1
|
Zhang Y, Sun Q, Meng W, Xie L, Li N, Zhang J, Zhang T, Guan Y, Ma L. Comprehensive analysis of GINS subunit expression, prognostic value, and immune infiltration in clear cell renal cell carcinoma. Transl Androl Urol 2024; 13:1517-1536. [PMID: 39280654 PMCID: PMC11399050 DOI: 10.21037/tau-24-95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/14/2024] [Indexed: 09/18/2024] Open
Abstract
Background In recent decades, there has been increasing evidence that Go-Ichi-Nii-San (GINS) subunits play an important role in the development and progression of various tumors. However, little research has been conducted on the role of GINS subunits in clear cell renal cell carcinoma (ccRCC). This study sought to explore the differential expression, prognosis, and immunological significance of GINS subunits in ccRCC. Methods We used various analysis packages of R (version 3.6.3), the University of ALabama at Birmingham CANcer (UALCAN) data analysis portal, the Cancer Cell Line Encyclopedia (CCLE), the cBio Cancer Genomics Portal (cBioPortal), and the Tumor Immune Estimation Resource (TIMER) to study the gene expression, promoter methylation level, gene mutations, prognostic and diagnostic value, immune infiltration, pathway enrichment, and other aspects of the GINS subunits. Next, the genes related to the GINS subunits were analyzed using the STRING and GeneMANIA platforms, and the correlation between GINS subunits and the functions involved were investigated. Results The expression level of GINS1/2/3/4 was significantly higher in ccRCC tumor tissues than normal tissues, and was significantly related to tumor grade and stage. The expression of GINS1/2/4 may be related to the methylation degree of the promoter region. The prognostic and diagnostic analyses showed that the increased expression of GINS1 was associated with various poor prognoses and had diagnostic value. The GINS subunit mutation also significantly affected the clinical prognosis of ccRCC patients. Finally, the correlation analysis of the immune infiltration level, co-expression, and enrichment of related genes indicated that GINS subunit expression was associated with different levels of ccRCC immune infiltration. Conclusions The analysis results showed that the differential expression of GINS subunits in ccRCC, which had prognostic and diagnostic value, was correlated with clinicopathological stage, immune infiltration, and other related aspects. GINS1 may serve as a new potential prognostic biomarker for ccRCC patients and be used to guide treatment.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Qian Sun
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Yancheng, China
| | - Wei Meng
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Lingling Xie
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ningning Li
- Xinglin College, Nantong University, Nantong, China
| | - Jiayi Zhang
- Xinglin College, Nantong University, Nantong, China
| | - Tong Zhang
- Xinglin College, Nantong University, Nantong, China
| | - Yangbo Guan
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
2
|
He H, Liang L, Jiang S, Liu Y, Huang J, Sun X, Li Y, Jiang Y, Cong L. GINS2 regulates temozolomide chemosensitivity via the EGR1/ECT2 axis in gliomas. Cell Death Dis 2024; 15:205. [PMID: 38467631 PMCID: PMC10928080 DOI: 10.1038/s41419-024-06586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Temozolomide (TMZ), a DNA alkylating agent, has become the primary treatment for glioma, the most common malignancy of the central nervous system. Although TMZ-containing regimens produce significant clinical response rates, some patients inevitably suffer from inferior treatment outcomes or disease relapse, likely because of poor chemosensitivity of glioma cells due to a robust DNA damage response (DDR). GINS2, a subunit of DNA helicase, contributes to maintaining genomic stability and is highly expressed in various cancers, promoting their development. Here, we report that GINS2 was upregulated in TMZ-treated glioma cells and co-localized with γH2AX, indicating its participation in TMZ-induced DDR. Furthermore, GINS2 regulated the malignant phenotype and TMZ sensitivity of glioma cells, mostly by promoting DNA damage repair by affecting the mRNA stability of early growth response factor 1 (EGR1), which in turn regulates the transcription of epithelial cell-transforming sequence 2 (ECT2). We constructed a GINS2-EGR1-ECT2 prognostic model, which accurately predicted patient survival. Further, we screened Palbociclib/BIX-02189 which dampens GINS2 expression and synergistically inhibits glioma cell proliferation with TMZ. These findings delineate a novel mechanism by which GINS2 regulates the TMZ sensitivity of glioma cells and propose a promising combination therapy to treat glioma.
Collapse
Affiliation(s)
- Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yueying Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Xiaoyan Sun
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yi Li
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Zhao MM, Awang Z, Jumuddin FAB. High Expression of PXMP4 in Hepatocellular Carcinoma Tissues. Asian Pac J Cancer Prev 2024; 25:603-608. [PMID: 38415547 PMCID: PMC11077113 DOI: 10.31557/apjcp.2024.25.2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE To analyze the high expression of peroxisome membrane protein 4 (PXMP4) in hepatocellular carcinoma (HCC) and its clinical significance. METHODS The expression of PXMP4 mRNA in HCC tissues and corresponding adjacent tissues was detected by Q-PCR, and the expression of PXMP4 protein was detected by Western blot and immunohistochemistry. The correlation of PXMP4 protein expression with clinicopathological features and prognosis of HCC was analyzed. RESULTS The expression levels of PXMP4 mRNA and protein in HCC tissues were significantly higher than those in adjacent tissues (P < 0.05), and its high expression was significantly correlated with tumor differentiation, lymph node metastasis, depth of invasion and TNM stage (P < 0.05). Patients with high expression of PXMP4 had a poor prognosis (P < 0.05). CONCLUSION The high expression of PXMP4 may promote the occurrence and development of HCC, and inhibition of PXMP4 may be one of the potential molecular targets for targeted therapy of HCC.
Collapse
|
4
|
Stępień K, Skoneczna A, Kula-Maximenko M, Jurczyk Ł, Mołoń M. Disorders in the CMG helicase complex increase the proliferative capacity and delay chronological aging of budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119621. [PMID: 37907194 DOI: 10.1016/j.bbamcr.2023.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/08/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
The replication of DNA requires specialized and intricate machinery. This machinery is known as a replisome and is highly evolutionarily conserved, from simple unicellular organisms such as yeast to human cells. The replisome comprises multiple protein complexes responsible for various steps in the replication process. One crucial component of the replisome is the Cdc45-MCM-GINS (CMG) helicase complex, which unwinds double-stranded DNA and coordinates the assembly and function of other replisome components, including DNA polymerases. The genes encoding the CMG helicase components are essential for initiating DNA replication. In this study, we aimed to investigate how the absence of one copy of the CMG complex genes in heterozygous Saccharomyces cerevisiae cells impacts the cells' physiology and aging. Our data revealed that these cells exhibited a significant reduction in transcript levels for the respective CMG helicase complex proteins, as well as disruptions in the cell cycle, extended doubling times, and alterations in their biochemical profile. Notably, this study provided the first demonstration that cells heterozygous for genes encoding subunits of the CMG helicase exhibited a significantly increased reproductive potential and delayed chronological aging. Additionally, we observed a noteworthy correlation between RNA and polysaccharide levels in yeast and their reproductive potential, as well as a correlation between fatty acid levels and cell doubling times. Our findings also shed new light on the potential utility of yeast in investigating potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, 35-959 Rzeszów, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Łukasz Jurczyk
- Institute of Agricultural Sciences, Rzeszów University, 35-601 Rzeszów, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, 35-601 Rzeszów, Poland.
| |
Collapse
|
5
|
Wang T, Qian L, Zhang P, Du M, Wu J, Peng F, Yao C, Yin R, Yin L, He X. GINS2 promotes the progression of human HNSCC by altering RRM2 expression. Cancer Biomark 2024; 40:171-184. [PMID: 38517779 PMCID: PMC11307040 DOI: 10.3233/cbm-230337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/13/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION GINS2 exerts a carcinogenic effect in multiple human malignancies, while it is still unclear that the potential roles and underlying mechanisms of GINS2 in HNSCC. METHODS TCGA database was used to screen out genes with significant differences in expression in HNSCC. Immunohistochemistry and qRT-PCR were used to measure the expression of GINS2 in HNSCC tissues and cells. GINS2 was detected by qRT-PCR or western blot after knockdown or overexpression. Celigo cell counting, MTT, colony formation, and flow cytometric assay were used to check the ability of proliferation and apoptosis. Bioinformatics and microarray were used to screen out the downstream genes of GINS2. RESULTS GINS2 in HNSCC tissues and cells was up-regulated, which was correlated with poor prognosis. GINS2 gene expression was successfully inhibited and overexpressed in HNSCC cells. Knockdown of GINS2 could inhibit proliferation and increase apoptosis of cells. Meanwhile, overexpression of GINS2 could enhance cell proliferation and colony formation. Knockdown of RRM2 may inhibit HNSCC cell proliferation, while overexpression of RRM2 rescued the effect of reducing GINS2 expression. CONCLUSION Our study reported the role of GINS2 in HNSCC for the first time. The results demonstrated that in HNSCC cells, GINS2 promoted proliferation and inhibited apoptosis via altering RRM2 expression. Therefore, GINS2 might play a carcinogen in HNSCC, and become a specific promising therapeutic target.
Collapse
Affiliation(s)
- Tianxiang Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Luxi Qian
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingyu Du
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jing Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Chengyun Yao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Li Yin
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xia He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Du R, Li J, Li F, Mi L, Dionigi G, Sun H, Liang N. Estimating disease-free survival of thyroid cancer based on novel cuprotosis-related gene model. Front Endocrinol (Lausanne) 2023; 14:1209172. [PMID: 37745716 PMCID: PMC10515282 DOI: 10.3389/fendo.2023.1209172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background Cuprotosis is a newly discovered form of cell death that differs from other types of cell death. The aim of this study was to investigate the functional role and a possible prognostic model for thyroid cancer. Methods TCGA and GEO were used to investigate the differential expression of CRGs in THCA. KEGG and GO enrichment analyses were applied to investigate the possible molecular functions. The features of CRGs were selected by LASSO regression. 20 pairs of samples were randomly collected from the hospital to compare expression between tumor and normal. Results Among the 19 CRGs related to thyroid cancer recurrence, 16 genes were differentially expressed in thyroid cancer. KEGG analysis showed that the 19 CRGs were mainly enriched in cell death, cell cycle and ribosomal pathways. K-M survival analysis and subsequent multiple logistic regression revealed that the expression of BUB1 and GINS2 were potential risk factors for disease-free survival (DFS) of thyroid cancer. In addition, further LASSO-regression selected the following three DFS-related CRGs: FDX1, BUB1 and RPL3. A novel prognostic prediction model was constructed by nomogram, and the prediction probability for 1-, 3- and 5-year survival approached the actual time. As for the possible mechanisms, FDX1, BUB1 and RPL3 were associated with immune infiltration. The cell model experiment illustrated that the ATM signaling pathway might be involved in thyroid cancer cell death. Conclusion Three CRG models (FDX1, BUB1, RPL3) could better predict the prognosis of thyroid cancer. Immune cell infiltration and the ATM pathway were the possible mechanisms.
Collapse
Affiliation(s)
- Rui Du
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| | - Jingting Li
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| | - Fang Li
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| | - Lusi Mi
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| | - Gianlorenzo Dionigi
- Department of Pathophysiology and Transplantation, Division of Surgery, Istituto Auxologico Italiano IRCCS (Istituto di Ricovero e Cura a Carattere Scientifco), University of Milan, Milan, Italy
| | - Hui Sun
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| | - Nan Liang
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| |
Collapse
|
7
|
Meng W, Jiang Z, Zhang X, Cai B, Ma L, Guan Y. Comprehensive Pan-Cancer Analysis of GINS2 for Human Tumour Prognosis and as an Immunological Biomarker. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3119721. [PMID: 36466552 PMCID: PMC9711967 DOI: 10.1155/2022/3119721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/07/2023]
Abstract
BACKGROUND In recent years, more and more reports have shown that GINS complex subunit 2 (GINS2) plays an important role in the occurrence and progression of tumours. However, there is a lack of comprehensive and systematic research on its prognostic and immune effects in pan-cancer. Therefore, this study is aimed at investigating the prognostic value and immune-related role of GINS2 in human tumours and providing a comprehensive understanding of its carcinogenic mechanism in pan-cancer. METHODS We investigated different databases, including TIMER, TCGA, GTEX, CPTAC, GEPIA, and SangerBox. The study was carried out on the expression and prognosis of GINS2 in human tumours, immune infiltration and microenvironment, immune checkpoints, neoantigens, tumour mutational burden, microsatellite instability, mismatch repair (MMR) genes, methylation, cancer-associated fibroblasts (CAFs), and enrichment analysis of gene set. RESULTS GINS2 plays a potential carcinogenic role in various human tumours through mRNA and protein levels. It is highly expressed in most cancers, and its expression is significantly correlated with tumour prognosis. In addition, the expression of GINS2 is associated with immune microenvironment and immune infiltration, especially in brain lower-grade glioma, lung squamous cell carcinoma, TGCT, breast invasive carcinoma, and glioblastoma multiforme. At the same time, GINS2 is related to immune neoantigens and the expression profiles of immune checkpoint genes in pan-cancer. It also affects the expression of DNA MMR genes and methyltransferase in pan-cancer. Finally, the correlation between GINS2 and CAF abundance in most tumours was studied, and an enrichment analysis of GINS2 and its related proteins was also carried out. CONCLUSION This is the first study on GINS2 as a prognostic and immune mechanism in pan-cancer. GINS2 may be a valuable prognostic immunological biomarker of pan-cancer. This paper provides a relatively comprehensive understanding on the correlation of GINS2 with pan-cancer.
Collapse
Affiliation(s)
- Wei Meng
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zhaosheng Jiang
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiang Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Bo Cai
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yangbo Guan
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Shan DD, Zheng QX, Chen Z. Go-Ichi-Ni-San 2: A potential biomarker and therapeutic target in human cancers. World J Gastrointest Oncol 2022; 14:1892-1902. [PMID: 36310704 PMCID: PMC9611433 DOI: 10.4251/wjgo.v14.i10.1892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer incidence and mortality are increasing globally, leading to its rising status as a leading cause of death. The Go-Ichi-Ni-San (GINS) complex plays a crucial role in DNA replication and the cell cycle. The GINS complex consists of four subunits encoded by the GINS1, GINS2, GINS3, and GINS4 genes. Recent findings have shown that GINS2 expression is upregulated in many diseases, particularly tumors. For example, increased GINS2 expression has been found in cervical cancer, gastric adenocarcinoma, glioma, non-small cell lung cancer, and pancreatic cancer. It correlates with the clinicopathological characteristics of the tumors. In addition, high GINS2 expression plays a pro-carcinogenic role in tumor development by promoting tumor cell proliferation and migration, inhibiting tumor cell apoptosis, and blocking the cell cycle. This review describes the upregulation of GINS2 expression in most human tumors and the pathway of GINS2 in tumor development. GINS2 may serve as a new marker for tumor diagnosis and a new biological target for therapy.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
9
|
Zhang Y, Hao X, Han G, Lu Y, Chen Z, Zhang L, Wu J, Wang X. E2F1-mediated GINS2 transcriptional activation promotes tumor progression through PI3K/AKT/mTOR pathway in hepatocellular carcinoma. Am J Cancer Res 2022; 12:1707-1726. [PMID: 35530279 PMCID: PMC9077065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has high morbidity and mortality rates. It is therefore imperative to study the underlying mechanism of HCC to identify potential prognostic biomarkers and therapeutic targets. Recently, GINS2 has been identified to be a cancer-promoting gene in different cancer types. Nevertheless, the exact mechanism of GINS2 in HCC remains to be elucidated. To systematically explore the significance of GINS2, we first assessed the relative expression of GINS2 in pan-cancers based on data obtained from the HCCDB, TIMER, and TCGA databases. Then, we explored the clinical significance of GINS2 in HCC through Kaplan-Meier method as well as univariate and multivariate cox regression analysis. Additionally, functional enrichment analysis of GINS2 was done through GO, KEGG, PPI network, and immune cell infiltration analyses. Functional experiments were also conducted to investigate the biological significance of GINS2 in HCC cell lines. Our research revealed that GINS2 is involved in HCC progression and highlighted its potential value as a crucial diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical SciencesNanjing 210029, Jiangsu, China
| | - Xiaopei Hao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical SciencesNanjing 210029, Jiangsu, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical SciencesNanjing 210029, Jiangsu, China
| | - Yiwei Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical SciencesNanjing 210029, Jiangsu, China
| | - Zhiqiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical SciencesNanjing 210029, Jiangsu, China
| | - Long Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical SciencesNanjing 210029, Jiangsu, China
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical SciencesNanjing 210029, Jiangsu, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical SciencesNanjing 210029, Jiangsu, China
| |
Collapse
|
10
|
Guo L, Chen Y, Hu S, Gao L, Tang N, Liu R, Qin Y, Ren C, Du S. GDF15 expression in glioma is associated with malignant progression, immune microenvironment, and serves as a prognostic factor. CNS Neurosci Ther 2021; 28:158-171. [PMID: 34697897 PMCID: PMC8673705 DOI: 10.1111/cns.13749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Aims Growth differentiation factor 15 (GDF15) is involved in lots of crucial inflammatory and immune response. The clinical and immune features for GDF15 in glioma have not been specifically investigated so far. Methods Gene expression profiles obtained from public glioma datasets were used to explore the biological function of GDF15 and its impact on immune microenvironment. Interference with GDF15 in several glioma cell lines to verify its functions in vitro. Survival data were used for the survival analysis and establishment of a nomogram predictive model. Results GDF15 was up‐regulated in various malignant phenotypes of glioma. Function analysis and in vitro experiments revealed that GDF15 was associated with malignant progression and NF‐κB pathway. GDF15 was closely correlated to inflammatory response, infiltrating immune cells, and immune checkpoint molecules, especially in lower grade glioma (LGG). High expression level of GDF15 predicted poor survival in LGG, while the effect on glioblastoma (GBM) was not significant. A nomogram predictive model combining GDF15 and other prognostic factors was constructed and showed ideal predictive performance. Conclusions GDF15 could serve as an interesting prognostic biomarker for LGG. Regulating the expression of GDF15 may help solve the dilemma of immunotherapy in glioma.
Collapse
Affiliation(s)
- Longbin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulei Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shushu Hu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lianxuan Gao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongping Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Qin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Ren
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shasha Du
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Feng H, Zeng J, Gao L, Zhou Z, Wang L. GINS Complex Subunit 2 Facilitates Gastric Adenocarcinoma Proliferation and Indicates Poor Prognosis. TOHOKU J EXP MED 2021; 255:111-121. [PMID: 34629365 DOI: 10.1620/tjem.255.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gastric cancer is the one of the most lethal malignancies of digestive system. Identifying molecular biomarkers is invaluable in help predicting clinical outcomes and developing targeted chemotherapies. GINS complex subunit 2 (GINS2) plays an essential role in the initiation and elongation of DNA replication. Although there have been studies revealing the prognostic significance of GINS2 in breast cancer and lung cancer, its involvement and function in gastric cancer need to be elucidated. We retrospectively enrolled a cohort of gastric adenocarcinoma patients after surgical resection (n = 123). By analyzing the mRNA and protein levels of GINS2 in tissue samples, we found that GINS2 presented a higher expression in tumor tissues than in adjacent normal stomach tissues. Besides, GINS2 level was positively correlated with tumor size and gastric adenocarcinoma tumor stage, implying its potential role as a tumor promoter. Univariate and multivariate analyses identified that patients with lower GINS2 showed a better overall survival compared to those with higher GINS2 expression. In addition, cellular and xenograft experiments confirmed the role of GINS2 in facilitating tumor proliferation both in vitro and in vivo. To our knowledge, this is the initial finding on GINS2 in promoting gastric adenocarcinoma progression. In conclusion, our study revealed a pro-oncogenic role of GINS2 in gastric cancer.
Collapse
Affiliation(s)
- Hongjun Feng
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital)
| | - Juntao Zeng
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital)
| | - Lei Gao
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital)
| | - Zhenzhen Zhou
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital)
| | - Liya Wang
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital)
| |
Collapse
|
12
|
Huang L, Chen S, Fan H, Ji D, Chen C, Sheng W. GINS2 promotes EMT in pancreatic cancer via specifically stimulating ERK/MAPK signaling. Cancer Gene Ther 2021; 28:839-849. [PMID: 32747685 PMCID: PMC8370876 DOI: 10.1038/s41417-020-0206-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Go-Ichi-Ni-San 2 (GINS2), as a newly discovered oncogene, is overexpressed in several cancers. However, the specific role of GINS2 in the development of pancreatic cancer (PC), to our knowledge, is poorly understood. We systematically explored the potential role of GINS2 in epithelial-mesenchymal-transition (EMT)-stimulated PC in vitro and vivo. GINS2 was overexpressed in human PC specimens, which was positively associated with tumor size (P = 0.010), T stage (P = 0.006), vascular invasion (P = 0.037), and the poor prognosis (P = 0.004). Interestingly, a close correlation between GINS2, E-cadherin, and Vimentin (P = 0.014) was found in human PC specimens and cell lines that coordinately promoted the worse survival of PC patients (P = 0.009). GINS2 overexpression stimulated EMT in vitro, including promoting EMT-like cellular morphology, enhancing cell motility, and activating EMT and ERK/MAPK signal pathways. However, PD98059, a specific MEK1 inhibitor, reversed GINS2 overexpression-stimulated EMT in vitro. Conversely, GINS2 silencing inhibited EMT in PANC-1 cells, which was also rescued by GINS2-GFP. Moreover, GINS2 was colocalized and co-immunoprecipitated with ERK in GINS2 high-expression Miapaca-2 and PANC-1 cells, implying a tight interaction of GINS2 with ERK/MAPK signaling. Meanwhile, GINS2 overexpression inhibited distant liver metastases in vivo, following a tight association with EMT and ERK/MAPK signaling, which was reversed by MEK inhibitor. Overexpression of GINS2 contributes to advanced clinical stage of PC patient and promotes EMT in vitro and vivo via specifically activating ERK/MAPK signal pathway.
Collapse
Affiliation(s)
- Longping Huang
- Department of General Surgery, Hepatobiliary Surgery, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Si Chen
- Department of Anesthesiology, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Haijun Fan
- Department of General Surgery, Hepatobiliary Surgery, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Dawei Ji
- Department of General Surgery, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Chuanping Chen
- Department of Clinical Laboratory, The Sixth Peoples' Hospital of Shenyang, Shenyang, 110003, Liaoning, China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
13
|
He S, Zhang M, Ye Y, Song Y, Ma X, Wang G, Zhuang J, Xia W, Zhao B. GINS2 affects cell proliferation, apoptosis, migration and invasion in thyroid cancer via regulating MAPK signaling pathway. Mol Med Rep 2021; 23:246. [PMID: 33537829 PMCID: PMC7893785 DOI: 10.3892/mmr.2021.11885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
Globally, thyroid cancer (TC) is considered to be the commonest endocrine malignancy. GINS complex subunit 2 (GINS2) belongs to the GINS complex family and is associated with cellular migration, invasion and growth. The present study aimed to investigate the underlying mechanisms of GINS2 on cell viability, migration and invasion in TC cells. By using MTT, wound healing and Transwell assays, the cell viability, migration and invasion were determined. Apoptosis was examined by immunofluorescence. Western blotting was used to detect protein expression levels. In the present study, biological function analysis demonstrated that GINS2 interference attenuated cell viability, migration and invasion in TC cell lines (K1 and SW579). It was discovered that, compared with the control group, GINS2 silencing induced apoptosis in TC cells. Additionally, GINS2 interference inhibited key proteins in the MAPK signaling pathway, including JNK, ERK and p38. According to these comparative experiments, GINS2 was considered to act a pivotal part in cell viability, migration and invasion of TC by regulating the MAPK signaling pathway and might be a potential therapeutic target for treating TC.
Collapse
Affiliation(s)
- Saifei He
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Miao Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ying Ye
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yanan Song
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Xing Ma
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Guoyu Wang
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Juhua Zhuang
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Bin Zhao
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
14
|
Xue H, Sun Z, Wu W, Du D, Liao S. Identification of Hub Genes as Potential Prognostic Biomarkers in Cervical Cancer Using Comprehensive Bioinformatics Analysis and Validation Studies. Cancer Manag Res 2021; 13:117-131. [PMID: 33447084 PMCID: PMC7802793 DOI: 10.2147/cmar.s282989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background Cervical cancer belongs to one of the most common female cancers; yet, the exact underlying mechanisms are still elusive. Recently, microarray and sequencing technologies have been widely used for screening biomarkers and molecular mechanism discovery in cancer studies. In this study, we aimed to analyse the microarray datasets using comprehensive bioinformatics tools and identified novel biomarkers associated with the prognosis of patients with cervical cancer. Methods The differentially expressed genes (DEGs) from Gene Expression Omnibus (GEO) datasets including GSE138080, GSE113942 and GSE63514 were analysed using GEO2R tool. The functional enrichment analysis was performed using g:Profiler tool. The protein-protein interaction (PPI) network construction and hub genes identification were performed using the STRING database and Cytoscape software, respectively. The hub genes were subjected to expression and survival analysis in the cervical cancer. The EdU incorporation and Cell Counting Kit-8 assays were performed to evaluate the effects of hub gene knockdown on the proliferation of cervical cancer cells. Results A total of 89 overlapping DEGs (63 up-regulated and 26 down-regulated genes) were identified in the microarray datasets. The functional enrichment analysis indicated that the overlapping DEGs were mainly associated with "DNA replication" and "cell cycle". Furthermore, the PPI network analysis revealed that the network contains 87 nodes and 309 edges. Sub-module analysis using the Molecular Complex Detection tool identified 21 hub genes from the PPI network. The expression levels of the 21 hub genes were all up-regulated in the cervical cancer tissues when compared to normal cervical tissues as analysed by GEPIA tool. The survival analysis showed that the low expression of cell division cycle 45 (CDC45), GINS complex subunit 2 (GINS2), minichromosome maintenance complex component 2 (MCM2) and proliferating cell nuclear antigen (PCNA) was significantly correlated with the shorter overall survival of patients with cervical cancer. Moreover, the protein expression levels of GINS2, MCM2 and PCNA, but not CDC45, were significantly up-regulated in the cervical cancer tissues when compared to normal cervical tissues. Finally, knockdown of MCM2 significantly suppressed the proliferation of HeLa and SiHa cells. Conclusion In conclusion, we screened a total of 89 overlapping DEGs from the GEO datasets, and further analysis identified four hub genes (CDC45, GINS2, MCM2 and PCNA) that were likely associated with the prognosis of patients with cervical cancer. MCM2 knockdown repressed the cervical cancer cell proliferation. The current findings may provide novel insights into understanding the pathophysiology of cervical cancer and develop therapeutic targets for patients with cervical cancer.
Collapse
Affiliation(s)
- Han Xue
- Department of Health Management, Shenzhen People's Hospital, Shenzhen City, Guangdong Province, People's Republic of China
| | - Zhaojun Sun
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen City, GuangdongProvince, People's Republic of China
| | - Weiqing Wu
- Department of Health Management, Shenzhen People's Hospital, Shenzhen City, Guangdong Province, People's Republic of China
| | - Dong Du
- Department of Health Management, Shenzhen People's Hospital, Shenzhen City, Guangdong Province, People's Republic of China
| | - Shuping Liao
- Department of Health Management, Shenzhen People's Hospital, Shenzhen City, Guangdong Province, People's Republic of China
| |
Collapse
|
15
|
Hao YQ, Liu KW, Zhang X, Kang SX, Zhang K, Han W, Li L, Li ZH. GINS2 was regulated by lncRNA XIST/miR-23a-3p to mediate proliferation and apoptosis in A375 cells. Mol Cell Biochem 2021; 476:1455-1465. [PMID: 33389496 DOI: 10.1007/s11010-020-04007-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Melanoma ranks second in aggressive tumors, and the occurrence of metastasis in melanoma results in a persistent drop in the survival rate of patients. Therefore, it is very necessary to find a novel therapeutic method for treating melanoma. It has been reported that lncRNA XIST could promote the tumorigenesis of melanoma. However, the mechanism by which lncRNA XIST regulates the progression of melanoma remains unclear. The proliferation of A375 cells was measured by clonal formation. Cell viability was detected by MTT assay. Flow cytometry was performed to detect cell apoptosis and cycle. The level of GINS2, miR-23a-3p, and lncRNA XIST was investigated by qRT-PCR. Protein level was detected by Western blot, and the correctness of prediction results was confirmed by Dual luciferase. In present study, GINS2 and lncRNA XIST were overexpressed in melanoma, while miR-23a-3p was downregulated. Silencing of GINS2 or overexpression of miR-23a-3p reversed cell growth and promoted apoptosis in A375 cells. Mechanically, miR-23a-3p directly targeted GINS2, and XIST regulated GINS2 level though mediated miR-23a-3p. Moreover, XIST exerted its function on cell proliferation, cell viability, and promoted the cell apoptosis of A375 cells though miR-23a-3p/GINS2 axis. LncRNA XIST significantly promoted the tumorigenesis of melanoma via sponging miR-23a-3p and indirectly targeting GINS2, which can be a potential new target for treating melanoma.
Collapse
Affiliation(s)
- Yu-Qin Hao
- Department of Dermatology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.,Department of Dermatology, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, 014010, People's Republic of China
| | - Ke-Wei Liu
- Department of Dermatology, Mental Health Center of Inner Mongolia Autonomous Region, Hohhot, 010000, People's Republic of China
| | - Xin Zhang
- Department of Dermatology, Halison International Peace Hospital, Hengshui, 053000, People's Republic of China
| | - Shu-Xia Kang
- Department of Dermatology, People's Hospital Affiliated to Inner Mongolia Medical University, Hohhot, 010000, People's Republic of China
| | - Kun Zhang
- Department of Hematology, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014010, People's Republic of China
| | - Wurihan Han
- Inner Mongolia Medical University, Hohhot, 010000, People's Republic of China
| | - Li Li
- Inner Mongolia Medical University, Hohhot, 010000, People's Republic of China
| | - Zhe-Hai Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
16
|
Zhao WJ, Ou GY, Lin WW. Integrative Analysis of Neuregulin Family Members-Related Tumor Microenvironment for Predicting the Prognosis in Gliomas. Front Immunol 2021; 12:682415. [PMID: 34054873 PMCID: PMC8155525 DOI: 10.3389/fimmu.2021.682415] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
Gliomas, including brain lower grade glioma (LGG) and glioblastoma multiforme (GBM), are the most common primary brain tumors in the central nervous system. Neuregulin (NRG) family proteins belong to the epidermal growth factor (EGF) family of extracellular ligands and they play an essential role in both the central and peripheral nervous systems. However, roles of NRGs in gliomas, especially their effects on prognosis, still remain to be elucidated. In this study, we obtained raw counts of RNA-sequencing data and corresponding clinical information from 510 LGG and 153 GBM samples from The Cancer Genome Atlas (TCGA) database. We analyzed the association of NRG1-4 expression levels with tumor immune microenvironment in LGG and GBM. GSVA (Gene Set Variation Analysis) was performed to determine the prognostic difference of NRGs gene set between LGG and GBM. ROC (receiver operating characteristic) curve and the nomogram model were constructed to estimate the prognostic value of NRGs in LGG and GBM. The results demonstrated that NRG1-4 were differentially expressed in LGG and GBM in comparison to normal tissue. Immune score analysis revealed that NRG1-4 were significantly related to the tumor immune microenvironment and remarkably correlated with immune cell infiltration. The investigation of roles of m6A (N6-methyladenosine, m6A)-related genes in gliomas revealed that NRGs were prominently involved in m6A RNA modification. GSVA score showed that NRG family members are more associated with prognosis in LGG compared with GBM. Prognostic analysis showed that NRG3 and NRG1 can serve as potential independent biomarkers in LGG and GBM, respectively. Moreover, GDSC drug sensitivity analysis revealed that NRG1 was more correlated with drug response compared with other NRG subtypes. Based on these public databases, we preliminarily identified the relationship between NRG family members and tumor immune microenvironment, and the prognostic value of NRGs in gliomas. In conclusion, our study provides comprehensive roles of NRG family members in gliomas, supporting modulation of NRG signaling in the management of glioma.
Collapse
Affiliation(s)
- Wei-jiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- *Correspondence: Wei-jiang Zhao, ; Guan-yong Ou,
| | - Guan-yong Ou
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- *Correspondence: Wei-jiang Zhao, ; Guan-yong Ou,
| | - Wen-wen Lin
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| |
Collapse
|
17
|
Fan X, Hou T, Guan Y, Li X, Zhang S, Wang Z. Genomic responses of DNA methylation and transcript profiles in zebrafish cells upon nutrient deprivation stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137980. [PMID: 32208287 DOI: 10.1016/j.scitotenv.2020.137980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Environmental stress such as nutrient deprivation across multiple fields in nature causes physiological and biochemical changes in organism. Understanding the potential epigenetic modulations to phenotypic variation upon nutrient deprivation stress is crucial for environmental assessments. Here, the methyl-cytosine at single-base resolution was mapped across the whole genome and the methylation patterns and methylation levels coordinated with transcript analysis were systemically elaborated in zebrafish embryonic fibroblast cells under serum starvation stress. The down-regulated genes mainly annotated to the pathways of DNA replication and cell cycle that were consistent with cell physiological changes. Vast differentially methylated regions were identified in genomic chromosome and showed enrichment in the intron and intergenic regions. In an integrated transcriptome and DNA methylation analyses, 135 negatively correlated genes were determined, wherein the hub genes of gins2, cdca5, fbxo5, slc29a2, suv39h1b, and zgc:174160 were predominant responsive to the nutrient condition changes. Besides, nutrient recovery and DNA methyltransferases inhibitor supplements partly rescued cell proliferation with decrease of DNA methylation and reactivation of several depressed genes, implying the possible intrinsic relationships among cell physiological state, mRNA expression, and DNA methylation. Collectively, current study proved the broad role of DNA methylation in governing cellular responses to nutrient deprivation and revealed the epigenetic risk of starvation stress in zebrafish.
Collapse
Affiliation(s)
- Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Zhang M, He S, Ma X, Ye Y, Wang G, Zhuang J, Song Y, Xia W. GINS2 affects cell viability, cell apoptosis, and cell cycle progression of pancreatic cancer cells via MAPK/ERK pathway. J Cancer 2020; 11:4662-4670. [PMID: 32626512 PMCID: PMC7330693 DOI: 10.7150/jca.38386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 05/06/2020] [Indexed: 01/19/2023] Open
Abstract
Background and Objective: GINS complex subunit 2 (GINS2), a member of the GINS complex, is involved in DNA replication. GINS2 is upregulated in a variety of aggressive tumors, such as leukemia, breast cancer, and cervical cancer. However, the role of GINS2 in pancreatic cancer has still remained elusive. In this study, PANC-1 and BxPC-3 cell lines were chosen to perform experiments in vitro. Additionally, the effects of GINS2 interference on the cell viability, cell apoptosis, cell cycle, and tumor growth in nude mice were analyzed. Methods: We utilized pancreatic cancer cell lines that knocked down GINS2 expression using small interference RNA (siRNA) and evaluated GINS2 expression using Western blot analysis. To explore the function of GINS2 in pancreatic cancer cell lines in vitro, MTT assay and flow cytometry were used. Additionally, we investigated the potential mechanism of GINS2 interference by identifying the MAPK/ERK pathway using Western blotting. Finally, PANC-1 cells with GINS2 knockdown were subcutaneously injected into nude mice to evaluate the effects of GINS2 on tumor growth in vivo. Results: It was unveiled that GINS2 interference inhibited cell viability, induced cell cycle arrest at G1 phase, and enhanced apoptosis of pancreatic cancer cell lines. Western blot assay indicated that GINS2 interference increased the expression level of Bax, while the expression level of Bcl-2 was remarkably decreased. In addition, the expression levels of CDK4, CDK6, and Cyclin D1 were significantly reduced after treatment with GINS2 siRNA. Furthermore, GINS2 interference drastically attenuated the expression levels of MEK, p-MEK, ERK, and p-ERK, belonging to the MAPK/ERK pathway. The results of an established cancer xenograft model revealed that nude mice transplanted with cells expressing negative control (NC) exhibited larger and heavier tumors, while volume and weight of tumor were remarkably reduced in ones transplanted with cells expressing GINS2 siRNA. Conclusions: GINS2 interference inhibited cell viability, induced cell cycle arrest, and promoted cell apoptosis of pancreatic cancer cell lines via the MAPK/ERK pathway, and our findings may be valuable for treating pancreatic cancer.
Collapse
Affiliation(s)
- Miao Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Saifei He
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Xing Ma
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Ying Ye
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Guoyu Wang
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Juhua Zhuang
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yanan Song
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Wei Xia
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| |
Collapse
|
19
|
Li Y, Li L. Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis. J Ovarian Res 2019; 12:106. [PMID: 31703725 PMCID: PMC6839211 DOI: 10.1186/s13048-019-0580-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ovarian carcinoma (OC) is a common cause of death among women with gynecological cancer. MicroRNAs (miRNAs) are believed to have vital roles in tumorigenesis of OC. Although miRNAs are broadly recognized in OC, the role of has-miR-182-5p (miR-182) in OC is still not fully elucidated. METHODS We evaluated the significance of miR-182 expression in OC by using analysis of a public dataset from the Gene Expression Omnibus (GEO) database and a literature review. Furthermore, we downloaded three mRNA datasets of OC and normal ovarian tissues (NOTs), GSE14407, GSE18520 and GSE36668, from GEO to identify differentially expressed genes (DEGs). Then the targeted genes of hsa-miR-182-5p (TG_miRNA-182-5p) were predicted using miRWALK3.0. Subsequently, we analyzed the gene overlaps integrated between DEGs in OC and predicted target genes of miR-182 by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. STRING and Cytoscape were used to construct a protein-protein interaction (PPI) network and the prognostic effects of the hub genes were analyzed. RESULTS A common pattern of up-regulation for miR-182 in OC was found in our review of the literature. A total of 268 DEGs, both OC-related and miR-182-related, were identified, of which 133 genes were discovered from the PPI network. A number of DEGs were enriched in extracellular matrix organization, pathways in cancer, focal adhesion, and ECM-receptor interaction. Two hub genes, MCM3 and GINS2, were significantly associated with worse overall survival of patients with OC. Furthermore, we identified covert miR-182-related genes that might participate in OC by network analysis, such as DCN, AKT3, and TIMP2. The expressions of these genes were all down-regulated and negatively correlated with miR-182 in OC. CONCLUSIONS Our study suggests that miR-182 is essential for the biological progression of OC.
Collapse
Affiliation(s)
- Yaowei Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
- Department of Gynecology and obstetrics, Shangyu People's Hospital, Shangyu, Zhejiang, China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China.
| |
Collapse
|
20
|
Liu X, Sun L, Zhang S, Zhang S, Li W. GINS2 facilitates epithelial-to-mesenchymal transition in non-small-cell lung cancer through modulating PI3K/Akt and MEK/ERK signaling. J Cell Physiol 2019; 235:7747-7756. [PMID: 31681988 DOI: 10.1002/jcp.29381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is a cancer with high morbidity and mortality. We aimed to define the effect of Go-Ichi-Ni-San complex subuint 2 (GINS2) acting on NSCLC. The expressions of GINS2 in NSCLC tissues and cells were detected using real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry (IHC). The relationship between GINS2 expression and NSCLC prognosis or clinicopathologic features was analyzed through statistical analysis. The overexpressed or downexpressed plasmids of GINS2 were transfected into NSCLC cell lines, and then cell proliferation, invasion, and migration viability were, respectively, determined by Cell Counting Kit-8 assay, transwell, and wound healing assay. The epithelial-mesenchymal transition (EMT) was observed and the EMT-related proteins were measured using IHC and western blot. The function of GINS2 in vivo was assessed by mice model. The related proteins of mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathways were evaluated using western blot. GINS2 expression was upregulated in NSCLC tissues and cell lines, and its high expression was correlated with the poor prognosis and several clinicopathologic features, such as TMN stages (tumor size, lymph node, and metastasis) and clinical stages. GINS2 enhanced NSCLC cell proliferation, migration, and invasion viability in vivo and in vitro. GINS2 also promoted NSCLC cells EMT. In addition, GINS2 could regulate phosphorylated proteins of PI3K p85, Akt, MEK, and ERK expressions, it revealed that GINS2 effected on PI3K/Akt and MEK/ERK pathways. GINS2 promoted cell proliferation, migration, invasion, and EMT via modulating PI3K/Akt and MEK/ERK signaling pathways. It might be a target in NSCLC treatment.
Collapse
Affiliation(s)
- Xiangli Liu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Lei Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Song Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuguang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wenya Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Huang J, Li Y, Lu Z, Che Y, Sun S, Mao S, Lei Y, Zang R, Li N, Zheng S, Liu C, Wang X, Sun N, He J. Analysis of functional hub genes identifies CDC45 as an oncogene in non-small cell lung cancer - a short report. Cell Oncol (Dordr) 2019; 42:571-578. [PMID: 30887286 DOI: 10.1007/s13402-019-00438-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Hub genes are good molecular candidates for targeted cancer therapy. As yet, however, there is little information on the clinical implications and functional characteristics of hub genes in the development of non-small cell lung cancer (NSCLC). In this study, we set out to analyze the role of hub genes in NSCLC. METHODS We performed weighted gene co-expression network analysis (WGCNA) to analyze gene networks during NSCLC development using transcriptomic data from normal, pre-cancer and cancer tissues. Both in vitro and in vivo expression knockdown assays were used to evaluate the biological function of candidate hub gene CDC45 (cell division cycle 45) in NSCLC. RESULTS We identified 14 gene networks associated with NSCLC development, in which two modules (turquoise and green) correlated with tumorigenesis most positively and negatively, respectively. Gene enrichment analysis showed that the turquoise module was associated with cell cycle/mitosis, and that the green module was associated with development/morphogenesis. We found that the expression levels of the hub genes CDC45, CDCA5, GINS2, RAD51 and TROAP in the turquoise module increased gradually during tumorigenesis, whereas those of MAGI2-AS3 and RBMS3 in the green module decreased during tumorigenesis. Functionally, we found that expression knockdown of CDC45 inhibited NSCLC cell proliferation both in vitro and in vivo, and arrested the cells in the G2/M phase of the cell cycle, supporting an oncogenic role of CDC45. CONCLUSION Through gene co-expression network analysis and subsequent functional analyses we identified hub gene CDC45 as a putative novel therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shouguo Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuangshuang Mao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruochuan Zang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
22
|
Wang C, Zheng W, Yao D, Chen Q, Zhu L, Zhang J, Pan Y, Zhang J, Shao C. Upregulation of DNA Metabolism-Related Genes Contributes to Radioresistance of Glioblastoma. HUM GENE THER CL DEV 2019; 30:74-87. [PMID: 30746964 DOI: 10.1089/humc.2018.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glioblastomas (GBMs) are the most prevalent brain tumor and exhibit poor prognosis. Radiotherapy is an important strategy for GBMs patients; however, this care remains palliative because of GBMs' radioresistance. Glioma stem cells (GSCs), as a subpopulation residing at the apex of the hierarchy, have been believed to be a pivotal population in radioresistance and recurrence of GBMs. To know the key genes involved in radioresistance of GSCs, the gene expression profiles of GSE54660 and GSE60921 were downloaded from Gene Expression Omnibus for genetic and transcriptomic analysis to identify the potential biomarker genes differentially expressed between GSCs and GBMs. These candidate genes were then filtered by the GSCs gene profile responding to radiation and the radioresistant biomarker genes including DNAJC9, GINS2, STAT1, CHAC2, MT1M, and ZNF226 were screened. The differentially expressed genes in GSCs post-irradiation were submitted to Gene Ontology (GO) for further enrichment analysis and protein-protein interaction (PPI) network analysis. A significant module correlated with GINS2 was finally chosen and a series of genes participating in DNA metabolism were identified. In conclusion, this study propounds a set of novel genes that are differentially expressed in the radioresistant subpopulation within GBMs and could serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Wang Zheng
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Dan Yao
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Qianping Chen
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Lin Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Junlin Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Shen YL, Li HZ, Hu YW, Zheng L, Wang Q. Loss of GINS2 inhibits cell proliferation and tumorigenesis in human gliomas. CNS Neurosci Ther 2018; 25:273-287. [PMID: 30338650 DOI: 10.1111/cns.13064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS In this study, we examined the expression of GINS2 in glioma and determined its role in glioma development. METHODS The protein expression of GINS2 was assessed in 120 human glioma samples via immunohistochemistry. Then, we suppressed the expression of GINS2 in glioma cell strains U87 and U251 using a short hairpin RNA lentiviral vector. In addition, RNA sequencing and bioinformatics analysis were performed on glioma cells before and after GINS2 knockdown. Subsequent co-immunoprecipitation and western blot experiments indicated possible downstream regulatory molecules. RESULTS The present results showed that GINS2 can accelerate the growth of glioma cells, whereas the suppression of GINS2 expression decreased the proliferation and tumorigenicity of glioma cells. Mechanism research experiments proved that GINS2 can block the cell cycle by regulating certain downstream molecules, such as MCM2, ATM, and CHEK2. CONCLUSION GINS2 is closely related to the occurrence and development of glioma, and is likely to become a prognostic marker for glioma patients, as well as a potential therapeutic target in the treatment of glioma.
Collapse
Affiliation(s)
- Yun-Long Shen
- Department of Neurosurgery, The Fifth Affiliated Hospital, South Medical University, Guangzhou, China
| | - He-Zhen Li
- Department of Neurosurgery, The Fifth Affiliated Hospital, South Medical University, Guangzhou, China
| | - Yan-Wei Hu
- Clinical Laboratory Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Clinical Laboratory Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Clinical Laboratory Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|