1
|
Saito R, Yamanobe H, Yabuki K, Suzuki T, Saito T, Hakozaki S, Wanner M, Koizumi R, Sakai T, Gamboa M, Tanaka T, Ono A, Nguyen HT, Saito Y, Aoyama T, Kojima K, Suizu F, Watanabe K, Sogame Y. Salinity tolerance in resting cysts of colpodid ciliates: Comparative transcriptomics analysis and chemical analysis of cyst walls to investigate their tolerance capability. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100371. [PMID: 40161401 PMCID: PMC11952024 DOI: 10.1016/j.crmicr.2025.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The formation of resting cysts is a strategy for survival in unfavorable environments by single cell organisms such as protists. Here, we show that Colpoda resting cysts have high salinity tolerance and investigate the changes in gene expression that underpin this effect. Colpoda resting cysts can tolerate saline conditions up to 3.5 % NaCl. A comparative transcriptome analysis of vegetative cells and resting cysts showed that the relative levels of expression of genes associated with membrane function increased in resting cysts. These changes in gene expression suggest that reconstruction of the plasma membrane is associated with salinity tolerance. The resting cyst forms cyst-specific cellular structure known as the cyst wall. The outer shell-like layer, called the ectocyst, while the inner multiple layers, known as the endocyst. The chemical analysis showed ectocyst contains chitin and endocyst contains several proteins. These structures can protect cells by acting as a biological armor or protective materials. The results of this study offer a possible scenario in which salinity tolerance enables the widespread dispersal of protists.
Collapse
Affiliation(s)
- Ryota Saito
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
- Present address: Department of Chemistry and Biotechnology, Kochi University, Kochi, Kochi 780-8520, Japan
| | - Hiroki Yamanobe
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
- Present address: College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuma Yabuki
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Utsunomiya 321-8505, Japan
| | - Takeru Saito
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
- Present address: College of Agri-Biological Resource Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Shuntaro Hakozaki
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
- Present address: Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Fukushima 960-1296, Japan
| | - Manfred Wanner
- Brandenburg University of Technology Cottbus-Senftenberg, Department of Ecology, Cottbus D-03013, Germany
| | - Ryota Koizumi
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
| | - Tatsuya Sakai
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
| | - Maribet Gamboa
- Department of Ecology, Faculty of Science, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
| | - Toshihiko Tanaka
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
- Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan
- Ultrahigh Precision Optics Technology Team, RIKEN Center for Advanced Photonics (RAP), Wako, Saitama 351-0198, Japan
| | - Akiko Ono
- Present address: College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Present address: Faculty of Global Interdisciplinary Science and Innovation, Shizuoka University, Shizuoka, Shizuoka 422-8529, Japan
| | - Hoa Thanh Nguyen
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
- Present address: Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yuta Saito
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Utsunomiya 321-8505, Japan
| | - Tetsuya Aoyama
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan
- Ultrahigh Precision Optics Technology Team, RIKEN Center for Advanced Photonics (RAP), Wako, Saitama 351-0198, Japan
| | - Katsuhiko Kojima
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Futoshi Suizu
- Molecular Oncologic Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761-0793, Japan
- Present address: Laboratory of Pathology, Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa 761-0123, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Yoichiro Sogame
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
| |
Collapse
|
2
|
Mathur S, Kaushik S, Kothari SL, Srivastava VK. Role of various virulence factors involved in the pathogenesis of Entamoeba histolytica. Exp Parasitol 2024; 266:108841. [PMID: 39362393 DOI: 10.1016/j.exppara.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Developing countries continuously face challenges to get rid of amoebiasis, a protozoan disease caused by Entamoeba histolytica. Every year around 900 million people get affected by amoebiasis, among them only 10 % of people show the symptoms of the disease while 90 % of people do not show any symptoms but still, serve as carriers of the disease. Asymptomatic persons carry cysts of Entamoeba in their fecal matter, which is carried by house flies to contaminate the food and water. Entamoeba histolytica is a very successful pathogen because it has very well-developed virulence factors that function in infection to host as well as in overcoming the host's immune response. However, researchers have very little information about the clear relationship between virulence factors and the virulence of Entamoeba histolytica, through various research, researchers have been able to identify key pathogenic factors that are crucial to the pathogenesis of amoebiasis and have provided valuable insights into the development of the disease. The objective of this review is to underscore various virulence factors (Monosaccharides, Gal/GalNAc lectin, extracellular vesicles, cysteine proteases, amoeba-pores, and actin microfilament) involved in pathogenesis which may be helpful for designing of future drug or therapy.
Collapse
Affiliation(s)
- Shubham Mathur
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | | |
Collapse
|
3
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
4
|
Herrera-Martínez M, Hernández-Ramírez VI, Montaño S, Chávez-Munguía B, Hernández-Carlos B, Talamás-Rohana P. Alpha-terthienyl increases filamentous actin of Entamoeba histolytica. Mol Biochem Parasitol 2022; 252:111512. [PMID: 36084901 DOI: 10.1016/j.molbiopara.2022.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
This study aimed to know if alpha terthienyl (α-T) affects E. histolytica viability and to analyze its effect on the actin cytoskeleton. Trophozoites of E. histolytica HM1-IMSS were treated with α-T, then, cell viability and morphology were evaluated using tetrazolium salts and scanning electron microscopy, respectively; while actin filaments (F-actin) were stained with rhodamine-phalloidin, observed by confocal microscopy and quantified by fluorometry. Data showed that α-T inhibited cell viability of trophozoites (IC50, 19.43 µg / mL), affected the cell morphology, and increased the F-actin in a dose-dependent manner. Production of reactive oxygen species and RhoA-GTP levels remained normal in α-T-treated amebas. Two inhibitors that affect the organization of the trophozoites cytoskeleton, one that interacts directly with actin, Cytochalasin D (CD), and one that affects the Rho signaling pathway by inhibiting the downstream effector Rock, Y27632, were tested. Y27632 did not affect the increase of polymerized actin observed with α-T, this compound partially ameliorates the potent disrupting effects of CD on actin filaments. Docking results suggest that α-T could be an antagonist of CD for the same interaction zone in actin, however, more studies are needed to define the action mechanism of this compound.
Collapse
Affiliation(s)
- Mayra Herrera-Martínez
- Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán - San Antonio Nanahuatipán Km 1.7 s/n., Paraje Titlacuatitla, Teotitlán de Flores Magón, Oaxaca 68540, Mexico.
| | - Verónica Ivonne Hernández-Ramírez
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| | - Sarita Montaño
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Calzada de las Américas, Norte 2771, Ciudad Universitaria, Burócrata, Culiacán Rosales, Sinaloa 80030, Mexico.
| | - Bibiana Chávez-Munguía
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| | - Beatriz Hernández-Carlos
- Laboratorio de Productos Naturales, Instituto de Agroindustrias, Universidad Tecnológica de la Mixteca, Carretera a Acatlima Km. 2.5, Acatlima, Huajuapan de León, Oaxaca 69000, Mexico.
| | - Patricia Talamás-Rohana
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| |
Collapse
|
5
|
Jasni N, Saidin S, Kin WW, Arifin N, Othman N. Entamoeba histolytica: Membrane and Non-Membrane Protein Structure, Function, Immune Response Interaction, and Vaccine Development. MEMBRANES 2022; 12:1079. [PMID: 36363634 PMCID: PMC9695907 DOI: 10.3390/membranes12111079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Entamoeba histolytica is a protozoan parasite that is the causative agent of amoebiasis. This parasite has caused widespread infection in India, Africa, Mexico, and Central and South America, and results in 100,000 deaths yearly. An immune response is a body's mechanism for eradicating and fighting against substances it sees as harmful or foreign. E. histolytica biological membranes are considered foreign and immunogenic to the human body, thereby initiating the body's immune responses. Understanding immune response and antigen interaction are essential for vaccine development. Thus, this review aims to identify and understand the protein structure, function, and interaction of the biological membrane with the immune response, which could contribute to vaccine development. Furthermore, the current trend of vaccine development studies to combat amoebiasis is also reviewed.
Collapse
Affiliation(s)
- Nurhana Jasni
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Syazwan Saidin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Wong Weng Kin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Norsyahida Arifin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| |
Collapse
|
6
|
Meinnel T, Giglione C. N-terminal modifications, the associated processing machinery, and their evolution in plastid-containing organisms. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6013-6033. [PMID: 35768189 DOI: 10.1093/jxb/erac290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The N-terminus is a frequent site of protein modifications. Referring primarily to knowledge gained from land plants, here we review the modifications that change protein N-terminal residues and provide updated information about the associated machinery, including that in Archaeplastida. These N-terminal modifications include many proteolytic events as well as small group additions such as acylation or arginylation and oxidation. Compared with that of the mitochondrion, the plastid-dedicated N-terminal modification landscape is far more complex. In parallel, we extend this review to plastid-containing Chromalveolata including Stramenopiles, Apicomplexa, and Rhizaria. We report a well-conserved machinery, especially in the plastid. Consideration of the two most abundant proteins on Earth-Rubisco and actin-reveals the complexity of N-terminal modification processes. The progressive gene transfer from the plastid to the nuclear genome during evolution is exemplified by the N-terminus modification machinery, which appears to be one of the latest to have been transferred to the nuclear genome together with crucial major photosynthetic landmarks. This is evidenced by the greater number of plastid genes in Paulinellidae and red algae, the most recent and fossil recipients of primary endosymbiosis.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|