigens in Lyme Arthritis. ACR Open Rheumatol 2024; 6:678-689. [PMID: 39073021 PMCID: PMC11471949 DOI: 10.1002/acr2.11710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE HLA-DR-expressing fibroblast-like synoviocytes (FLS) are a prominent cell type in synovial tissue in chronic inflammatory forms of arthritis. FLS-derived extracellular matrix (ECM) proteins, including fibronectin-1 (FN1), contain immunogenic CD4+ T cell epitopes in patients with postinfectious Lyme arthritis (LA). However, the role of FLS in presentation of these T cell epitopes remains uncertain. METHODS Primary LA FLS and primary murine FLS stimulated with interferon gamma (IFNγ), Borrelia burgdorferi, and/or B burgdorferi peptidoglycan (PG) were assessed for properties associated with antigen presentation. HLA-DR-presented peptides from stimulated LA FLS were identified by immunopeptidomics analysis. OT-II T cells were co-cultured with stimulated murine FLS in the presence of cognate ovalbumin antigen to determine the potential of FLS to act as inducible antigen presenting cells (APCs). RESULTS FLS expressed HLA-DR molecules within inflamed synovial tissue and tendons from patients with postinfectious LA in situ. Major histocompatibility complex (MHC) class II and co-stimulatory molecules were expressed by FLS following in vitro stimulation with IFNγ and B burgdorferi and presented both foreign and self-MHC-II peptides, including an immunogenic T cell epitope derived from Lyme autoantigen FN1. Stimulated FLS induced proliferation of naive OT-II CD4+ T cells that were dependent on OT-II antigen and CD40. Stimulation with B burgdorferi PG enhanced FLS-mediated T cell activation. CONCLUSION MHC-II+ FLS are inducible APCs that can induce CD4+ T cell activation in an antigen- and CD40-dependent manner. Activated FLS can also present ECM-derived Lyme autoantigens, implicating FLS in amplifying tissue-localized autoimmunity in LA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Allen C. Steere
- Massachusetts General Hospital and Harvard Medical SchoolBoston
| | | | | | | |
Collapse
|
5
|
Bonin JL, Torres SR, Marcinkiewicz AL, Duhamel GE, Yang X, Pal U, DiSpirito JM, Nowak TA, Lin YP, MacNamara KC. Impact of E. muris infection on B. burgdorferi-induced joint pathology in mice. Front Immunol 2024; 15:1430419. [PMID: 39229265 PMCID: PMC11368855 DOI: 10.3389/fimmu.2024.1430419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Tick-borne infections are increasing in the United States and around the world. The most common tick-borne disease in the United States is Lyme disease caused by infection with the spirochete Borrelia burgdorferi (Bb), and pathogenesis varies from subclinical to severe. Bb infection is transmitted by Ixodes ticks, which can carry multiple other microbial pathogens, including Ehrlichia species. To address how the simultaneous inoculation of a distinct pathogen impacted the course of Bb-induced disease, we used C57BL/6 (B6) mice which are susceptible to Bb infection but develop only mild joint pathology. While infection of B6 mice with Bb alone resulted in minimal inflammatory responses, mice co-infected with both Bb and the obligate intracellular pathogen Ehrlichia muris (Em) displayed hematologic changes, inflammatory cytokine production, and emergency myelopoiesis similar to what was observed in mice infected only with Em. Moreover, infection of B6 mice with Bb alone resulted in no detectable joint inflammation, whereas mice co-infected with both Em and Bb exhibited significant inflammation of the ankle joint. Our findings support the concept that co-infection with Ehrlichia can exacerbate inflammation, resulting in more severe Bb-induced disease.
Collapse
Affiliation(s)
- Jesse L. Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Steven R. Torres
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Ashley L. Marcinkiewicz
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Gerald E. Duhamel
- New York State Animal Health Diagnostic Center and Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xiuli Yang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Julia M. DiSpirito
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Tristan A. Nowak
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
| | - Yi-Pin Lin
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
| | - Katherine C. MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
6
|
Ehrbar D, Arvikar SL, Sulka KB, Chiumento G, Nelson NLJ, Hernandez SA, Williams MA, Strle F, Steere AC, Strle K. Variants in the Late Cornified Envelope Gene Locus Are Associated With Elevated T-helper 17 Responses in Patients With Postinfectious Lyme Arthritis. J Infect Dis 2024; 230:S40-S50. [PMID: 39140723 PMCID: PMC11322884 DOI: 10.1093/infdis/jiae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Postinfectious Lyme arthritis (LA) is associated with dysregulated immunity and autoreactive T- and B-cell responses in joints. Here we explored the role of host genetic variation in this outcome. METHODS The frequency of 253 702 single-nucleotide polymorphisms (SNPs) was determined in 147 patients with LA (87 with postinfectious LA and 60 with antibiotic-responsive LA), and for comparison in 90 patients with erythema migrans or the general population (n = 2504). Functional outcome of candidate SNPs was assessed by evaluating their impact on clinical outcome and on immune responses in blood and synovial fluid in patients with LA. RESULTS Six SNPs associated with late cornified envelope (LCE3) genes were present at greater frequency in patients with postinfectious LA compared to those with antibiotic-responsive LA (70% vs 30%; odds ratio, 2; P < .01). These SNPs were associated with heightened levels of inflammatory Th17 cytokines in serum but lower levels of interleukin 27, a regulatory cytokine, implying that they may contribute to dysregulated Th17 immunity in blood. Moreover, in patients with postinfectious LA, the levels of these Th17 mediators correlated directly with autoantibody responses in synovial fluid, providing a possible link between LCE3 SNPs, maladaptive systemic Th17 immunity, and autoreactive responses in joints. CONCLUSIONS Variation in the LCE3 locus, a known genetic risk factor in psoriasis and psoriatic arthritis, is associated with dysregulated systemic Th17 immunity and heightened autoantibody responses in joints. These findings underscore the importance of host genetic predisposition and systemic Th17 immunity in the pathogenesis of postinfectious (antibiotic-refractory) Lyme arthritis.
Collapse
Affiliation(s)
- Dylan Ehrbar
- Department of Biological Sciences, University at Albany
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Sheila L Arvikar
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School
| | - Katherine B Sulka
- Department of Immunology, Tufts University Graduate School of Biomedical Sciences
| | - Geena Chiumento
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School
| | - Nicole L J Nelson
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Sergio A Hernandez
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Morgan A Williams
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Slovenia
| | - Allen C Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School
| | - Klemen Strle
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Dirks J, Fischer J, Klaussner J, Hofmann C, Holl-Wieden A, Buck V, Klemann C, Girschick HJ, Caruana I, Erhard F, Morbach H. Disease-specific T cell receptors maintain pathogenic T helper cell responses in postinfectious Lyme arthritis. J Clin Invest 2024; 134:e179391. [PMID: 38963700 PMCID: PMC11364382 DOI: 10.1172/jci179391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUNDAntibiotic-Refractory Lyme Arthritis (ARLA) involves a complex interplay of T cell responses targeting Borrelia burgdorferi antigens progressing toward autoantigens by epitope spreading. However, the precise molecular mechanisms driving the pathogenic T cell response in ARLA remain unclear. Our aim was to elucidate the molecular program of disease-specific Th cells.METHODSUsing flow cytometry, high-throughput T cell receptor (TCR) sequencing, and scRNA-Seq of CD4+ Th cells isolated from the joints of patients with ARLA living in Europe, we aimed to infer antigen specificity through unbiased analysis of TCR repertoire patterns, identifying surrogate markers for disease-specific TCRs, and connecting TCR specificity to transcriptional patterns.RESULTSPD-1hiHLA-DR+CD4+ effector T cells were clonally expanded within the inflamed joints and persisted throughout disease course. Among these cells, we identified a distinct TCR-β motif restricted to HLA-DRB1*11 or *13 alleles. These alleles, being underrepresented in patients with ARLA living in North America, were unexpectedly prevalent in our European cohort. The identified TCR-β motif served as surrogate marker for a convergent TCR response specific to ARLA, distinguishing it from other rheumatic diseases. In the scRNA-Seq data set, the TCR-β motif particularly mapped to peripheral T helper (TPH) cells displaying signs of sustained proliferation, continuous TCR signaling, and expressing CXCL13 and IFN-γ.CONCLUSIONBy inferring disease-specific TCRs from synovial T cells we identified a convergent TCR response in the joints of patients with ARLA that continuously fueled the expansion of TPH cells expressing a pathogenic cytokine effector program. The identified TCRs will aid in uncovering the major antigen targets of the maladaptive immune response.FUNDINGSupported by the German Research Foundation (DFG) MO 2160/4-1; the Federal Ministry of Education and Research (BMBF; Advanced Clinician Scientist-Program INTERACT; 01EO2108) embedded in the Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital Würzburg; the German Center for Infection Research (DZIF; Clinical Leave Program; TI07.001_007) and the Interdisciplinary Center for Clinical Research (IZKF) Würzburg (Clinician Scientist Program, Z-2/CSP-30).
Collapse
MESH Headings
- Humans
- Lyme Disease/immunology
- Lyme Disease/pathology
- Lyme Disease/genetics
- HLA-DRB1 Chains/genetics
- HLA-DRB1 Chains/immunology
- Female
- Male
- T-Lymphocytes, Helper-Inducer/immunology
- Borrelia burgdorferi/immunology
- Middle Aged
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Adult
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Johannes Dirks
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jonas Fischer
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Julia Klaussner
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Christine Hofmann
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Annette Holl-Wieden
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Viktoria Buck
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Christian Klemann
- Department of Pediatric Immunology, Rheumatology, and Infectiology, Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | | | - Ignazio Caruana
- Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, Würzburg, Germany
| | - Florian Erhard
- Computational Systems Virology and Bioinformatics, Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
- Faculty for Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Henner Morbach
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Sloupenska K, Koubkova B, Horak P, Dolezilkova J, Hutyrova B, Racansky M, Miklusova M, Mares J, Raska M, Krupka M. Antigenicity and immunogenicity of different morphological forms of Borrelia burgdorferi sensu lato spirochetes. Sci Rep 2024; 14:4014. [PMID: 38369537 PMCID: PMC10874929 DOI: 10.1038/s41598-024-54505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Borrelia burgdorferi sensu lato is a species complex of pleomorphic spirochetes, including species that cause Lyme disease (LD) in humans. In addition to classic spiral forms, these bacteria are capable of creating morphological forms referred to as round bodies and aggregates. The subject of discussion is their possible contribution to the persistence of infection or post-infection symptoms in LD. This study investigates the immunological properties of these forms by monitoring reactivity with early (n = 30) and late stage (n = 30) LD patient sera and evaluating the immune response induced by vaccination of mice. In patient sera, we found a quantitative difference in reactivity with individual morphotypes, when aggregates were recognized most intensively, but the difference was statistically significant in only half of the tested strains. In post-vaccination mouse sera, we observed a statistically significant higher reactivity with antigens p83 and p25 (OspC) in mice vaccinated with aggregates compared to mice vaccinated with spiral forms. The importance of the particulate nature of the antigen for the induction of a Th1-directed response has also been demonstrated. In any of morphological forms, the possibility of inducing antibodies cross-reacting with human nuclear and myositis specific/associated autoantigens was not confirmed by vaccination of mice.
Collapse
Affiliation(s)
- Kristyna Sloupenska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Barbora Koubkova
- Department of Allergology and Clinical Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Pavel Horak
- Third Department of Internal Medicine-Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
- Third Department of Internal Medicine-Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Jana Dolezilkova
- Laboratory of Medical Parasitology and Zoology, Public Health Institute Ostrava, Partyzanske Namesti 2633/7, Moravska Ostrava, 702 00, Ostrava, Czech Republic
| | - Beata Hutyrova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
- Department of Allergology and Clinical Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Mojmir Racansky
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
- Department of Allergology and Clinical Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Martina Miklusova
- Department of Neurology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Jan Mares
- Department of Neurology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
- Department of Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
9
|
Bowman KA, Wiggins CD, DeRiso E, Paul S, Strle K, Branda JA, Steere AC, Lauffenburger DA, Alter G. Borrelia-specific antibody profiles and complement deposition in joint fluid distinguish antibiotic-refractory from -responsive Lyme arthritis. iScience 2024; 27:108804. [PMID: 38303696 PMCID: PMC10830897 DOI: 10.1016/j.isci.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Lyme arthritis, caused by the spirochete Borrelia burgdorferi, is the most common feature of late disseminated Lyme disease in the United States. While most Lyme arthritis resolves with antibiotics, termed "antibiotic-responsive", some individuals develop progressive synovitis despite antibiotic therapy, called "antibiotic-refractory" Lyme arthritis (LA). The primary drivers behind antibiotic-refractory arthritis remain incompletely understood. We performed a matched, cross-compartmental comparison of antibody profiles from blood and joint fluid of individuals with antibiotic-responsive (n = 11) or antibiotic-refractory LA (n = 31). While serum antibody profiles poorly discriminated responsive from refractory patients, a discrete profile of B.burgdorferi-specific antibodies in joint fluid discriminated antibiotic-responsive from refractory LA. Cross-compartmental comparison of antibody glycosylation, IgA1, and antibody-dependent complement deposition (ADCD) revealed more poorly coordinated humoral responses and increased ADCD in refractory disease. These data reveal B.burgdorferi-specific serological markers that may support early stratification and clinical management, and point to antibody-dependent complement activation as a key mechanism underlying persistent disease.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA
| | - Christine D. Wiggins
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Elizabeth DeRiso
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Steffan Paul
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Klemen Strle
- Tufts University School of Medicine Boston, Boston, MA, USA
| | - John A. Branda
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Allen C. Steere
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Moderna Therapeutics Inc., Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Helble JD, Walsh MJ, McCarthy JE, Smith NP, Tirard AJ, Arnold BY, Villani AC, Hu LT. Single-cell RNA sequencing of murine ankle joints over time reveals distinct transcriptional changes following Borrelia burgdorferi infection. iScience 2023; 26:108217. [PMID: 37953958 PMCID: PMC10632114 DOI: 10.1016/j.isci.2023.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Lyme disease is caused by the bacterial pathogen Borrelia burgdorferi, which can be readily modeled in laboratory mice. In order to understand the cellular and transcriptional changes that occur during B. burgdorferi infection, we conducted single-cell RNA sequencing (scRNA-seq) of ankle joints of infected C57BL/6 mice over time. We found that macrophages/monocytes, T cells, synoviocytes and fibroblasts all showed significant differences in gene expression of both inflammatory and non-inflammatory genes that peaked early and returned to baseline before the typical resolution of arthritis. Predictions of cellular interactions showed that macrophages appear to communicate extensively between different clusters of macrophages as well as with fibroblasts and synoviocytes. Our data give unique insights into the interactions between B. burgdorferi and the murine immune system over time and allow for a better understanding of mechanisms by which the dysregulation of the immune response may lead to prolonged symptoms in some patients.
Collapse
Affiliation(s)
- Jennifer D. Helble
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michael J. Walsh
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Julie E. McCarthy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Neal P. Smith
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alice J. Tirard
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin Y. Arnold
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
11
|
Kanjana K, Strle K, Lochhead RB, Pianta A, Mateyka LM, Wang Q, Arvikar SL, Kling DE, Deangelo CA, Curham L, Barbour AG, Costello CE, Moon JJ, Steere AC. Autoimmunity to synovial extracellular matrix proteins in patients with postinfectious Lyme arthritis. J Clin Invest 2023; 133:e161170. [PMID: 37471146 PMCID: PMC10471169 DOI: 10.1172/jci161170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUNDAutoimmune diseases often have strong genetic associations with specific HLA-DR alleles. The synovial lesion in chronic inflammatory forms of arthritis shows marked upregulation of HLA-DR molecules, including in postinfectious Lyme arthritis (LA). However, the identity of HLA-DR-presented peptides, and therefore the reasons for these associations, has frequently remained elusive.METHODSUsing immunopeptidomics to detect HLA-DR-presented peptides from synovial tissue, we identified T cell epitopes from 3 extracellular matrix (ECM) proteins in patients with postinfectious LA, identified potential Borreliella burgdorferi-mimic (Bb-mimic) epitopes, and characterized T and B cell responses to these peptides or proteins.RESULTSOf 24 postinfectious LA patients, 58% had CD4+ T cell responses to at least 1 epitope of 3 ECM proteins, fibronectin-1, laminin B2, and/or collagen Vα1, and 17% of 52 such patients had antibody responses to at least 1 of these proteins. Patients with autoreactive T cell responses had significantly increased frequencies of HLA-DRB1*04 or -DRB1*1501 alleles and more prolonged arthritis. When tetramer reagents were loaded with ECM or corresponding Bb-mimic peptides, binding was only with the autoreactive T cells. A high percentage of ECM-autoreactive CD4+ T cells in synovial fluid were T-bet-expressing Th1 cells, a small percentage were RoRγt-expressing Th17 cells, and a minimal percentage were FoxP3-expressing Tregs.CONCLUSIONAutoreactive, proinflammatory CD4+ T cells and autoantibodies develop to ECM proteins in a subgroup of postinfectious LA patients who have specific HLA-DR alleles. Rather than the traditional molecular mimicry model, we propose that epitope spreading provides the best explanation for this example of infection-induced autoimmunity.FUNDINGSupported by National Institute of Allergy and Infectious Diseases R01-AI101175, R01-AI144365, and F32-AI125764; National Institute of Arthritis and Musculoskeletal and Skin Diseases K01-AR062098 and T32-AR007258; NIH grants P41-GM104603, R24-GM134210, S10-RR020946, S10-OD010724, S10-OD021651, and S10-OD021728; and the G. Harold and Leila Y. Mathers Foundation, the Eshe Fund, and the Lyme Disease and Arthritis Research Fund at Massachusetts General Hospital.
Collapse
Affiliation(s)
- Korawit Kanjana
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Klemen Strle
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert B. Lochhead
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Annalisa Pianta
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura M. Mateyka
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qi Wang
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sheila L. Arvikar
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David E. Kling
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cameron A. Deangelo
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucy Curham
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan G. Barbour
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Catherine E. Costello
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - James J. Moon
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allen C. Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Sanes JT, Costello CE, Steere AC. Heightened Proinflammatory Glycosylation of Borrelia burgdorferi IgG Antibodies in Synovial Fluid in Patients With Antibiotic-Refractory Lyme Arthritis. Arthritis Rheumatol 2023; 75:1263-1274. [PMID: 36716113 PMCID: PMC10313735 DOI: 10.1002/art.42465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Terminal glycans on the Fc portion of IgG antibodies are critical for antibody-triggered, proinflammatory or antiinflammatory responses. We undertook this study to compare glycan profiles of total IgG1 and Borrelia burgdorferi (Bb)-specific IgG1 antibodies in patients with oral antibiotic-responsive or antibiotic-refractory Lyme arthritis (LA). METHODS Following affinity-column processing, glycan profiles of IgG antibodies were determined in serum and synovial fluid (SF) samples of 21 LA patients using glycoblotting with hydrazide glycan enrichment and determination of glycan structure by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Correlations between glycan profiles and treatment outcomes were analyzed. RESULTS Compared with patients with antibiotic-refractory LA, those with antibiotic-responsive LA had total and Bb-specific IgG1 antibody glycans with less intense inflammatory profiles, containing lower percentages of N-acetylglucosamine (GlcNAc) and bisecting GlcNAc and higher percentages of galactose and fucose. In contrast, patients with antibiotic-refractory LA prior to receiving IV antibiotic therapy had total IgG1 and Bb IgG1 antibodies with maximal, minimally opposed, proinflammatory glycan profiles, containing high percentages of GlcNAc and bisecting GlcNAc, intermediate percentages with galactose and fucose, and low percentages with N-acetylneuraminic acid (sialic acid). Patients with refractory LA who were first seen with synovitis after receiving IV antibiotic therapy still had Bb IgG1 antibodies with strongly inflammatory glycan profiles, but their inflammatory potential appeared to be waning. CONCLUSION Patients with oral antibiotic-responsive LA had Bb IgG1 antibodies with more balanced proinflammatory/antiinflammatory glycan profiles, whereas patients with antibiotic-refractory LA had Bb IgG1 antibodies with maximal, minimally opposed, proinflammatory glycan profiles. Among patients with antibiotic-refractory LA, antibodies with this unbalanced inflammatory glycan profile may have a role in sustaining maladaptive joint inflammation.
Collapse
Affiliation(s)
- Jurgen T Sanes
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Catherine E Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts
| | - Allen C Steere
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Farris LC, Torres-Odio S, Adams LG, West AP, Hyde JA. Borrelia burgdorferi Engages Mammalian Type I IFN Responses via the cGAS-STING Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1761-1770. [PMID: 37067290 PMCID: PMC10192154 DOI: 10.4049/jimmunol.2200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/23/2023] [Indexed: 04/18/2023]
Abstract
Borrelia burgdorferi, the etiologic agent of Lyme disease, is a spirochete that modulates numerous host pathways to cause a chronic, multisystem inflammatory disease in humans. B. burgdorferi infection can lead to Lyme carditis, neurologic complications, and arthritis because of the ability of specific borrelial strains to disseminate, invade, and drive inflammation. B. burgdorferi elicits type I IFN (IFN-I) responses in mammalian cells and tissues that are associated with the development of severe arthritis or other Lyme-related complications. However, the innate immune sensors and signaling pathways controlling IFN-I induction remain unclear. In this study, we examined whether intracellular nucleic acid sensing is required for the induction of IFN-I to B. burgdorferi. Using fluorescence microscopy, we show that B. burgdorferi associates with mouse and human cells in culture, and we document that internalized spirochetes colocalize with the pattern recognition receptor cyclic GMP-AMP synthase (cGAS). Moreover, we report that IFN-I responses in mouse macrophages and murine embryonic fibroblasts are significantly attenuated in the absence of cGAS or its adaptor stimulator of IFN genes (STING), which function to sense and respond to intracellular DNA. Longitudinal in vivo tracking of bioluminescent B. burgdorferi revealed similar dissemination kinetics and borrelial load in C57BL/6J wild-type, cGAS-deficient, or STING-deficient mice. However, infection-associated tibiotarsal joint pathology and inflammation were modestly reduced in cGAS-deficient compared with wild-type mice. Collectively, these results indicate that the cGAS-STING pathway is a critical mediator of mammalian IFN-I signaling and innate immune responses to B. burgdorferi.
Collapse
Affiliation(s)
- Lauren C. Farris
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - L. Garry Adams
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| |
Collapse
|
14
|
Adkison H, Embers ME. Lyme disease and the pursuit of a clinical cure. Front Med (Lausanne) 2023; 10:1183344. [PMID: 37293310 PMCID: PMC10244525 DOI: 10.3389/fmed.2023.1183344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the United States. Many aspects of the disease are still topics of controversy within the scientific and medical communities. One particular point of debate is the etiology behind antibiotic treatment failure of a significant portion (10-30%) of Lyme disease patients. The condition in which patients with Lyme disease continue to experience a variety of symptoms months to years after the recommended antibiotic treatment is most recently referred to in the literature as post treatment Lyme disease syndrome (PTLDS) or just simply post treatment Lyme disease (PTLD). The most commonly proposed mechanisms behind treatment failure include host autoimmune responses, long-term sequelae from the initial Borrelia infection, and persistence of the spirochete. The aims of this review will focus on the in vitro, in vivo, and clinical evidence that either validates or challenges these mechanisms, particularly with regard to the role of the immune response in disease and resolution of the infection. Next generation treatments and research into identifying biomarkers to predict treatment responses and outcomes for Lyme disease patients are also discussed. It is essential that definitions and guidelines for Lyme disease evolve with the research to translate diagnostic and therapeutic advances to patient care.
Collapse
Affiliation(s)
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
15
|
Abstract
Arthritis is the most common late manifestation of Borrelia burgdorferi infection in the United States, usually beginning months after the tick bite. In most patients with Lyme arthritis (LA) today, arthritis is the presenting manifestation of the disease. Patients have swelling and pain in one or a few large joints, especially the knee. Serologic testing is the mainstay of diagnosis. Responses to antibiotic treatment are generally excellent, although a small percentage of patients have persistent, postinfectious synovitis after 2 to 3 months of oral and IV antibiotics, which respond to anti-inflammatory therapies. Herein we review the clinical presentation, diagnosis, and management of LA.
Collapse
Affiliation(s)
- Sheila L Arvikar
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, CNY149 Room 8301, 149 13th Street, Charlestown, MA 02129, USA.
| | - Allen C Steere
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, CNY149 Room 8301, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
16
|
A Review of Post-treatment Lyme Disease Syndrome and Chronic Lyme Disease for the Practicing Immunologist. Clin Rev Allergy Immunol 2021; 62:264-271. [PMID: 34687445 DOI: 10.1007/s12016-021-08906-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/22/2022]
Abstract
Lyme disease is an infection caused by Borrelia burgdorferi sensu lato, which is transmitted to humans through the bite of an infected Ixodes tick. The majority of patients recover without complications with antibiotic therapy. However, for a minority of patients, accompanying non-specific symptoms can persist for months following completion of therapy. The constellation of symptoms such as fatigue, cognitive dysfunction, and musculoskeletal pain that persist beyond 6 months and are associated with disability have been termed post-treatment Lyme disease syndrome (PTLDS), a subset of a broader term "chronic Lyme disease." Chronic Lyme disease is a broad, vaguely defined term that is used to describe patients with non-specific symptoms that are attributed to a presumed persistent Borrelia burgdorferi infection in patients who may or may not have evidence of either previous or current Lyme disease. The diagnoses of chronic Lyme disease and of PTLDS have become increasingly relevant to the practice of immunologists due to referrals for consultation or for intravenous immunoglobulin (IVIG) treatment. This review aims to explore the relationship between chronic Lyme disease, post-treatment Lyme disease syndrome, and the immune system. Here, we review the current literature on (1) issues in conventional and alternative diagnostic testing for Lyme disease, (2) the hypothesis that B. burgdorferi infection can persist despite appropriate use of recommended antibiotics, (3) current theories regarding B. burgdorferi's role in causing both immune dysregulation and protracted symptoms, and (4) the use of IVIG for the treatment of Lyme disease.
Collapse
|
17
|
Corre C, Coiffier G, Le Goff B, Ferreyra M, Guennic X, Patrat-Delon S, Degeilh B, Albert JD, Tattevin P. Lyme arthritis in Western Europe: a multicentre retrospective study. Eur J Clin Microbiol Infect Dis 2021; 41:21-27. [PMID: 34417687 DOI: 10.1007/s10096-021-04334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
To characterize Lyme arthritis, with a focus on management, and outcome. Observational retrospective multicentre study in Western France, of all consecutive cases of Lyme arthritis, documented by Borrelia burgdorferi IgG on ELISA serological testing, confirmed by Western blot, with or without positive Borrelia PCR in synovial fluid, with no alternative diagnosis. We enrolled 52 patients (29 males), with a mean age of 43 ± 19.4 years. Most patients had monoarthritis (n = 43, 82.7%), involving the knee (n = 51, 98.1%), with a median delay between symptoms onset and Lyme arthritis diagnosis of 5 months (interquartile range, 1.5-8). Synovial fluid analysis yielded median white cell count of 16,000/mm3 (9230-40,500), and positive PCR in 16 cases (39%), for B. burgdorferi sensu stricto (n = 5), B. garinii (n = 5), B. afzelii (n = 3), and undetermined (n = 3). All patients received antibiotics, for a median duration of 28 days (21-30), with doxycycline (n = 44, 84.6%), ceftriaxone (n = 6, 11.5%), or amoxicillin (n = 2). Twelve patients (23.1%) also received intra-articular injection of glucocorticoids as first-line treatment. Of 47 patients with follow-up, 35 (74.5%) had complete resolution of Lyme arthritis. Lyme arthritis in Western Europe may be due to B. burgdorferi ss, B. afzelii, or B. garinii. Clinical presentation is similar to Lyme arthritis in North America (i.e. chronic knee monoarthritis), with low sensitivity of synovial fluid PCR (39%).
Collapse
Affiliation(s)
- Clémence Corre
- Rheumatology Department, Bretagne-Atlantique Hospital Center, Hôpital CHUBERT, Vannes, France
| | - Guillaume Coiffier
- Reference Centre for Tick-Borne Diseases in Western France, Rennes, France
- Rheumatology Department, University Hospital, Rennes, France
- Rheumatology Department, GHT Rance-Emeraude, René Pléven Hospital, Dinan, France
| | - Benoit Le Goff
- Rheumatology Department, University Hospital, Nantes, France
| | - Marine Ferreyra
- Rheumatology Department, Bretagne-Atlantique Hospital Center, Hôpital CHUBERT, Vannes, France
| | - Xavier Guennic
- Rheumatology Department, Yves Le Foll Hospital, Saint-Brieuc, France
| | - Solène Patrat-Delon
- Reference Centre for Tick-Borne Diseases in Western France, Rennes, France
- Infectious Diseases Department, University Hospital, Rennes, France
| | - Brigitte Degeilh
- Reference Centre for Tick-Borne Diseases in Western France, Rennes, France
- Rheumatology Department, Yves Le Foll Hospital, Saint-Brieuc, France
| | - Jean-David Albert
- Reference Centre for Tick-Borne Diseases in Western France, Rennes, France
- Rheumatology Department, University Hospital, Rennes, France
| | - Pierre Tattevin
- Reference Centre for Tick-Borne Diseases in Western France, Rennes, France.
- Rheumatology Department, Yves Le Foll Hospital, Saint-Brieuc, France.
- Parasitology and Applied Zoology Laboratory, Rennes University Hospital, Rennes, France.
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2, rue Henri Le Guilloux, 35033 Cedex 9, Rennes, France.
| |
Collapse
|
18
|
Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, Zhang Y, Soloski MJ, Ostfeld RS, Marconi RT, Aucott J, Ma'ayan A, Keesing F, Lewis K, Ben Mamoun C, Rebman AW, McClune ME, Breitschwerdt EB, Reddy PJ, Maggi R, Yang F, Nemser B, Ozcan A, Garner O, Di Carlo D, Ballard Z, Joung HA, Garcia-Romeu A, Griffiths RR, Baumgarth N, Fallon BA. Recent Progress in Lyme Disease and Remaining Challenges. Front Med (Lausanne) 2021; 8:666554. [PMID: 34485323 PMCID: PMC8416313 DOI: 10.3389/fmed.2021.666554] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lyme disease (also known as Lyme borreliosis) is the most common vector-borne disease in the United States with an estimated 476,000 cases per year. While historically, the long-term impact of Lyme disease on patients has been controversial, mounting evidence supports the idea that a substantial number of patients experience persistent symptoms following treatment. The research community has largely lacked the necessary funding to properly advance the scientific and clinical understanding of the disease, or to develop and evaluate innovative approaches for prevention, diagnosis, and treatment. Given the many outstanding questions raised into the diagnosis, clinical presentation and treatment of Lyme disease, and the underlying molecular mechanisms that trigger persistent disease, there is an urgent need for more support. This review article summarizes progress over the past 5 years in our understanding of Lyme and tick-borne diseases in the United States and highlights remaining challenges.
Collapse
Affiliation(s)
- Jason R. Bobe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brandon L. Jutras
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | | | - Monica E. Embers
- Tulane University Health Sciences, New Orleans, LA, United States
| | - Allison Bailey
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - John Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avi Ma'ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Kim Lewis
- Department of Biology, Northeastern University, Boston, MA, United States
| | | | - Alison W. Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mecaila E. McClune
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Edward B. Breitschwerdt
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | - Ricardo Maggi
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bennett Nemser
- Steven & Alexandra Cohen Foundation, Stamford, CT, United States
| | - Aydogan Ozcan
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Omai Garner
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Dino Di Carlo
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Zachary Ballard
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Hyou-Arm Joung
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roland R. Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and the Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Brian A. Fallon
- Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
19
|
Lyme arthritis: linking infection, inflammation and autoimmunity. Nat Rev Rheumatol 2021; 17:449-461. [PMID: 34226730 PMCID: PMC9488587 DOI: 10.1038/s41584-021-00648-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Infectious agents can trigger autoimmune responses in a number of chronic inflammatory diseases. Lyme arthritis, which is caused by the tick-transmitted spirochaete Borrelia burgdorferi, is effectively treated in most patients with antibiotic therapy; however, in a subset of patients, arthritis can persist and worsen after the spirochaete has been killed (known as post-infectious Lyme arthritis). This Review details the current understanding of the pathogenetic events in Lyme arthritis, from initial infection in the skin, through infection of the joints, to post-infectious chronic inflammatory arthritis. The central feature of post-infectious Lyme arthritis is an excessive, dysregulated pro-inflammatory immune response during the infection phase that persists into the post-infectious period. This response is characterized by high amounts of IFNγ and inadequate amounts of the anti-inflammatory cytokine IL-10. The consequences of this dysregulated pro-inflammatory response in the synovium include impaired tissue repair, vascular damage, autoimmune and cytotoxic processes, and fibroblast proliferation and fibrosis. These synovial characteristics are similar to those in other chronic inflammatory arthritides, including rheumatoid arthritis. Thus, post-infectious Lyme arthritis provides a model for other chronic autoimmune or autoinflammatory arthritides in which complex immune responses can be triggered and shaped by an infectious agent in concert with host genetic factors.
Collapse
|
20
|
Ford L, Tufts DM. Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System. Brain Sci 2021; 11:brainsci11060789. [PMID: 34203671 PMCID: PMC8232152 DOI: 10.3390/brainsci11060789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Lyme borreliosis is the most prevalent tick-borne disease in the United States, infecting ~476,000 people annually. Borrelia spp. spirochetal bacteria are the causative agents of Lyme disease in humans and are transmitted by Ixodes spp ticks. Clinical manifestations vary depending on which Borrelia genospecies infects the patient and may be a consequence of distinct organotropism between species. In the US, B. burgdorferi sensu stricto is the most commonly reported genospecies and infection can manifest as mild to severe symptoms. Different genotypes of B. burgdorferi sensu stricto may be responsible for causing varying degrees of clinical manifestations. While the majority of Lyme borreliae-infected patients fully recover with antibiotic treatment, approximately 15% of infected individuals experience long-term neurological and psychological symptoms that are unresponsive to antibiotics. Currently, long-term antibiotic treatment remains the only FDA-approved option for those suffering from these chronic effects. Here, we discuss the current knowledge pertaining to B. burgdorferi sensu stricto infection in the central nervous system (CNS), termed Lyme neuroborreliosis (LNB), within North America and specifically the United States. We explore the molecular mechanisms of spirochete entry into the brain and the role B. burgdorferi sensu stricto genotypes play in CNS infectivity. Understanding infectivity can provide therapeutic targets for LNB treatment and offer public health understanding of the B. burgdorferi sensu stricto genotypes that cause long-lasting symptoms.
Collapse
Affiliation(s)
- Lenzie Ford
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Correspondence: (L.F.); (D.M.T.)
| | - Danielle M. Tufts
- Infectious Diseases and Microbiology Department, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (L.F.); (D.M.T.)
| |
Collapse
|
21
|
Donta ST, States LJ, Adams WA, Bankhead T, Baumgarth N, Embers ME, Lochhead RB, Stevenson B. Report of the Pathogenesis and Pathophysiology of Lyme Disease Subcommittee of the HHS Tick Borne Disease Working Group. Front Med (Lausanne) 2021; 8:643235. [PMID: 34164410 PMCID: PMC8215209 DOI: 10.3389/fmed.2021.643235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
An understanding of the pathogenesis and pathophysiology of Lyme disease is key to the ultimate care of patients with Lyme disease. To better understand the various mechanisms underlying the infection caused by Borrelia burgdorferi, the Pathogenesis and Pathophysiology of Lyme Disease Subcommittee was formed to review what is currently known about the pathogenesis and pathophysiology of Lyme disease, from its inception, but also especially about its ability to persist in the host. To that end, the authors of this report were assembled to update our knowledge about the infectious process, identify the gaps that exist in our understanding of the process, and provide recommendations as to how to best approach solutions that could lead to a better means to manage patients with persistent Lyme disease.
Collapse
Affiliation(s)
- Sam T Donta
- Falmouth Hospital, Falmouth, MA, United States
| | - Leith J States
- Office of the Assistant Secretary for Health, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Wendy A Adams
- Bay Area Lyme Foundation, Portola Valley, CA, United States
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Monica E Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Robert B Lochhead
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
22
|
Casselli T, Divan A, Vomhof-DeKrey EE, Tourand Y, Pecoraro HL, Brissette CA. A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog 2021; 17:e1009256. [PMID: 33524035 PMCID: PMC7877756 DOI: 10.1371/journal.ppat.1009256] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/11/2021] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Lyme disease, which is caused by infection with Borrelia burgdorferi and related species, can lead to inflammatory pathologies affecting the joints, heart, and nervous systems including the central nervous system (CNS). Inbred laboratory mice have been used to define the kinetics of B. burgdorferi infection and host immune responses in joints and heart, however similar studies are lacking in the CNS of these animals. A tractable animal model for investigating host-Borrelia interactions in the CNS is key to understanding the mechanisms of CNS pathogenesis. Therefore, we characterized the kinetics of B. burgdorferi colonization and associated immune responses in the CNS of mice during early and subacute infection. Using fluorescence-immunohistochemistry, intravital microscopy, bacterial culture, and quantitative PCR, we found B. burgdorferi routinely colonized the dura mater of C3H mice, with peak spirochete burden at day 7 post-infection. Dura mater colonization was observed for several Lyme disease agents including B. burgdorferi, B. garinii, and B. mayonii. RNA-sequencing and quantitative RT-PCR showed that B. burgdorferi infection was associated with increased expression of inflammatory cytokines and a robust interferon (IFN) response in the dura mater. Histopathologic changes including leukocytic infiltrates and vascular changes were also observed in the meninges of infected animals. In contrast to the meninges, we did not detect B. burgdorferi, infiltrating leukocytes, or large-scale changes in cytokine profiles in the cerebral cortex or hippocampus during infection; however, both brain regions demonstrated similar changes in expression of IFN-stimulated genes as observed in peripheral tissues and meninges. Taken together, B. burgdorferi is capable of colonizing the meninges in laboratory mice, and induces localized inflammation similar to peripheral tissues. A sterile IFN response in the absence of B. burgdorferi or inflammatory cytokines is unique to the brain parenchyma, and provides insight into the potential mechanisms of CNS pathology associated with this important pathogen.
Collapse
Affiliation(s)
- Timothy Casselli
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- * E-mail: (TC); (CAB)
| | - Ali Divan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Emilie E. Vomhof-DeKrey
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- Department of Surgery, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Yvonne Tourand
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Heidi L. Pecoraro
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, North Dakota, United States of America
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- * E-mail: (TC); (CAB)
| |
Collapse
|
23
|
Steere AC. Posttreatment Lyme disease syndromes: distinct pathogenesis caused by maladaptive host responses. J Clin Invest 2021; 130:2148-2151. [PMID: 32281948 DOI: 10.1172/jci138062] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
24
|
Thompson D, Watt JA, Brissette CA. Host transcriptome response to Borrelia burgdorferi sensu lato. Ticks Tick Borne Dis 2020; 12:101638. [PMID: 33360384 DOI: 10.1016/j.ttbdis.2020.101638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
The host immune response to infection is a well-coordinated system of innate and adaptive immune cells working in concert to prevent the colonization and dissemination of a pathogen. While this typically leads to a beneficial outcome and the suppression of disease pathogenesis, the Lyme borreliosis bacterium, Borrelia burgdorferi sensu lato, can elicit an immune profile that leads to a deleterious state. As B. burgdorferi s.l. produces no known toxins, it is suggested that the immune and inflammatory response of the host are responsible for the manifestation of symptoms, including flu-like symptoms, musculoskeletal pain, and cognitive disorders. The past several years has seen a substantial increase in the use of microarray and sequencing technologies to investigate the transcriptome response induced by B. burgdorferi s.l., thus enabling researchers to identify key factors and pathways underlying the pathophysiology of Lyme borreliosis. In this review we present the major host transcriptional outcomes induced by the bacterium across several studies and discuss the overarching theme of the host inflammatory and immune response, and how it influences the pathology of Lyme borreliosis.
Collapse
Affiliation(s)
- Derick Thompson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| | - John A Watt
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| | - Catherine A Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| |
Collapse
|
25
|
Abstract
Lyme disease (Lyme borreliosis) is a tick-borne, zoonosis of adults and children caused by genospecies of the Borrelia burgdorferi sensu lato complex. The ailment, widespread throughout the Northern Hemisphere, continues to increase globally due to multiple environmental factors, coupled with increased incursion of humans into habitats that harbor the spirochete. B. burgdorferi sensu lato is transmitted by ticks from the Ixodes ricinus complex. In North America, B. burgdorferi causes nearly all infections; in Europe, B. afzelii and B. garinii are most associated with human disease. The spirochete's unusual fragmented genome encodes a plethora of differentially expressed outer surface lipoproteins that play a seminal role in the bacterium's ability to sustain itself within its enzootic cycle and cause disease when transmitted to its incidental human host. Tissue damage and symptomatology (i.e., clinical manifestations) result from the inflammatory response elicited by the bacterium and its constituents. The deposition of spirochetes into human dermal tissue generates a local inflammatory response that manifests as erythema migrans (EM), the hallmark skin lesion. If treated appropriately and early, the prognosis is excellent. However, in untreated patients, the disease may present with a wide range of clinical manifestations, most commonly involving the central nervous system, joints, or heart. A small percentage (~10%) of patients may go on to develop a poorly defined fibromyalgia-like illness, post-treatment Lyme disease (PTLD) unresponsive to prolonged antimicrobial therapy. Below we integrate current knowledge regarding the ecologic, epidemiologic, microbiologic, and immunologic facets of Lyme disease into a conceptual framework that sheds light on the disorder that healthcare providers encounter.
Collapse
Affiliation(s)
- Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, CT 06030, USA
- Department of Pediatrics, UConn Health, Farmington, CT 06030, USA
- Departments of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
- Departments of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
- Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Klemen Strle
- Division of Infectious Diseases, Wadsworth Center, NY Department of Health, Albany NY, 12208, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Bockenstedt LK, Wooten RM, Baumgarth N. Immune Response to Borrelia: Lessons from Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:145-190. [PMID: 33289684 PMCID: PMC10842262 DOI: 10.21775/cimb.042.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The mammalian host responds to infection with Borrelia spirochetes through a highly orchestrated immune defense involving innate and adaptive effector functions aimed toward limiting pathogen burdens, minimizing tissue injury, and preventing subsequent reinfection. The evolutionary adaptation of Borrelia spirochetes to their reservoir mammalian hosts may allow for its persistence despite this immune defense. This review summarizes our current understanding of the host immune response to B. burgdorferi sensu lato, the most widely studied Borrelia spp. and etiologic agent of Lyme borreliosis. Pertinent literature will be reviewed with emphasis on in vitro, ex vivo and animal studies that influenced our understanding of both the earliest responses to B. burgdorferi as it enters the mammalian host and those that evolve as spirochetes disseminate and establish infection in multiple tissues. Our focus is on the immune response of inbred mice, the most commonly studied animal model of B. burgdorferi infection and surrogate for one of this pathogen's principle natural reservoir hosts, the white-footed deer mouse. Comparison will be made to the immune responses of humans with Lyme borreliosis. Our goal is to provide an understanding of the dynamics of the mammalian immune response during infection with B. burgdorferi and its relation to the outcomes in reservoir (mouse) and non-reservoir (human) hosts.
Collapse
Affiliation(s)
- Linda K. Bockenstedt
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Dept. Pathology, Microbiology and Immunology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
27
|
Abstract
Lyme borreliosis is the most common vectorborne disease in the northern hemisphere. It usually begins with erythema migrans; early disseminated infection particularly causes multiple erythema migrans or neurologic disease, and late manifestations predominantly include arthritis in North America, and acrodermatitis chronica atrophicans (ACA) in Europe. Diagnosis of Lyme borreliosis is based on characteristic clinical signs and symptoms, complemented by serological confirmation of infection once an antibody response has been mounted. Manifestations usually respond to appropriate antibiotic regimens, but the disease can be followed by sequelae, such as immune arthritis or residual damage to affected tissues. A subset of individuals reports persistent symptoms, including fatigue, pain, arthralgia, and neurocognitive symptoms, which in some people are severe enough to fulfil the criteria for post-treatment Lyme disease syndrome. The reported prevalence of such persistent symptoms following antimicrobial treatment varies considerably, and its pathophysiology is unclear. Persistent active infection in humans has not been identified as a cause of this syndrome, and randomized treatment trials have invariably failed to show any benefit of prolonged antibiotic treatment. For prevention of Lyme borreliosis, post-exposure prophylaxis may be indicated in specific cases, and novel vaccine strategies are under development.
Collapse
Affiliation(s)
- Bart Jan Kullberg
- Department of Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hedwig D Vrijmoeth
- Department of Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Freek van de Schoor
- Department of Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joppe W Hovius
- Amsterdam University Medical Centers, location AMC, Department of Medicine, Division of Infectious Diseases, and Amsterdam Multidisciplinary Lyme borreliosis Center, Amsterdam, Netherlands
| |
Collapse
|
28
|
Affiliation(s)
- Allen C Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
29
|
Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc Natl Acad Sci U S A 2019; 116:13498-13507. [PMID: 31209025 PMCID: PMC6613144 DOI: 10.1073/pnas.1904170116] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in North America. If early infection is untreated, it can result in late-stage manifestations, including arthritis. Although antibiotics are generally effective at all stages of the disease, arthritis may persist in some patients for months to several years despite oral and intravenous antibiotic treatment. Excessive, dysregulated host immune responses are thought to play an important role in this outcome, but the underlying mechanisms are not completely understood. This study identifies the B. burgdorferi peptidoglycan, a major component of the cell wall, as an immunogen likely to contribute to inflammation during infection and in cases of postinfectious Lyme arthritis. Lyme disease is a multisystem disorder caused by the spirochete Borrelia burgdorferi. A common late-stage complication of this disease is oligoarticular arthritis, often involving the knee. In ∼10% of cases, arthritis persists after appropriate antibiotic treatment, leading to a proliferative synovitis typical of chronic inflammatory arthritides. Here, we provide evidence that peptidoglycan (PG), a major component of the B. burgdorferi cell envelope, may contribute to the development and persistence of Lyme arthritis (LA). We show that B. burgdorferi has a chemically atypical PG (PGBb) that is not recycled during cell-wall turnover. Instead, this pathogen sheds PGBb fragments into its environment during growth. Patients with LA mount a specific immunoglobulin G response against PGBb, which is significantly higher in the synovial fluid than in the serum of the same patient. We also detect PGBb in 94% of synovial fluid samples (32 of 34) from patients with LA, many of whom had undergone oral and intravenous antibiotic treatment. These same synovial fluid samples contain proinflammatory cytokines, similar to those produced by human peripheral blood mononuclear cells stimulated with PGBb. In addition, systemic administration of PGBb in BALB/c mice elicits acute arthritis. Altogether, our study identifies PGBb as a likely contributor to inflammatory responses in LA. Persistence of this antigen in the joint may contribute to synovitis after antibiotics eradicate the pathogen. Furthermore, our finding that B. burgdorferi sheds immunogenic PGBb fragments during growth suggests a potential role for PGBb in the immunopathogenesis of other Lyme disease manifestations.
Collapse
|
30
|
Lochhead RB, Ordoñez D, Arvikar SL, Aversa JM, Oh LS, Heyworth B, Sadreyev R, Steere AC, Strle K. Interferon-gamma production in Lyme arthritis synovial tissue promotes differentiation of fibroblast-like synoviocytes into immune effector cells. Cell Microbiol 2019; 21:e12992. [PMID: 30550623 DOI: 10.1111/cmi.12992] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022]
Abstract
Lyme arthritis (LA), a late disease manifestation of Borrelia burgdorferi infection, usually resolves with antibiotic therapy. However, some patients develop proliferative synovitis lasting months to several years after spirochetal killing, called postinfectious LA. In this study, we phenotyped haematopoietic and stromal cell populations in the synovial lesion ex vivo and used these findings to generate an in vitro model of LA using patient-derived fibroblast-like synoviocytes (FLS). Ex vivo analysis of synovial tissue revealed high abundance of IFNγ-producing T cells and NK cells. Similar to marked IFNγ responses in tissue, postinfectious LA synovial fluid also had high levels of IFNγ. HLA-DR-positive FLS were present throughout the synovial lesion, particularly in areas of inflammation. FLS stimulated in vitro with B. burgdorferi, which were similar to conditions during infection, expressed 68 genes associated primarily with innate immune activation and neutrophil recruitment. In contrast, FLS stimulated with IFNγ, which were similar to conditions in the postinfectious phase, expressed >2,000 genes associated with pathogen sensing, inflammation, and MHC Class II antigen presentation, similar to the expression profile in postinfectious synovial tissue. Furthermore, costimulation of FLS with B. burgdorferi and IFNγ induced greater expression of IL-6 and other innate immune response proteins and genes than with IFNγ stimulation alone. These results suggest that B. burgdorferi infection, in combination with IFNγ, initiates the differentiation of FLS into a highly inflammatory phenotype. We hypothesise that overexpression of IFNγ by lymphocytes within synovia perpetuates these responses in the postinfectious period, causing proliferative synovitis and stalling appropriate repair of damaged tissue.
Collapse
Affiliation(s)
- Robert B Lochhead
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - David Ordoñez
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sheila L Arvikar
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - John M Aversa
- Department of Orthopedics, Yale University School of Medicine, New Haven, Connecticut
| | - Luke S Oh
- Department of Orthopedics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Benton Heyworth
- Department of Orthopedics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ruslan Sadreyev
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Allen C Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Klemen Strle
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|