1
|
Chopra U, Bhansali P, Gangi Setty SR, Chakravortty D. Endoplasmic reticulum facilitates the coordinated division of Salmonella-containing vacuoles. mBio 2025; 16:e0011425. [PMID: 40272166 PMCID: PMC12077215 DOI: 10.1128/mbio.00114-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Salmonella Typhimurium (STM) resides in a membrane-bound compartment called the Salmonella-containing vacuole (SCV) in several infected cell types where bacterial and SCV division occur synchronously to maintain a single bacterium per vacuole. However, the mechanism behind this synchronous fission is not well understood. Fission of intracellular organelles is known to be regulated by the dynamic tubular endoplasmic reticulum (ER). In this study, we evaluated the role of ER in controlling SCV division. Interestingly, Salmonella-infected cells show activation of the unfolded protein response (UPR) and expansion of ER tubules. Altering the expression of ER morphology regulators, such as reticulon-4a (Rtn4a) and CLIMP63, significantly impacted bacterial proliferation, suggesting a potential role of tubular ER in facilitating SCV division. Live-cell imaging revealed the marking of tubular ER at the center of 78% of SCV division sites. This study also explored the role of SteA (a known Salmonella effector in modulating membrane dynamics) in coordinating the SCV division. SteA resides on the SCV membranes and helps form membrane contact between SCV and ER. The colocalization of ER with SCV enclosing STMΔsteA was significantly reduced, compared with SCV of STM WT or STMΔsteA:steA. STMΔsteA shows profound defects in SCV division, resulting in multiple bacteria in a single vacuole with proliferation defects. In vivo, the STMΔsteA shows a defect in colonization in the spleen and liver and affects the initial survival rate of mice. Overall, this study suggests a coordinated role of bacterial effector SteA in promoting ER contact/association with SCVs and regulating SCV division.IMPORTANCEThis study highlights the essential role of the host endoplasmic reticulum in facilitating SCV division and maintaining a single bacterium per vacuole. The Salmonella effector SteA helps maintain the single bacterium per vacuole state. In the absence of SteA, Salmonella resides as multiple bacteria within a single large vacuole. The STMΔsteA shows reduced proliferation under in vitro conditions and exhibits colonization defects in vivo, highlighting the importance of this effector in Salmonella pathogenesis. These findings suggest that targeting SteA could provide a novel therapeutic approach to inhibit Salmonella pathogenicity.
Collapse
Affiliation(s)
- Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Scharte F, Franzkoch R, Hensel M. Flagella-mediated cytosolic motility of Salmonella enterica Paratyphi A aids in evasion of xenophagy but does not impact egress from host cells. Mol Microbiol 2024; 121:413-430. [PMID: 37278220 DOI: 10.1111/mmi.15104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Typhoidal serovars like Paratyphi A (SPA) are human restricted and cause severe systemic diseases, while many serovars like Typhimurium (STM) have a broad host range, and usually lead to self-limiting gastroenteritis. There are key differences between typhoidal and non-typhoidal Salmonella in pathogenesis, but underlying mechanisms remain largely unknown. Transcriptomes and phenotypes in epithelial cells revealed induction of motility, flagella and chemotaxis genes for SPA but not STM. SPA exhibited cytosolic motility mediated by flagella. In this study, we applied single-cell microscopy to analyze triggers and cellular consequences of cytosolic motility. Live-cell imaging (LCI) revealed that SPA invades host cells in a highly cooperative manner. Extensive membrane ruffling at invasion sites led to increased membrane damage in nascent Salmonella-containing vacuole, and subsequent cytosolic release. After release into the cytosol, motile bacteria showed the same velocity as under culture conditions in media. Reduced capture of SPA by autophagosomal membranes was observed by LCI and electron microscopy. Prior work showed that SPA does not use flagella-mediated motility for cell exit via the intercellular spread. However, cytosolic motile SPA was invasion-primed if released from host cells. Our results reveal flagella-mediated cytosolic motility as a possible xenophagy evasion mechanism that could drive disease progression and contributes to the dissemination of systemic infection.
Collapse
Affiliation(s)
- Felix Scharte
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Rico Franzkoch
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- Universität Osnabrück, iBiOs-Integrated Bioimaging Facility, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- Universität Osnabrück, CellNanOs-Center of Cellular Nanoanalytics, Osnabrück, Germany
| |
Collapse
|
3
|
Pfitzner AK, Zivkovic H, Bernat-Silvestre C, West M, Peltier T, Humbert F, Odorizzi G, Roux A. Vps60 initiates alternative ESCRT-III filaments. J Cell Biol 2023; 222:e202206028. [PMID: 37768378 PMCID: PMC10538557 DOI: 10.1083/jcb.202206028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 09/29/2023] Open
Abstract
Endosomal sorting complex required for transport-III (ESCRT-III) participates in essential cellular functions, from cell division to endosome maturation. The remarkable increase of its subunit diversity through evolution may have enabled the acquisition of novel functions. Here, we characterize a novel ESCRT-III copolymer initiated by Vps60. Membrane-bound Vps60 polymers recruit Vps2, Vps24, Did2, and Ist1, as previously shown for Snf7. Snf7- and Vps60-based filaments can coexist on membranes without interacting as their polymerization and recruitment of downstream subunits remain spatially and biochemically separated. In fibroblasts, Vps60/CHMP5 and Snf7/CHMP4 are both recruited during endosomal functions and cytokinesis, but their localization is segregated and their recruitment dynamics are different. Contrary to Snf7/CHMP4, Vps60/CHMP5 is not recruited during nuclear envelope reformation. Taken together, our results show that Vps60 and Snf7 form functionally distinct ESCRT-III polymers, supporting the notion that diversification of ESCRT-III subunits through evolution is linked to the acquisition of new cellular functions.
Collapse
Affiliation(s)
| | - Henry Zivkovic
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Matt West
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tanner Peltier
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Frédéric Humbert
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Nozawa T, Toh H, Iibushi J, Kogai K, Minowa-Nozawa A, Satoh J, Ito S, Murase K, Nakagawa I. Rab41-mediated ESCRT machinery repairs membrane rupture by a bacterial toxin in xenophagy. Nat Commun 2023; 14:6230. [PMID: 37802980 PMCID: PMC10558455 DOI: 10.1038/s41467-023-42039-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Xenophagy, a type of selective autophagy, is a bactericidal membrane trafficking that targets cytosolic bacterial pathogens, but the membrane homeostatic system to cope with bacterial infection in xenophagy is not known. Here, we show that the endosomal sorting complexes required for transport (ESCRT) machinery is needed to maintain homeostasis of xenophagolysosomes damaged by a bacterial toxin, which is regulated through the TOM1L2-Rab41 pathway that recruits AAA-ATPase VPS4. We screened Rab GTPases and identified Rab41 as critical for maintaining the acidification of xenophagolysosomes. Confocal microscopy revealed that ESCRT components were recruited to the entire xenophagolysosome, and this recruitment was inhibited by intrabody expression against bacterial cytolysin, indicating that ESCRT targets xenophagolysosomes in response to a bacterial toxin. Rab41 translocates to damaged autophagic membranes via adaptor protein TOM1L2 and recruits VPS4 to complete ESCRT-mediated membrane repair in a unique GTPase-independent manner. Finally, we demonstrate that the TOM1L2-Rab41 pathway-mediated ESCRT is critical for the efficient clearance of bacteria through xenophagy.
Collapse
Affiliation(s)
- Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junpei Iibushi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kohei Kogai
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Fromm L, Mehl J, Keller C. Orientia tsutsugamushi: A life between escapes. Microbiologyopen 2023; 12:e1380. [PMID: 37877457 PMCID: PMC10493369 DOI: 10.1002/mbo3.1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
The life cycle of the mite-borne, obligate intracellular pathogen Orientia tsutsugamushi (Ot), the causative agent of human scrub typhus, differs in many aspects from that of other members of the Rickettsiales order. Particularly, the nonlytic cellular exit of individual Ot bacteria at the plasma membrane closely resembles the budding of enveloped viruses but has only been rudimentarily studied at the molecular level. This brief article is focused on the current state of knowledge of escape events in the life cycle of Ot and highlights differences in strategies of other rickettsiae.
Collapse
Affiliation(s)
- Lea Fromm
- Institute of VirologyPhilipps University MarburgMarburgGermany
| | - Jonas Mehl
- Institute of VirologyPhilipps University MarburgMarburgGermany
| | | |
Collapse
|
6
|
Rivera-Cuevas Y, Carruthers VB. The multifaceted interactions between pathogens and host ESCRT machinery. PLoS Pathog 2023; 19:e1011344. [PMID: 37141275 PMCID: PMC10159163 DOI: 10.1371/journal.ppat.1011344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.
Collapse
Affiliation(s)
- Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
8
|
Li C, Xu Z, Chen W, Zhou C, Wang C, Wang M, Liang J, Wei P. The Use of Star Anise-Cinnamon Essential Oil as an Alternative Antibiotic in Prevention of Salmonella Infections in Yellow Chickens. Antibiotics (Basel) 2022; 11:1579. [PMID: 36358233 PMCID: PMC9686846 DOI: 10.3390/antibiotics11111579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 03/05/2024] Open
Abstract
Salmonella is capable of harming human and animal health, and its multidrug resistance (MDR) has always been a public health problem. In addition, antibiotic-free or antibiotic-reduced policies have been implemented in poultry production. Therefore, the search for antibiotic alternatives is more urgent than ever before. The aim of this study was to assess the antibacterial activity of star anise-cinnamon essential oil (SCEO) in vitro and its prophylactic effect against the infections of Salmonella pullorum, Salmonella give, and Salmonella kentucky in vivo. The results demonstrated that SCEO is effective against Salmonella pullorum, Salmonella give, and Salmonella kentucky in vitro. Supplementation with SCEO could significantly decrease the infections of Salmonella pullorum and Salmonella give, whereas it could slightly but not significantly decrease the infection of Salmonella kentucky, while also significantly alleviating the body weight (BW) loss caused by the infections of Salmonella pullorum, Salmonella give, and Salmonella kentucky in Yellow chickens. The SCEO had the best prophylactic effect against the infection of Salmonella give in Yellow chickens, followed by the infection of Salmonella pullorum and the infection of Salmonella kentucky. The SCEO, used as an antibiotic alternative, could be an effective prevention strategy against the infections of Salmonella pullorum, Salmonella give, and Salmonella kentucky in Yellow chickens.
Collapse
Affiliation(s)
- Changcheng Li
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Ziheng Xu
- School of Public Health and Management, Guang University of Chinese Medical, Nanning 530200, China
| | - Wenyan Chen
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Chenyu Zhou
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Can Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Min Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Jingzhen Liang
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Ca 2+-activated sphingomyelin scrambling and turnover mediate ESCRT-independent lysosomal repair. Nat Commun 2022; 13:1875. [PMID: 35388011 PMCID: PMC8986845 DOI: 10.1038/s41467-022-29481-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Lysosomes are vital organelles vulnerable to injuries from diverse materials. Failure to repair or sequester damaged lysosomes poses a threat to cell viability. Here we report that cells exploit a sphingomyelin-based lysosomal repair pathway that operates independently of ESCRT to reverse potentially lethal membrane damage. Various conditions perturbing organelle integrity trigger a rapid calcium-activated scrambling and cytosolic exposure of sphingomyelin. Subsequent metabolic conversion of sphingomyelin by neutral sphingomyelinases on the cytosolic surface of injured lysosomes promotes their repair, also when ESCRT function is compromised. Conversely, blocking turnover of cytosolic sphingomyelin renders cells more sensitive to lysosome-damaging drugs. Our data indicate that calcium-activated scramblases, sphingomyelin, and neutral sphingomyelinases are core components of a previously unrecognized membrane restoration pathway by which cells preserve the functional integrity of lysosomes.
Collapse
|
10
|
Kehl A, Noster J, Hensel M. Eat in or Take out? Metabolism of Intracellular Salmonella enterica. Trends Microbiol 2020; 28:644-654. [DOI: 10.1016/j.tim.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/15/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
|
11
|
Bohannon KP, Hanson PI. ESCRT puts its thumb on the nanoscale: Fixing tiny holes in endolysosomes. Curr Opin Cell Biol 2020; 65:122-130. [PMID: 32731154 PMCID: PMC7578027 DOI: 10.1016/j.ceb.2020.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
The ESCRT (endosomal complex required for transport) machinery remodels membranes to bud vesicles away from the cytoplasm. In addition to this classic role, ESCRTs are now understood to repair damage in the plasma membrane, nuclear envelope, and throughout the endolysosomal network. Wounds in endolysosomal membranes are caused by pathogens, particulates, and other chemical or metabolic stresses. Nanoscale damage in these membranes promotes activation and engagement of ESCRT proteins. A full understanding of damage signals, molecular sensing, and the mechanism of membrane repair is yet to be developed. Nevertheless, a triggering role for calcium and ESCRT-I in recruiting ESCRT-III machinery for membrane remodeling is a repeated theme in functional studies of this response. In our current understanding of the continuum of cellular responses to lipid bilayer damage, the ESCRT machinery is fast, sensitive, and deployed independently of other systems.
Collapse
Affiliation(s)
- Kevin P Bohannon
- Department of Biological Chemistry, University of Michigan School of Medicine, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Phyllis I Hanson
- Department of Biological Chemistry, University of Michigan School of Medicine, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|