1
|
Wang J, Li S, Xu H, Xue J, Wan X, Wu W, Huang J, Zhang H, Qin Z, Wang Y. The roles and mechanisms of CDGSH iron-sulfur domain 1 in kainic acid-induced mitochondrial iron overload, dysfunction and neuronal damage. Biomed Pharmacother 2025; 187:118067. [PMID: 40280034 DOI: 10.1016/j.biopha.2025.118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Maintaining mitochondrial function plays a crucial role in preventing and treating neurodegenerative diseases. CDGSH iron-sulfur domain 1 (CISD1), a NEET family protein localized on the mitochondrial outer membrane, regulates mitochondrial iron transport. However, the precise mechanism by which CISD1 modulates mitochondrial Fe2 + remains unclear. In this study, we examine the link between aberrant iron metabolism and mitochondrial dysfunction using in vivo and in vitro excitotoxicity models. Our study also clarifies how CISD1 modulates KA-mediated excitotoxic neuronal damage. Overexpression of CISD1 reverses KA-induced mitochondrial iron overload and dysfunction. KA significantly downregulate the mitochondrial protein deacetylase SIRT1. SRT1460 (SIRT1-specific agonist) mitigates mitochondrial iron overload and restore CISD1 expression levels. Altogether, CISD1 protects against excitotoxic injury by mitigating mitochondrial iron overload, thereby providing a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Shuo Li
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Haidong Xu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Jie Xue
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Xiaorui Wan
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Weilong Wu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Jiani Huang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Huiling Zhang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Zhenghong Qin
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yan Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Bougnères P, Le Stunff C. Revisiting the Pathogenesis of X-Linked Adrenoleukodystrophy. Genes (Basel) 2025; 16:590. [PMID: 40428412 PMCID: PMC12111468 DOI: 10.3390/genes16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND X-ALD is a white matter (WM) disease caused by mutations in the ABCD1 gene encoding the transporter of very-long-chain fatty acids (VLCFAs) into peroxisomes. Strikingly, the same ABCD1 mutation causes either devastating brain inflammatory demyelination during childhood or, more often, progressive spinal cord axonopathy starting in middle-aged adults. The accumulation of undegraded VLCFA in glial cell membranes and myelin has long been thought to be the central mechanism of X-ALD. METHODS This review discusses studies in mouse and drosophila models that have modified our views of X-ALD pathogenesis. RESULTS In the Abcd1 knockout (KO) mouse that mimics the spinal cord disease, the late manifestations of axonopathy are rapidly reversed by ABCD1 gene transfer into spinal cord oligodendrocytes (OLs). In a peroxin-5 KO mouse model, the selective impairment of peroxisomal biogenesis in OLs achieves an almost perfect phenocopy of cerebral ALD. A drosophila knockout model revealed that VLCFA accumulation in glial myelinating cells causes the production of a toxic lipid able to poison axons and activate inflammatory cells. Other mouse models showed the critical role of OLs in providing energy substrates to axons. In addition, studies on microglial changing substates have improved our understanding of neuroinflammation. CONCLUSIONS Animal models supporting a primary role of OLs and axonal pathology and a secondary role of microglia allow us to revisit of X-ALD mechanisms. Beyond ABCD1 mutations, pathogenesis depends on unidentified contributors, such as genetic background, cell-specific epigenomics, potential environmental triggers, and stochasticity of crosstalk between multiple cell types among billions of glial cells and neurons.
Collapse
Affiliation(s)
- Pierre Bougnères
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| | - Catherine Le Stunff
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm, University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Liu S, Zhang Y, Zhou H, Ma Y, Huang F, Lei T, Wang Q, Yu S. Ginsenoside Re Inhibits NLRP3 Inflammasome Activation in Depressive Mice by Promoting PINK1-Mediated Mitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10934-10946. [PMID: 40298124 DOI: 10.1021/acs.jafc.4c09773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ginsenoside Re (Re) was proved effective in improving depressive-like behaviors. However, the potential antidepressant mechanism of Re remains unrevealed. In this study, we investigated whether PINK1-mediated mitophagy and NLRP3 inflammasomes were linked to the antidepressant mechanism of Re in chronic unpredictable mild stress (CUMS) mice and lipopolysaccharide (LPS)-stimulated astrocytes. RNA sequencing and bioinformatics analyses were performed to discover the targets and pathways associated with Re. PTEN-induced putative kinase 1 (PINK1) knockdown was conducted to clarify the role of PINK1-mediated mitophagy in the antidepressant mechanism of Re. The outcomes showed that Re ameliorated depressive-like behaviors, activated PINK1-mediated mitophagy, and inhibited NLRP3 inflammasome activation. PINK1 knockdown attenuated the antidepressant effect of Re. The promotion of mitophagy and the decline of NLRP3 inflammasome activation caused by Re were reversed by PINK1 knockdown. In conclusion, Re inhibited NLRP3 inflammasome activation by promoting PINK1-mediated mitophagy to exert its antidepressant effect.
Collapse
Affiliation(s)
- Shan Liu
- Department of Physiology, School of Basic Medical Science, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233000, China
| | - Yue Zhang
- Department of Pharmaceutics, School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233000, China
| | - Hao Zhou
- Department of Pharmaceutics, School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233000, China
| | - Yating Ma
- Department of Pharmaceutics, School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233000, China
| | - Fangzhou Huang
- Department of Pharmaceutics, School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233000, China
| | - Tianyuan Lei
- Department of Pharmaceutics, School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233000, China
| | - Qingbin Wang
- Department of Pharmaceutics, School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233000, China
| | - Shangmin Yu
- Department of Pharmaceutics, School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233000, China
| |
Collapse
|
4
|
Shi P, Liu Y, Sha Y, Wang J, Zhou J, Liu K, Cao Y, Zhang Q, Wang X, Sun H. Wireless, battery-free vagal electrical stimulation: A novel approach to inhibit cardiac hypertrophy via H3K18 lactylation mediated mitophagy. Pharmacol Res 2025; 216:107760. [PMID: 40320225 DOI: 10.1016/j.phrs.2025.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Electrical stimulation (ES) has been established as a reliable and beneficial approach in therapeutic rehabilitation, exhibiting negligible side effects. Nevertheless, research focusing on the application of ES for cardiac hypertrophy remains limited, as it fails to provide an enduring remedy for chronic diseases. In this investigation, vagal ES, characterized by its wireless, battery-free, and fully implantable nature, was utilized to treat cardiac hypertrophy. The vagus nerve at the stimulation site was carefully embedded within an envelope, sealed securely using multiple bioabsorbable sutures. Subsequently, a cardiac hypertrophy model was induced in rats via abdominal aortic coarctation for four weeks. The findings of this investigation demonstrated that ES markedly attenuated cardiac hypertrophy. Metabolomic analysis revealed a notable reduction in lactate levels within myocardial tissue following ES. Proteomic analysis of myocardial tissues indicated a substantial decrease in the expression of autophagy and mitophagy-related proteins after ES. Additionally, ChIP-seq result revealed a specific binding interaction between H3K18 lactylation (H3K18la) and BCL2 interacting protein 3 (Bnip3), while luciferase reporter assays demonstrated that H3K18la directly governed Bnip3 transcriptional activation, exploring its role in modulating mitophagy. Mechanistically, it was shown that ES reduced lactate accumulation through the upregulation of monocarboxylate transporter 4 (MCT4) by decreasing norepinephrine (NE) levels. Furthermore, ES reversed cardiac hypertrophy by diminishing H3K18la levels, thus inhibiting Bnip3 protein expression. This pathway assists in diminishing cardiac hypertrophy, emphasizing the critical involvement of the afferent vagal pathway in regulating cardiac hypertrophy.
Collapse
Affiliation(s)
- Pilong Shi
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Yang Liu
- Department of Basic Nursing, Harbin Medical University, Heilongjiang 163319, China
| | - Yuetong Sha
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Jiaxin Wang
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Jiajun Zhou
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Kai Liu
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Qianhui Zhang
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Xinran Wang
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China.
| |
Collapse
|
5
|
Wang Y, Huang C, Wang X, Cheng R, Li X, Wang J, Zhang L, Li F, Wang H, Li X, Li Y, Xia Y, Cheng J, Pan X, Jia J, Xiao GD. Succinate Activates Uncoupling Protein 2 to Suppress Neuroinflammation and Confer Protection Following Intracerebral Hemorrhage. Antioxid Redox Signal 2025; 42:687-710. [PMID: 39228046 DOI: 10.1089/ars.2024.0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Aims: Succinate, a metabolite in the tricarboxylic acid cycle, is increasingly recognized to play essential roles in inflammation by functioning either as an intracellular or extracellular signaling molecule. However, the role and mechanisms of succinate in inflammation remain elusive. Here, we investigated the mechanism underlying the effects of succinate on neuroinflammation in intracerebral hemorrhage (ICH) models. [Figure: see text] Results: We unexpectedly found that succinate robustly inhibited neuroinflammation and conferred protection following ICH. Mechanistically, the oxidation of succinate by succinate dehydrogenase (SDH) drove reverse electron transport (RET) at mitochondrial complex I, leading to mitochondrial superoxide production in microglia. Complex I-derived superoxides, in turn, activated uncoupling protein 2 (UCP2). By using mice with specific deletion of UCP2 in microglia/macrophages, we showed that UCP2 was needed for succinate to inhibit neuroinflammation, confer protection, and activate downstream 5'-adenosine monophosphate-activated protein kinase (AMPK) following ICH. Moreover, knockdown of SDH, complex I, or AMPK abolished the therapeutic effects of succinate following ICH. Innovation and Conclusion: We provide evidence that driving complex I RET to activate UCP2 is a novel mechanism of succinate-mediated intracellular signaling and a mechanism underlying the inhibition of neuroinflammation by succinate. Antioxid. Redox Signal. 42, 687-710.
Collapse
Affiliation(s)
- Yecheng Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Caiyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaoying Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Rong Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xue Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiahao Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Lu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fuhao Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hao Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yi Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yiqing Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jian Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaofan Pan
- Department of Neurology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Jia Jia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guo-Dong Xiao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Giercuszkiewicz-Hecold B, Pajuelo D, Steczkiewicz Z, Cywinska A, Marycz K. Astaxanthin supplementation in Arabian racing horses mitigates oxidative stress and inflammation in peripheral blood mononuclear cells through enhanced mitophagy. Sci Rep 2025; 15:14633. [PMID: 40287452 PMCID: PMC12033344 DOI: 10.1038/s41598-025-93661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/07/2025] [Indexed: 04/29/2025] Open
Abstract
Astaxanthin, a strong antioxidant carotenoid, has shown promising features in mitigating inflammation and oxidative stress and so that has been considered as a supplement for high-performance animals. In this study, we aimed to evaluate the effects of astaxanthin on oxidative stress, inflammation, and mitochondrial health in peripheral blood mononuclear cells (PBMC) isolated from Arabian racehorses. Horse-derived peripheral blood mononuclear cells exposed to hydrogen peroxide (H₂O₂) presented increased reactive oxygen species (ROS) accumulation and overexpression of pro-inflammatory cytokines such as IL-1β, IL-6, IFN-γ, and TNF-α. The addition of astaxanthin to cell culture reduced H₂O₂-induced inflammatory response by decreasing the expression levels of all the tested pro-inflammatory cytokines. Moreover, astaxanthin displayed a potential antioxidant response by increasing the expression of genes related to antioxidative defense, such as NRF1, SOD2, and GPX. Interestingly, PBMCs isolated from the horses orally supplemented with astaxanthin increased the expression of the mitophagy-related genes PINK1 and PARKIN. Moreover, genes related to mitochondrial dynamics and energy production, such as PPARGC1B, NDUFA9, and MRPL24, as well as genes associated with mitochondrial function, structure and dynamics, such as PIGBOS, MRLP24, PUSL1 and TFAM were upregulated in PBMCs isolated from astaxanthin supplemented horses. Altogether, these findings indicate that astaxanthin may be a beneficial dietary supplement for equine health, supporting resilience against oxidative stress and inflammatory challenges, and improving the recovery and performance of racing horses.
Collapse
Affiliation(s)
| | - David Pajuelo
- Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Zofia Steczkiewicz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Anna Cywinska
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Toruń, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine (MIMT), ul. Jesionowa 11, 55-114, Malin Wisznia Mała, Poland.
| |
Collapse
|
7
|
Jung YH, Jo HY, Kim DH, Oh YJ, Kim M, Na S, Song HY, Lee HJ. Exosome-Mediated Mitochondrial Regulation: A Promising Therapeutic Tool for Alzheimer's Disease and Parkinson's Disease. Int J Nanomedicine 2025; 20:4903-4917. [PMID: 40259919 PMCID: PMC12011032 DOI: 10.2147/ijn.s513816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are representative neurodegenerative diseases with abnormal energy metabolism and altered distribution and deformation of mitochondria within neurons, particularly in brain regions such as the hippocampus and substantia nigra. Neurons have high energy demands; thus, maintaining a healthy mitochondrial population is important for their biological function. Recently, exosomes have been reported to have mitochondrial regulatory potential and antineurodegenerative properties. This review presents the mitochondrial abnormalities in brain cells associated with AD and PD and the potential of exosomes to treat these diseases. Specifically, it recapitulates research on the molecular mechanisms whereby exosomes regulate mitochondrial biogenesis, fusion/fission dynamics, mitochondrial transport, and mitophagy. Furthermore, this review discusses exosome-triggered signaling pathways that regulate nuclear factor (erythroid-derived 2)-like 2-dependent mitochondrial antioxidation and hypoxia inducible factor 1α-dependent metabolic reprogramming. In summary, this review aims to provide a profound understanding of the regulatory effect of exosomes on mitochondrial function in neurons and to propose exosome-mediated mitochondrial regulation as a promising strategy for AD and PD.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyo Youn Jo
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dae Hyun Kim
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yeon Ju Oh
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Minsoo Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Seunghyun Na
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Republic of Korea
| |
Collapse
|
8
|
Ye H, Li D, Zhang L, Wang Y, Wang C, Jin M, Lin H, Li P, Sun C, Li N. Epicoccin A Ameliorates PD-like Symptoms in Zebrafish: Enhancement of PINK1/Parkin-Dependent Mitophagy and Inhibition of Excessive Oxidative Stress. Mar Drugs 2025; 23:175. [PMID: 40278296 PMCID: PMC12028493 DOI: 10.3390/md23040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, yet effective agents for its prevention and therapy remain highly limited. Epicoccin A, a significant secondary metabolite from Exserohilum sp., demonstrates various biological activities; however, its neuroprotective effects have not been elucidated. Here, we investigated the therapeutic potential of epicoccin A for PD by evaluating its impact on neural phenotype, reactive oxygen species (ROS) generation, and locomotor activity in PD-like zebrafish. Transcriptomic analysis and molecular docking were conducted, with key gene expressions further verified using real-time qPCR. As a result, epicoccin A notably mitigated dopaminergic neuron loss, neural vasculature deficiency, nervous system injury, ROS accumulation, locomotor impairments, and abnormal expressions of hallmark genes associated with PD and oxidative stress. Underlying mechanism investigation indicated epicoccin A may alleviate PD-like symptoms by activating PINK1/Parkin-dependent mitophagy, as evidenced by the reversal of aberrant gene expressions related to the pink1/parkin pathway and its upstream mTOR/FoxO pathway following epicoccin A co-treatments. This finding was further confirmed by the robust interactions between epicoccin A and these mitophagy regulators. Our results suggest that epicoccin A relieves PD symptoms by activating pink1/parkin-dependent mitophagy and inhibiting excessive oxidative stress, highlighting its potential as a therapeutic approach for PD.
Collapse
Affiliation(s)
- Haicheng Ye
- Shandong Academy of Sciences & Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Jinan 250000, China; (H.Y.); (D.L.); (M.J.); (P.L.); (C.S.)
| | - Dan Li
- Shandong Academy of Sciences & Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Jinan 250000, China; (H.Y.); (D.L.); (M.J.); (P.L.); (C.S.)
| | - Lei Zhang
- Shandong Overseas Fisheries Association, Jinan 250000, China;
| | - Yufei Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission & Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530000, China; (Y.W.); (C.W.)
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission & Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530000, China; (Y.W.); (C.W.)
| | - Meng Jin
- Shandong Academy of Sciences & Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Jinan 250000, China; (H.Y.); (D.L.); (M.J.); (P.L.); (C.S.)
| | - Houwen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China;
| | - Peihai Li
- Shandong Academy of Sciences & Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Jinan 250000, China; (H.Y.); (D.L.); (M.J.); (P.L.); (C.S.)
| | - Chen Sun
- Shandong Academy of Sciences & Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Jinan 250000, China; (H.Y.); (D.L.); (M.J.); (P.L.); (C.S.)
| | - Ning Li
- Shandong Academy of Sciences & Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Jinan 250000, China; (H.Y.); (D.L.); (M.J.); (P.L.); (C.S.)
| |
Collapse
|
9
|
Yang X, Zhang Y, Zhou Y, Liu M, Zhao H, Yang Y, Su J. CaMK2A/CREB pathway activation is associated with enhanced mitophagy and neuronal apoptosis in diabetic retinopathy. Sci Rep 2025; 15:12516. [PMID: 40216954 PMCID: PMC11992012 DOI: 10.1038/s41598-025-97371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes mellitus, characterized by progressive neurodegeneration and vision impairment. The Ca2+/calmodulin-dependent protein kinase II alpha (CaMK2A) and cAMP response element-binding protein (CREB) signaling pathway has been implicated in various neurological disorders. However, its role in DR pathogenesis remains elusive. We established a DR mouse model by streptozotocin administration and performed histological, biochemical, and molecular analyses to investigate the involvement of CaMK2A/CREB signaling and its interplay with mitophagy. Additionally, we employed in vitro high-glucose (HG) treatment in primary mouse retinal ganglion cells to dissect the underlying mechanisms. Pharmacological and genetic modulations were utilized to target CaMK2A/CREB pathway and mitophagy. In the DR model, we observed retinal degeneration, increased apoptosis, and reduced neurotransmitter production, accompanied by enhanced mitophagy and activation of the CaMK2A/CREB pathway. HG induction in retinal ganglion cells recapitulated these findings, and autophagy inhibition partially rescued cell death but failed to suppress CaMK2A/CREB activation, suggesting mitophagy as a downstream consequence. CaMK2A knockdown or CREB phosphorylation inhibition attenuated HG-induced mitophagy, apoptosis, and neurotransmitter depletion, while CREB activation exacerbated these effects. CaMK2A silencing mitigated DR progression, oxidative stress, inflammation, and neuronal loss, akin to dopamine/carbidopa administration in DR mouse model. Our findings reveal the involvement of CaMK2A/CREB signaling activation and enhanced mitophagy in DR, suggesting these pathways may be therapeutically relevant targets for DR management.
Collapse
Affiliation(s)
- Xiaochun Yang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| | - Yuxin Zhang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yikun Zhou
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Mingzhi Liu
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Haiyan Zhao
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yang Yang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Jianyun Su
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| |
Collapse
|
10
|
Peng F, Ai X, Hao B, Bu X, Zhao Z, Yang L, Gao B. Dual-Modality Imaging Unveil Inner Mitochondrial Membrane Viscosity and Respiratory Dynamics in Mitophagy. Anal Chem 2025; 97:7490-7500. [PMID: 40150797 DOI: 10.1021/acs.analchem.5c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Mitophagy is a vital lysosome-dependent process that maintains mitochondrial integrity and cellular homeostasis, where respiration and inner mitochondrial membrane (IMM) viscosity play key roles. Despite its critical importance, achieving a high-resolution and dynamic visualization of respiration and IMM viscosity during mitophagy remains a significant challenge. In this study, we designed two innovative fluorescent probes: SiR-C8, a viscosity-sensitive rotor-type probe based on silicon-rhodamine, specifically targeting the IMM, and OR-ATP, a rhodamine-derived probe utilizing an intramolecular spirolactam structure to respond to mitochondrial ATP levels. Leveraging fluorescence intensity and lifetime dual-modality imaging, we successfully enabled the high-resolution, real-time monitoring of lysosome-dependent mitophagy. Remarkably, our results unveiled a progressive increase in IMM viscosity alongside a significant attenuation in mitochondrial respiration during mitophagy induced by starvation, carbonyl cyanide, m-chlorophenyl hydrazone (CCCP), and Oligomycin. Significantly, utilizing structured illumination microscopy super-resolution imaging, we have uncovered a novel mitochondrial quality control mechanism by which lysosomes selectively engulf locally damaged mitochondrial regions. This discovery provides novel insights into the intricate processes governing mitophagy and introduces an innovative platform for studying mitochondrial dynamics, dysfunction, and their implications for cellular homeostasis and pathology.
Collapse
Affiliation(s)
- Fei Peng
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xiangnan Ai
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Bin Hao
- School of New Materials and Chemical Engineering, Tangshan University, Tangshan 063000, China
| | - Xiaoyu Bu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Zixuan Zhao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Linshuai Yang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Baoxiang Gao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
11
|
Utpal BK, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Madhuri YB, Gupta JK, Yaidikar L, Tummala T, Suseela R, Durairaj A, Reddy KTK, Al Fahaid AAF, Rab SO, Almahjari MS, Emran TB. Alkaloids as neuroprotectors: targeting signaling pathways in neurodegenerative diseases. Mol Cell Biochem 2025. [DOI: 10.1007/s11010-025-05258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/16/2025] [Indexed: 05/04/2025]
|
12
|
Carbajal C, Rodriguez M, Owens F, Stone N, Veeragoni D, Fan RZ, Tieu K, El-Hage N. Therapeutic Efficacy of Small Extracellular Vesicles Loaded with ROCK Inhibitor in Parkinson's Disease. Pharmaceutics 2025; 17:365. [PMID: 40143028 PMCID: PMC11944340 DOI: 10.3390/pharmaceutics17030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a rapidly growing neurological disorder in the developed world, affecting millions over the age of 60. The decline in motor functions occurs due to a progressive loss of midbrain dopaminergic neurons, resulting in lowered dopamine levels and impaired muscle function. Studies show defective mitochondrial autophagy (or "mitophagy") links to PD. Rho-associated coiled-coil containing protein kinases (ROCK) 1 and ROCK2 are serine/threonine kinases, and their inhibition can enhance neuroprotection in PD by promoting mitophagy. Methods: We examine the effects of ROCK inhibitor SR3677, delivered via macrophage-derived small extracellular vesicles (sEVs) to Parkin Q311X(A) PD mouse models. sEVs with SR3677, administered intranasally, increased mitophagy gene expression, reduced inflammatory factors, and elevated dopamine levels in brain tissues. Results: ROCK2 expression decreased, showing the drug's inhibitory effect. sEV-SR3677 treatment was more effective than treatment with the drug alone, although sham EVs showed lower effects. This suggests that EV-SR3677 not only activates mitochondrial processes but also promotes the degradation of damaged mitochondria through autophagy. Mitochondrial functional assays and oxygen consumption in ex vivo glial cultures revealed that sEV-SR3677 significantly improved mitochondrial respiration compared to that in untreated or SR3677-only treated cells. Conclusion: We demonstrated the efficacy of ROCK2 inhibition on mitochondrial function via sEV-SR3677 in the PD mouse model, necessitating further studies to explore design challenges and mechanisms of sEV-SR3677 as mitochondria-targeted therapy for PD.
Collapse
Affiliation(s)
- Candy Carbajal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Myosotys Rodriguez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Florida Owens
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Nicole Stone
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Dileepkumar Veeragoni
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Rebecca Z. Fan
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA; (R.Z.F.); (K.T.)
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA; (R.Z.F.); (K.T.)
| | - Nazira El-Hage
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| |
Collapse
|
13
|
Mandal N, Das A, Datta R. Unravelling a mechanistic link between mitophagy defect, mitochondrial malfunction, and apoptotic neurodegeneration in Mucopolysaccharidosis VII. Neurobiol Dis 2025; 206:106825. [PMID: 39909083 DOI: 10.1016/j.nbd.2025.106825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Cognitive disability and neurodegeneration are prominent symptoms of Mucopolysaccharidosis VII (MPS VII), a lysosomal storage disorder caused by β-glucuronidase enzyme deficiency. Yet, the mechanism of neurodegeneration in MPS VII remains unclear thereby limiting the scope of targeted therapy. We aimed to bridge this knowledge gap by employing the β-glucuronidase-deficient (CG2135-/-) Drosophila model of MPS VII. Taking cues from our initial observation that the adult CG2135-/- flies displayed enhanced susceptibility to starvation, we investigated potential impairments in the autophagy-lysosomal clearance machinery in their brain to dissect the underlying cause of neurodegeneration. We found that both autophagosome biogenesis and lysosome-mediated autophagosomal turnover were impaired in the CG2135-/- fly brain. This was evidenced by lower Atg8a-II levels, reduced Atg1 and Ref(2)P expression along with accumulation of lipofuscin-like inclusions and multilamellar bodies. Mitophagy was also found to be defective in their brain, resulting in buildup of enlarged mitochondria with distorted cristae and reduced membrane potential. This, in turn, compromised mitochondrial function, as reflected by drastically reduced brain ATP levels. Energy depletion triggered apoptosis in neuronal as well as non-neuronal cells of the CG2135-/- fly brain, where apoptotic dopaminergic neurons were also detected. Interestingly, resveratrol treatment corrected the mitophagy defect and prevented ATP depletion in the CG2135-/- fly brain, providing an explanation for its neuroprotective effects. Collectively, our study reveals a pharmacologically targetable mechanistic link between mitophagy defect, mitochondrial malfunction, and apoptotic neurodegeneration in MPS VII.
Collapse
Affiliation(s)
- Nishan Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA
| | - Apurba Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA.
| |
Collapse
|
14
|
Pal C. Mitochondria-targeting by small molecules against Alzheimer's disease: A mechanistic perspective. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167617. [PMID: 39647244 DOI: 10.1016/j.bbadis.2024.167617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Alzheimer's disease (AD) poses a considerable worldwide health obstacle, marked by gradual cognitive deterioration and neuronal loss. While the molecular mechanisms underlying AD pathology have been elucidated to some extent, therapeutic options remain limited. Mitochondrial dysfunction has become recognized as a significant factor in the development of AD, with oxidative stress and disrupted energy metabolism being critical elements. This review explores the mechanistic aspects of small molecule targeting of mitochondria as a potential therapeutic approach for AD. The review explores the role of mitochondrial dysfunction in AD, including its involvement in the accumulation of β-amyloid plaques and neurofibrillary tangles, synaptic dysfunction, and neuronal death. Furthermore, the effects of oxidative stress on mitochondrial function were investigated, including the resulting damage to mitochondrial components. Mitochondrial-targeted therapies have attracted attention for their potential to restore mitochondrial function and reduce AD pathology. The review outlines the latest preclinical and clinical evidence supporting the effectiveness of small molecules in targeting mitochondrial dysfunction in AD. Additionally, it discusses the molecular pathways involved in mitochondrial dysfunction and examines how small molecules can intervene to address these abnormalities. By providing a comprehensive overview of the latest research in this field, this review aims to shed light on the therapeutic potential of small molecule targeting of mitochondria in AD and stimulate further research in this promising area of drug development.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
15
|
Shouman S, Hesham N, Salem TZ. Viruses and neurodegeneration: a growing concern. J Transl Med 2025; 23:46. [PMID: 39800721 PMCID: PMC11727702 DOI: 10.1186/s12967-024-06025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Neurodegenerative diseases (NDDs) cause a progressive loss of neurons. Since NDDs are multifactorial, the precise etiology varies on the basis of the type of disease and patient history. Cohort studies and case studies have demonstrated a potential link between viral infections and the onset or progression of NDDs. Recent findings concerning the mechanisms by which neuropathic infections occur have provided more insights into the importance of such connections. In this review, we aim to elaborate on the occurrence of the neuropathic effects of viruses from epidemiological, clinical, and biological perspectives while highlighting potential treatments and challenges. One of the key players in viral neuropathogenesis is neuroinflammation caused by the immune response to the virus; this can occur due to both neurotropic and nonneurotropic viruses. The COVID-19 pandemic has raised concerns about whether vaccines are essential for preventing viruses or whether vaccines may play a part in exacerbating or accelerating NDDs. By classifying viruses and the common NDDs associated with them and further delving into their cellular pathways, this review provides insights to advance the development of potential treatments and diagnostic methods.
Collapse
Affiliation(s)
- S Shouman
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - N Hesham
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - T Z Salem
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
| |
Collapse
|
16
|
Hosseininasab SSM, Ebrahimi R, Yaghoobpoor S, Kazemi K, Khakpour Y, Hajibeygi R, Mohamadkhani A, Fathi M, Vakili K, Tavasol A, Tutunchian Z, Fazel T, Fathi M, Hajiesmaeili M. Alzheimer's disease and infectious agents: a comprehensive review of pathogenic mechanisms and microRNA roles. Front Neurosci 2025; 18:1513095. [PMID: 39840010 PMCID: PMC11747386 DOI: 10.3389/fnins.2024.1513095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent type of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles. There are various theories concerning the causes of AD, but the connection between viral and bacterial infections and their potential role in the pathogenesis of AD has become a fascinating area of research for the field. Various viruses such as Herpes simplex virus 1 (HSV-1), Epstein-Barr virus (EBV), Cytomegalovirus (CMV), influenza viruses, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as well as bacteria such as Chlamydia pneumoniae (CP), Helicobacter pylori (HP), Porphyromonas gingivalis (P. gingivalis), Spirochetes and eukaryotic unicellular parasites (e.g., Toxoplasma gondii), have been linked to AD due to their ability to activate the immune system, induce inflammation and increase oxidative stress, thereby leading to cognitive decline and AD. In addition, microRNAs (miRNAs) might play a crucial role in the pathogenesis mechanisms of these pathogens since they are utilized to target various protein-coding genes, allowing for immune evasion, maintaining latency, and suppressing cellular signaling molecules. Also, they can regulate gene expression in human cells. This article provides an overview of the association between AD and various infectious agents, with a focus on the mechanisms by which these pathogens may be related to the pathogenesis of AD. These findings suggest important areas for further research to be explored in future studies.
Collapse
Affiliation(s)
- Seyyed Sam Mehdi Hosseininasab
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Khakpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tutunchian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Fazel
- Student Research Committee, School of International Campus, Guilan University of Medical Sciences, Tehran, Iran
| | - Mohammad Fathi
- Department of Anesthesiology, Critical Care Quality Improvement Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Bhupesh S, Chauhan N, Jyoti V, Ankit K, Sonia S, Bhupendra S. A Narrative Review of Signaling Pathway and Treatment Options for Diabetic Nephropathy. Curr Mol Med 2025; 25:113-131. [PMID: 37497682 DOI: 10.2174/1566524023666230727093911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Diabetic nephropathy is a progressive kidney disease that frequently results in end-stage renal disorders and is characterized by proteinuria, albuminuria, decreased filtration, and renal fibrosis. Despite the fact that there are a number of therapeutic alternatives available, DN continues to be the main contributor to end-stage renal disease. Therefore, significant innovation is required to enhance outcomes in DN patients. METHODS Information was collected from online search engines like, Google Scholar, Web of Science, PubMed, Scopus, and Sci-Hub databases using keywords like diabetes, nephropathy, kidney disease, autophagy, etc. Results: Natural compounds have anti-inflammatory and antioxidant properties and impact various signaling pathways. They ameliorate kidney damage by decreasing oxidative stress, inflammatory process, and fibrosis and enhance the antioxidant system, most likely by activating and deactivating several signaling pathways. This review focuses on the role of metabolic memory and various signaling pathways involved in the pathogenesis of DN and therapeutic approaches available for the management of DN. Special attention is given to the various pathways modulated by the phytoconstituents.
Collapse
Affiliation(s)
- Semwal Bhupesh
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Neha Chauhan
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Verma Jyoti
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Kumar Ankit
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Singh Sonia
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Singh Bhupendra
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
18
|
Chaphalkar RM, Kodati B, Maddineni P, He S, Brooks CD, Stankowska DL, Yang S, Zode G, Krishnamoorthy RR. A Reduction in Mitophagy Is Associated with Glaucomatous Neurodegeneration in Rodent Models of Glaucoma. Int J Mol Sci 2024; 25:13040. [PMID: 39684751 PMCID: PMC11642561 DOI: 10.3390/ijms252313040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Glaucoma is a heterogenous group of optic neuropathies characterized by the degeneration of optic nerve axons and the progressive loss of retinal ganglion cells (RGCs), which could ultimately lead to vision loss. Elevated intraocular pressure (IOP) is a major risk factor in the development of glaucoma, and reducing IOP remains the main therapeutic strategy. Endothelin-1 (ET-1), a potent vasoactive peptide, has been shown to produce neurodegenerative effects in animal models of glaucoma. However, the detailed mechanisms underlying ET-1-mediated neurodegeneration in glaucoma are not completely understood. In the current study, using a Seahorse Mitostress assay, we report that ET-1 treatment for 4 h and 24 h time points causes a significant decline in various parameters of mitochondrial function, including ATP production, maximal respiration, and spare respiratory capacity in cultured RGCs. This compromise in mitochondrial function could trigger activation of mitophagy as a quality control mechanism to restore RGC health. Contrary to our expectation, we observed a decrease in mitophagy following ET-1 treatment for 24 h in cultured RGCs. Using Morrison's model of ocular hypertension in rats, we investigated here, for the first time, changes in mitophagosome formation by analyzing the co-localization of LC-3B and TOM20 in RGCs. We also injected ET-1 (24 h) into transgenic GFP-LC3 mice to analyze the formation of mitophagosomes in vivo. In Morrison's model of ocular hypertension, as well as in ET-1 injected GFP-LC3 mice, we found a decrease in co-localization of LC3 and TOM20, indicating reduced mitophagy. Taken together, these results demonstrate that both ocular hypertension and ET-1 administration in rats and mice lead to reduced mitophagy, thus predisposing RGCs to neurodegeneration.
Collapse
Affiliation(s)
- Renuka M. Chaphalkar
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.M.C.); (B.K.); (C.D.B.); (S.Y.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.M.C.); (B.K.); (C.D.B.); (S.Y.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Prabhavathi Maddineni
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Shaoqing He
- Department of Pathology, Children’s Health at Dallas, Dallas, TX 75235, USA;
| | - Calvin D. Brooks
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.M.C.); (B.K.); (C.D.B.); (S.Y.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Dorota L. Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
- Department of Microbiology, Immunology and Genetics, College of Biomedical and Translational Sciences at University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shaohua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.M.C.); (B.K.); (C.D.B.); (S.Y.)
| | - Gulab Zode
- Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA;
| | - Raghu R. Krishnamoorthy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.M.C.); (B.K.); (C.D.B.); (S.Y.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| |
Collapse
|
19
|
Khanra S, Singh S, Singh TG. Mechanistic exploration of ubiquitination-mediated pathways in cerebral ischemic injury. Mol Biol Rep 2024; 52:22. [PMID: 39607439 DOI: 10.1007/s11033-024-10123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The ubiquitin-proteasome system (UPS) plays a pivotal role in regulating protein homeostasis and cellular processes, including protein degradation, trafficking, DNA repair, and cell signaling. During cerebral ischemia, ischemic conditions profoundly disrupt UPS activity, leading to proteasomal dysfunction and the accumulation of abnormal proteins. This imbalance contributes to neuronal injury and cell death observed in ischemic stroke. The UPS is intricately linked to various signaling pathways crucial for neuronal survival, inflammation, and cellular stress response, such as NF-κB, TRIM, TRIP, JAK-STAT, PI3K/Akt, and ERK1/2. Alterations in the ubiquitination process can significantly impact the activation and regulation of these pathways, exacerbating ischemic brain injury. Therapeutic approaches targeting the UPS in cerebral ischemia aim to rebalance protein levels, reduce proteotoxic stress, and mitigate neuronal injury. Strategies include proteasome inhibition, targeting specific ubiquitin ligases and deubiquitinating enzymes, and modulating ubiquitination-mediated regulation of key signaling pathways implicated in ischemia-induced pathophysiology. Therefore, the present review discusses the molecular mechanisms underlying UPS dysfunction in ischemic stroke is crucial for developing effective therapeutic interventions. Modulating ubiquitination-mediated pathways through therapeutic interventions targeting specific UPS components holds significant promise for mitigating ischemic brain injury and promoting neuroprotection and functional recovery in patients with cerebral ischemia.
Collapse
Affiliation(s)
- Supriya Khanra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
20
|
Kola A, Vigni G, Lamponi S, Valensin D. Protective Contribution of Rosmarinic Acid in Rosemary Extract Against Copper-Induced Oxidative Stress. Antioxidants (Basel) 2024; 13:1419. [PMID: 39594560 PMCID: PMC11590892 DOI: 10.3390/antiox13111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Rosemary extract (Rosmarinus officinalis) is a natural source of bioactive compounds with significant antioxidant properties. Among these, rosmarinic acid is celebrated for its potent antioxidant, anti-inflammatory, antimicrobial, and neuroprotective properties, making it a valuable component in both traditional medicine and modern therapeutic research. Neurodegenerative diseases like Alzheimer's and Parkinson's are closely linked to oxidative damage, and research indicates that rosmarinic acid may help protect neurons by mitigating this harmful process. Rosmarinic acid is able to bind cupric ions (Cu2+) and interfere with the production of reactive oxygen species (ROS) produced by copper through Fenton-like reactions. This study aims to further evaluate the contribution of rosmarinic acid within rosemary extract by comparing its activity to that of isolated rosmarinic acid. By using a detailed approach that includes chemical characterization, antioxidant capacity assessment, and neuroprotective activity testing, we have determined whether the combined components in rosemary extract enhance or differ from the effects of rosmarinic acid alone. This comparison is crucial for understanding whether the full extract offers added benefits beyond those of isolated rosmarinic acid in combating oxidative stress and Aβ-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (G.V.); (S.L.)
| |
Collapse
|
21
|
Ge X, Zhang L, Ye M, Fei A, Wang L, Yuan A. Electroacupuncture improves diabetic cognitive impairment rats by suppressing NLRP3 inflammasome activation via induction of mitophagy. Metab Brain Dis 2024; 40:14. [PMID: 39560708 PMCID: PMC11576777 DOI: 10.1007/s11011-024-01464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/15/2024] [Indexed: 11/20/2024]
Abstract
Diabetic cognitive impairment pose a significant threat to public health in our aging society. However, the underlying molecular mechanisms have not been fully elucidated, which warrants further investigation. This study aimed to investigate the effects of electroacupuncture on cognitive impairment and its associated mechanisms. The diabetes model was induced via intraperitoneal injection of streptozotocin (STZ) into Sprague-Dawley rats combined with a high-fat and high-sugar diet. The learning and memory abilities of the rats were assessed using behavioral tests. Electron microscopy and hematoxylin-eosin (H&E) staining were used to identify the histological changes of neurons in the CA1 area of the rat hippocampal CA1. An examination of related indicators was performed by Western blotting including NLRP3 inflammasome-associated proteins Caspase-1, IL-18, IL1β, NLRP3, and P62, and mitophagy-related proteins Pink1, LC3, and Parkin. After modeling, rats displayed impaired learning and memory functions. The administration of electroacupuncture treatment alleviated diabetic cognitive impairment, described as shorter escape latency and an increased frequency of platform crossings. The damaged morphological and ultrastructural changes of neurons in rat hippocampal CA1 area can be alleviated through electroacupuncture treatment. Furthermore, in-depth studies suggest that electroacupuncture treatment can suppress NLRP3 inflammasome activation through induction of Pink1, LC3 and Parkin expression. Electroacupuncture treatment can attenuate NLRP3 inflammasome activation by promoting mitophagy, eventually improving cognitive impairment in (STZ)-treated rats with a high-fat die.
Collapse
Affiliation(s)
- Xia Ge
- Department of Endocrinology, The Second Affiliated Hospital of Anhui, University of Chinese Medicine, Hefei, 230001, Anhui, China
| | - Lele Zhang
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Min Ye
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Aihua Fei
- Department of Endocrinology, The Second Affiliated Hospital of Anhui, University of Chinese Medicine, Hefei, 230001, Anhui, China
| | - Ling Wang
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, Anhui, China
| | - Aihong Yuan
- Department of acupuncture and rehabilitation, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| |
Collapse
|
22
|
Oyovwi MO, Ugwuishi EW, Udi OA, Uchechukwu GJ. Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy. J Mol Neurosci 2024; 74:107. [PMID: 39514132 DOI: 10.1007/s12031-024-02280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria play a pivotal role in cellular metabolism, energy production, and apoptotic signaling, making mitophagy, the selective degradation of damaged mitochondria, crucial for mitochondrial health. Dysregulation of mitophagy has been implicated in various neuroendocrinopathies, yet the mechanisms linking these processes remain poorly understood. This review aims to explore the intersection between mitophagy and neuroendocrinopathy, addressing the critical gaps in knowledge regarding how mitochondrial dysfunction may contribute to the pathophysiology of neuroendocrine disorders. We conducted a comprehensive literature review of studies published on mitophagy and neuroendocrinopathies, focusing on data that elucidate the pathways involved and the clinical implications of mitochondrial health in neuroendocrine contexts. Our findings indicate that altered mitophagy may lead to the accumulation of dysfunctional mitochondria, contributing to neuroendocrine dysregulation. We present evidence linking impaired mitochondrial clearance to disease models of conditions such as metabolic syndrome, depression, and stress-related disorders, highlighting the potential for therapeutic interventions targeting mitophagy. While significant advances have been made in understanding mitochondrial biology, the direct interplay between mitophagy and neuroendocrinopathies remains underexplored. This review underscores the necessity for further research to elucidate these connections, which may offer novel insights into disease mechanisms and therapeutic strategies for treating maladaptive neuroendocrine responses.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | | | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | - Gregory Joseph Uchechukwu
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
23
|
Neha, Mazahir I, Khan SA, Kaushik P, Parvez S. The Interplay of Mitochondrial Bioenergetics and Dopamine Agonists as an Effective Disease-Modifying Therapy for Parkinson's Disease. Mol Neurobiol 2024; 61:8086-8103. [PMID: 38468113 DOI: 10.1007/s12035-024-04078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Parkinson's disease (PD) is a progressive neurological ailment with a slower rate of advancement that is more common in older adults. The biggest risk factor for PD is getting older, and those over 60 have an exponentially higher incidence of this condition. The failure of the mitochondrial electron chain, changes in the dynamics of the mitochondria, and abnormalities in calcium and ion homeostasis are all symptoms of Parkinson's disease (PD). Increased mitochondrial reactive oxygen species (mROS) and an energy deficit are linked to these alterations. Levodopa (L-DOPA) is a medication that is typically used to treat most PD patients, but because of its negative effects, additional medications have been created utilizing L-DOPA as the parent molecule. Ergot and non-ergot derivatives make up most PD medications. PD is successfully managed with the use of dopamine agonists (DA). To get around the motor issues produced by L-DOPA, these dopamine derivatives can directly excite DA receptors in the postsynaptic membrane. In the past 10 years, two non-ergoline DA with strong binding properties for the dopamine D2 receptor (D2R) and a preference for the dopamine D3 receptor (D3R) subtype, ropinirole, and pramipexole (PPx) have been developed for the treatment of PD. This review covers the most recent research on the efficacy and safety of non-ergot drugs like ropinirole and PPx as supplementary therapy to DOPA for the treatment of PD.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Iqra Mazahir
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sara Akhtar Khan
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
24
|
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, Babula P, Kaplánek R, Přibyl T, Zelenka J, Ruml T, Vokurka M, Martásek P, Jakubek M. Iron chelators as mitophagy agents: Potential and limitations. Biomed Pharmacother 2024; 179:117407. [PMID: 39265234 DOI: 10.1016/j.biopha.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Collapse
Affiliation(s)
- Tereza Brogyanyi
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - Michal Masařik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Petr Babula
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic.
| |
Collapse
|
25
|
Papageorgiou MP, Filiou MD. Mitochondrial dynamics and psychiatric disorders: The missing link. Neurosci Biobehav Rev 2024; 165:105837. [PMID: 39089419 DOI: 10.1016/j.neubiorev.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Elucidating the molecular mechanisms of psychopathology is crucial for optimized diagnosis and treatment. Accumulating data have underlined how mitochondrial bioenergetics affect major psychiatric disorders. However, how mitochondrial dynamics, a term addressing mitochondria quality control, including mitochondrial fission, fusion, biogenesis and mitophagy, is implicated in psychopathologies remains elusive. In this review, we summarize the existing literature on mitochondrial dynamics perturbations in psychiatric disorders/neuropsychiatric phenotypes. We include preclinical/clinical literature on mitochondrial dynamics recalibrations in anxiety, depression, post-traumatic stress disorder (PTSD), bipolar disorder and schizophrenia. We discuss alterations in mitochondrial network, morphology and shape, molecular markers of the mitochondrial dynamics machinery and mitochondrial DNA copy number (mtDNAcn) in animal models and human cohorts in brain and peripheral material. By looking for common altered mitochondrial dynamics patterns across diagnoses/phenotypes, we highlight mitophagy and biogenesis as regulators of anxiety and depression pathophysiology, respectively, as well as the fusion mediator dynamin-like 120 kDa protein (Opa1) as a molecular hub contributing to psychopathology. Finally, we comment on limitations and future directions in this novel neuropsychiatry field.
Collapse
Affiliation(s)
- Maria P Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece.
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece; Institute of Biosciences, University of Ioannina, Greece.
| |
Collapse
|
26
|
Mohammed A, Ramadan A, Elnour AA, Saeed AAAM, Al Mazrouei N, Alsulami FT, Alqarni YS, Menon V, Amoodi AA, Abdalla SF. Luteolin as potential treatment for Huntington's disease: Insights from a transgenic mouse model. CNS Neurosci Ther 2024; 30:e70025. [PMID: 39228080 PMCID: PMC11371662 DOI: 10.1111/cns.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/28/2024] [Accepted: 08/10/2024] [Indexed: 09/05/2024] Open
Abstract
AIMS The study aimed to evaluate the potential benefits of luteolin treatment in Huntington's disease (HD), an inherited progressive neurodegenerative disorder. METHODS HD N171-82Q transgenic and WT mice received luteolin or vehicle for treatment at 6 weeks of age. The mice's body weight changes and survival rates were monitored throughout the study, and a series of motor functional tests were conducted. Serum level of the marker NfL was also determined. Immunohistochemical staining and western blotting were utilized to assess the expression of huntingtin aggregates. RESULTS Luteolin treatment enhanced survival and prevented weight loss in HD mice compared to the vehicle-treated HD group. Furthermore, the luteolin-treated HD mice exhibited enhanced motor coordination and balance and significantly reduced motor dysfunction. Also, luteolin decreased serum NfL levels in HD mice. Notably, the accumulation of huntingtin aggregates was significantly reduced in the brain's cortex, hippocampus, and striatum of luteolin-treated HD mice compared to the vehicle-treated HD group. CONCLUSION Luteolin holds promise as a therapeutic agent for improving survival outcomes, managing motor dysfunction, and reducing huntingtin aggregates in HD. The findings are of significance as currently, there are no approved therapeutic interventions that reverse HD pathology or slow down its progression.
Collapse
Affiliation(s)
- Abuelnor Mohammed
- Department of Basic Medical Sciences, College of Medicine-Dar Al Uloom University, Riyadh, Saudi Arabia
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Azza Ramadan
- College of Pharmacy, Al Ain University, Abu Dhbai, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Asim Ahmed Elnour
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
- Program of Clinical Pharmacy, College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ali Awadallah Ali Mohamed Saeed
- Department of Pharmacology, Faculty of Clinical and Industrial Pharmacy, National University, Mycetoma Research Center, Khartoum, Sudan
| | - Nadia Al Mazrouei
- Department of Pharmacy Practice and Pharmacotherapeutics, Faculty of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Fahad T Alsulami
- Clinical Pharmacy Department, College of Pharmacy, Taif university, Taif, Saudi Arabia
| | - Yousef Saeed Alqarni
- Department of pharmacy practice, college of pharmacy, Imam abdulrahman bin faisal university, Dammam, Saudi Arabia
| | - Vineetha Menon
- Department of Pharmacy Practice, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Abdulla Al Amoodi
- Ambulatory Healthcare Services, Academic Affairs, Abu Dhabi Health Services (SEHA), Abu Dhabi, United Arab Emirates
| | - Sami Fatehi Abdalla
- Clinical Department, College of Medicine, Almaarefa University (Diriyah), Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Arachchige DL, Dwivedi SK, Olowolagba AM, Peters J, Beatty AC, Guo A, Wang C, Werner T, Luck RL, Liu H. Dynamic insights into mitochondrial function: Monitoring viscosity and SO 2 levels in living cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112986. [PMID: 39084140 PMCID: PMC11419399 DOI: 10.1016/j.jphotobiol.2024.112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Mitochondria, central organelles pivotal for eukaryotic cell function, extend their influence beyond ATP production, encompassing roles in apoptosis, calcium signaling, and biosynthesis. Recent studies spotlight two emerging determinants of mitochondrial functionality: intramitochondrial viscosity and sulfur dioxide (SO2) levels. While optimal mitochondrial viscosity governs molecular diffusion and vital processes like oxidative phosphorylation, aberrations are linked with neurodegenerative conditions, diabetes, and cancer. Similarly, SO2, a gaseous signaling molecule, modulates energy pathways and oxidative stress responses; however, imbalances lead to cytotoxic sulfite and bisulfite accumulation, triggering disorders such as cancer and cardiovascular anomalies. Our research focused on development of a dual-channel fluorescent probe, applying electron-withdrawing acceptors within a coumarin dye matrix, facilitating monitoring of mitochondrial viscosity and SO2 in live cells. This probe distinguishes fluorescence peaks at 650 nm and 558 nm, allowing ratiometric quantification of SO2 without interference from other sulfur species. Moreover, it enables near-infrared viscosity determination, particularly within mitochondria. The investigation employed theoretical calculations utilizing Density Functional Theory (DFT) methods to ascertain molecular geometries and calculate rotational energies. Notably, the indolium segment of the probe exhibited the lowest rotational energy, quantified at 7.38 kcals/mol. The probe featured heightened mitochondrial viscosity dynamics when contained within HeLa cells subjected to agents like nystatin, monensin, and bacterial lipopolysaccharide (LPS). Overall, our innovative methodology elucidates intricate mitochondrial factors, presenting transformative insights into cellular energetics, redox homeostasis, and therapeutic avenues for mitochondrial-related disorders.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America.
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Ashlyn Colleen Beatty
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Alicia Guo
- Trinity School at River Ridge/Eagan, St Paul, MN 55121, United States of America
| | - Crystal Wang
- Houghton High School, 1603 Gundlach Rd, Houghton, MI 49931, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America.
| |
Collapse
|
28
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
29
|
Lin X, Wang H, Zou L, Yang B, Chen W, Rong X, Zhang X, He L, Li X, Peng Y. The NRF2 activator RTA-408 ameliorates chronic alcohol exposure-induced cognitive impairment and NLRP3 inflammasome activation by modulating impaired mitophagy initiation. Free Radic Biol Med 2024; 220:15-27. [PMID: 38679301 DOI: 10.1016/j.freeradbiomed.2024.04.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Chronic alcohol exposure induces cognitive impairment and NLRP3 inflammasome activation in the mPFC (medial prefrontal cortex). Mitophagy plays a crucial role in neuroinflammation, and dysregulated mitophagy is associated with behavioral deficits. However, the potential relationships among mitophagy, inflammation, and cognitive impairment in the context of alcohol exposure have not yet been studied. NRF2 promotes the process of mitophagy, while alcohol inhibits NRF2 expression. Whether NRF2 activation can ameliorate defective mitophagy and neuroinflammation in the presence of alcohol remains unknown. METHODS BV2 cells and primary microglia were treated with alcohol. C57BL/6J mice were repeatedly administered alcohol intragastrically. BNIP3-siRNA, PINK1-siRNA, CCCP and bafilomycin A1 were used to regulate mitophagy in BV2 cells. RTA-408 acted as an NRF2 activator. Mitochondrial dysfunction, mitophagy and NLRP3 inflammasome activation were assayed. Behavioral tests were used to assess cognition. RESULTS Chronic alcohol exposure impaired the initiation of both receptor-mediated mitophagy and PINK1-mediated mitophagy in the mPFC and in vitro microglial cells. Silencing BNIP3 or PINK1 induced mitochondrial dysfunction and aggravated alcohol-induced NLRP3 inflammasome activation in BV2 cells. In addition, alcohol exposure inhibited the NRF2 expression both in vivo and in vitro. NRF2 activation by RTA-408 ameliorated NLRP3 inflammasome activation and mitophagy downregulation in microglia, ultimately improving cognitive impairment in the presence of alcohol. CONCLUSION Chronic alcohol exposure-induced impaired mitophagy initiation contributed to NLRP3 inflammasome activation and cognitive deficits, which could be alleviated by NRF2 activation via RTA-408.
Collapse
Affiliation(s)
- Xinrou Lin
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Lubin Zou
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Biying Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wanru Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiaoni Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Lei He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiangpen Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, 516400, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
30
|
Pradeepkiran JA, Baig J, Seman A, Reddy PH. Mitochondria in Aging and Alzheimer's Disease: Focus on Mitophagy. Neuroscientist 2024; 30:440-457. [PMID: 36597577 DOI: 10.1177/10738584221139761] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid β and phosphorylated τ protein aggregates in the brain, which leads to the loss of neurons. Under the microscope, the function of mitochondria is uniquely primed to play a pivotal role in neuronal cell survival, energy metabolism, and cell death. Research studies indicate that mitochondrial dysfunction, excessive oxidative damage, and defective mitophagy in neurons are early indicators of AD. This review article summarizes the latest development of mitochondria in AD: 1) disease mechanism pathways, 2) the importance of mitochondria in neuronal functions, 3) metabolic pathways and functions, 4) the link between mitochondrial dysfunction and mitophagy mechanisms in AD, and 5) the development of potential mitochondrial-targeted therapeutics and interventions to treat patients with AD.
Collapse
Affiliation(s)
| | - Javaria Baig
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ashley Seman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
31
|
Liang Y, Li Y, Jiao Q, Wei M, Wang Y, Cui A, Li Z, Li G. Axonal mitophagy in retinal ganglion cells. Cell Commun Signal 2024; 22:382. [PMID: 39075570 PMCID: PMC11285280 DOI: 10.1186/s12964-024-01761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Neurons, exhibiting unique polarized structures, rely primarily on the mitochondrial production of ATP to maintain their hypermetabolic energy requirements. To maintain a normal energy supply, mitochondria are transported to the distal end of the axon. When mitochondria within the axon are critically damaged beyond their compensatory capacity, they are cleared via autophagosomal phagocytosis, and the degradation products are recycled to replenish energy. When the mitochondria are dysfunctional or their transport processes are blocked, axons become susceptible to degeneration triggered by energy depletion, resulting in neurodegenerative diseases. As the final checkpoint for mitochondrial quality control, axonal mitophagy is vital for neuronal growth, development, injury, and regeneration. Furthermore, abnormal axonal mitophagy is crucial in the pathogenesis of optic nerve-related diseases such as glaucoma. We review recent studies on axonal mitophagy and summarize the progress of research on axonal mitophagy in optic nerve-related diseases to provide insights into diseases associated with axonal damage in optic ganglion cells.
Collapse
Affiliation(s)
- Yang Liang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yulin Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Qing Jiao
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Muyang Wei
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yan Wang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Aoteng Cui
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihui Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
32
|
Cho JH, Chae CW, Lim JR, Jung YH, Han SJ, Yoon JH, Park JY, Han HJ. Sodium butyrate ameliorates high glucose-suppressed neuronal mitophagy by restoring PRKN expression via inhibiting the RELA-HDAC8 complex. Autophagy 2024; 20:1505-1522. [PMID: 38409852 PMCID: PMC11210903 DOI: 10.1080/15548627.2024.2323785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Damaged mitochondria accumulation in diabetes is one of the main features that contribute to increased incidence of cognitive impairment by inducing apoptosis. Butyrate is a major metabolite produced by microbiota that has neuroprotective effects by regulating mitochondrial function. However, detailed mechanisms underlying how butyrate can regulate neuronal mitophagy remain unclear. Here, we examined the regulatory effects of sodium butyrate (NaB) on high glucose-induced mitophagy dysregulation, neuronal apoptosis, and cognitive impairment and its underlying mechanisms in human-induced pluripotent stem cell-derived neurons, SH-SY5Ys, and streptozotocin (STZ)-induced diabetic mice. In our results, diabetic mice showed gut-microbiota dysbiosis, especially a decreased number of butyrate-producing bacteria and reduced NaB plasma concentration. NaB ameliorated high glucose-induced neuronal mitochondrial dysfunction by recovering PRKN/Parkin-mediated mitophagy. High glucose-induced reactive oxygen species (ROS) and -inhibited PRKAA/AMPKα stimulated the RELA/p65-HDAC8 complex, which downregulated PRKN protein expression by binding to the PRKN promoter region. NaB restored PRKN expression by blocking RELA nuclear translocation and directly inhibiting HDAC8 in the nucleus. In addition, HDAC8 overexpression inhibited the positive effect of NaB on high glucose-induced mitophagy dysfunction and neuronal apoptosis. Oral administration of NaB improved cognitive impairment in diabetic mice by restoring mitophagy in the hippocampus. Taken together, NaB ameliorates neuronal mitophagy through PRKN restoration by inhibiting RELA-HDAC8 complexes, suggesting that NaB is an important substance for protecting neuronal apoptosis in diabetes-associated cognitive impairment.
Collapse
Affiliation(s)
- Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Su Jong Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
33
|
Lu L, Jifu C, Xia J, Wang J. E3 ligases and DUBs target ferroptosis: A potential therapeutic strategy for neurodegenerative diseases. Biomed Pharmacother 2024; 175:116753. [PMID: 38761423 DOI: 10.1016/j.biopha.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Ferroptosis is a form of cell death mediated by iron and lipid peroxidation (LPO). Recent studies have provided compelling evidence to support the involvement of ferroptosis in the pathogenesis of various neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD). Therefore, understanding the mechanisms that regulate ferroptosis in NDDs may improve disease management. Ferroptosis is regulated by multiple mechanisms, and different degradation pathways, including autophagy and the ubiquitinproteasome system (UPS), orchestrate the complex ferroptosis response by directly or indirectly regulating iron accumulation or lipid peroxidation. Ubiquitination plays a crucial role as a protein posttranslational modification in driving ferroptosis. Notably, E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are key enzymes in the ubiquitin system, and their dysregulation is closely linked to the progression of NDDs. A growing body of evidence highlights the role of ubiquitin system enzymes in regulating ferroptosis sensitivity. However, reports on the interaction between ferroptosis and ubiquitin signaling in NDDs are scarce. In this review, we first provide a brief overview of the biological processes and roles of the UPS, summarize the core molecular mechanisms and potential biological functions of ferroptosis, and explore the pathophysiological relevance and therapeutic implications of ferroptosis in NDDs. In addition, reviewing the roles of E3s and DUBs in regulating ferroptosis in NDDs aims to provide new insights and strategies for the treatment of NDDs. These include E3- and DUB-targeted drugs and ferroptosis inhibitors, which can be used to prevent and ameliorate the progression of NDDs.
Collapse
Affiliation(s)
- Linxia Lu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Cili Jifu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jun Xia
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China.
| |
Collapse
|
34
|
Lv Y, Yu Z, Zhang P, Zhang X, Li H, Liang T, Guo Y, Cheng L, Peng F. The structure and function of FUN14 domain-containing protein 1 and its contribution to cardioprotection by mediating mitophagy. Front Pharmacol 2024; 15:1389953. [PMID: 38828457 PMCID: PMC11140143 DOI: 10.3389/fphar.2024.1389953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiovascular disease (CVD) is a serious public health risk, and prevention and treatment efforts are urgently needed. Effective preventive and therapeutic programs for cardiovascular disease are still lacking, as the causes of CVD are varied and may be the result of a multifactorial combination. Mitophagy is a form of cell-selective autophagy, and there is increasing evidence that mitophagy is involved in cardioprotective processes. Recently, many studies have shown that FUN14 domain-containing protein 1 (FUNDC1) levels and phosphorylation status are highly associated with many diseases, including heart disease. Here, we review the structure and functions of FUNDC1 and the path-ways of its mediated mitophagy, and show that mitophagy can be effectively activated by dephosphorylation of Ser13 and Tyr18 sites, phosphorylation of Ser17 site and ubiquitination of Lys119 site in FUNDC1. By effectively activating or inhibiting excessive mitophagy, the quality of mitochondria can be effectively controlled. The main reason is that, on the one hand, improper clearance of mitochondria and accumulation of damaged mitochondria are avoided, and on the other hand, excessive mitophagy causing apoptosis is avoided, both serving to protect the heart. In addition, we explore the possible mechanisms by which FUNDC1-mediated mitophagy is involved in exercise preconditioning (EP) for cardioprotection. Finally, we also point out unresolved issues in FUNDC1 and its mediated mitophagy and give directions where further research may be needed.
Collapse
Affiliation(s)
- Yuhu Lv
- College of Physical Education, Guangdong University of Education, Guangzhou, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, Guangzhou, China
| | - Zhengze Yu
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Peiwen Zhang
- College of Nursing and Rehabilitation, Xi an FanYi University, Xi’an, China
| | - Xiqian Zhang
- College of Physical Education, Guangdong University of Education, Guangzhou, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, Guangzhou, China
| | - Huarui Li
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Ting Liang
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Yanju Guo
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Lin Cheng
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Fenglin Peng
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| |
Collapse
|
35
|
Yadav A, Dabur R. Skeletal muscle atrophy after sciatic nerve damage: Mechanistic insights. Eur J Pharmacol 2024; 970:176506. [PMID: 38492879 DOI: 10.1016/j.ejphar.2024.176506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Sciatic nerve injury leads to molecular events that cause muscular dysfunction advancement in atrophic conditions. Nerve damage renders muscles permanently relaxed which elevates intracellular resting Ca2+ levels. Increased Ca2+ levels are associated with several cellular signaling pathways including AMPK, cGMP, PLC-β, CERB, and calcineurin. Also, multiple enzymes involved in the tricarboxylic acid cycle and oxidative phosphorylation are activated by Ca2+ influx into mitochondria during muscle contraction, to meet increased ATP demand. Nerve damage induces mitophagy and skeletal muscle atrophy through increased sensitivity to Ca2+-induced opening of the permeability transition pore (PTP) in mitochondria attributed to Ca2+, ROS, and AMPK overload in muscle. Activated AMPK interacts negatively with Akt/mTOR is a highly prevalent and well-described central pathway for anabolic processes. Over the decade several reports indicate abnormal behavior of signaling machinery involved in denervation-induced muscle loss but end up with some controversial outcomes. Therefore, understanding how the synthesis and inhibitory stimuli interact with cellular signaling to control muscle mass and morphology may lead to new pharmacological insights toward understanding the underlying mechanism of muscle loss after sciatic nerve damage. Hence, the present review summarizes the existing literature on denervation-induced muscle atrophy to evaluate the regulation and expression of differential regulators during sciatic damage.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
36
|
Zanfardino P, Amati A, Doccini S, Cox SN, Tullo A, Longo G, D'Erchia A, Picardi E, Nesti C, Santorelli FM, Petruzzella V. OPA1 mutation affects autophagy and triggers senescence in autosomal dominant optic atrophy plus fibroblasts. Hum Mol Genet 2024; 33:768-786. [PMID: 38280232 DOI: 10.1093/hmg/ddae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/06/2024] [Indexed: 01/29/2024] Open
Abstract
In several cases of mitochondrial diseases, the underlying genetic and bioenergetic causes of reduced oxidative phosphorylation (OxPhos) in mitochondrial dysfunction are well understood. However, there is still limited knowledge about the specific cellular outcomes and factors involved for each gene and mutation, which contributes to the lack of effective treatments for these disorders. This study focused on fibroblasts from a patient with Autosomal Dominant Optic Atrophy (ADOA) plus syndrome harboring a mutation in the Optic Atrophy 1 (OPA1) gene. By combining functional and transcriptomic approaches, we investigated the mitochondrial function and identified cellular phenotypes associated with the disease. Our findings revealed that fibroblasts with the OPA1 mutation exhibited a disrupted mitochondrial network and function, leading to altered mitochondrial dynamics and reduced autophagic response. Additionally, we observed a premature senescence phenotype in these cells, suggesting a previously unexplored role of the OPA1 gene in inducing senescence in ADOA plus patients. This study provides novel insights into the mechanisms underlying mitochondrial dysfunction in ADOA plus and highlights the potential importance of senescence in disease progression.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Alessandro Amati
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Giovanna Longo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Annamaria D'Erchia
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Claudia Nesti
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
37
|
Chen Y, Wu Z, Li S, Chen Q, Wang L, Qi X, Tian C, Yang M. Mapping the Research of Ferroptosis in Parkinson's Disease from 2013 to 2023: A Scientometric Review. Drug Des Devel Ther 2024; 18:1053-1081. [PMID: 38585257 PMCID: PMC10999190 DOI: 10.2147/dddt.s458026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Methods Related studies on PD and ferroptosis were searched in Web of Science Core Collection (WOSCC) from inception to 2023. VOSviewer, CiteSpace, RStudio, and Scimago Graphica were employed as bibliometric analysis tools to generate network maps about the collaborations between authors, countries, and institutions and to visualize the co-occurrence and trends of co-cited references and keywords. Results A total of 160 original articles and reviews related to PD and ferroptosis were retrieved, produced by from 958 authors from 162 institutions. Devos David was the most prolific author, with 9 articles. China and the University of Melbourne had leading positions in publication volume with 84 and 12 publications, respectively. Current hot topics focus on excavating potential new targets for treating PD based on ferroptosis by gaining insight into specific molecular mechanisms, including iron metabolism disorders, lipid peroxidation, and imbalanced antioxidant regulation. Clinical studies aimed at treating PD by targeting ferroptosis remain in their preliminary stages. Conclusion A continued increase was shown in the literature within the related field over the past decade. The current study suggested active collaborations among authors, countries, and institutions. Research into the pathogenesis and treatment of PD based on ferroptosis has remained a prominent topic in the field in recent years, indicating that ferroptosis-targeted therapy is a potential approach to halting the progression of PD.
Collapse
Affiliation(s)
- Yingfan Chen
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhenhui Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Shaodan Li
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Qi Chen
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Liang Wang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Xiaorong Qi
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Chujiao Tian
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Minghui Yang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
38
|
Mathur A, Ritu, Chandra P, Das A. Autophagy: a necessary evil in cancer and inflammation. 3 Biotech 2024; 14:87. [PMID: 38390576 PMCID: PMC10879063 DOI: 10.1007/s13205-023-03864-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/21/2023] [Indexed: 02/24/2024] Open
Abstract
Autophagy, a highly regulated cellular process, assumes a dual role in the context of cancer. On the one hand, it functions as a crucial homeostatic pathway, responsible for degrading malfunctioning molecules and organelles, thereby maintaining cellular health. On the other hand, its involvement in cancer development and regression is multifaceted, contingent upon a myriad of factors. This review meticulously examines the intricacies of autophagy, from its molecular machinery orchestrated by Autophagy-Related Genes (ATG) initially discovered in yeast to the various modes of autophagy operative within cells. Beyond its foundational role in cellular maintenance, autophagy reveals context-specific functions in processes like angiogenesis and inflammation. Our analysis delves into how autophagy-related factors directly impact inflammation, underscoring their profound implications for cancer dynamics. Additionally, we extend our inquiry to explore autophagy's associations with cardiovascular conditions, neurodegenerative disorders, and autoimmune diseases, illuminating the broader medical relevance of this process. Furthermore, this review elucidates how autophagy contributes to sustaining hallmark cancer features, including stem cell maintenance, proliferation, angiogenesis, metastasis, and metabolic reprogramming. Autophagy emerges as a pivotal process that necessitates careful consideration in cancer treatment strategies. To this end, we investigate innovative approaches, ranging from enzyme-based therapies to MTOR inhibitors, lysosomal blockers, and nanoparticle-enabled interventions, all aimed at optimizing cancer treatment outcomes by targeting autophagy pathways. In summary, this comprehensive review provides a nuanced perspective on the intricate and context-dependent role of autophagy in cancer biology. Our exploration not only deepens our understanding of this fundamental process but also highlights its potential as a therapeutic target. By unraveling the complex interplay between autophagy and cancer, we pave the way for more precise and effective cancer treatments, promising better outcomes for patients.
Collapse
Affiliation(s)
- Amit Mathur
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Ritu
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| |
Collapse
|
39
|
Tio M, Wen R, Choo CN, Tan JB, Chua A, Xiao B, Sundaram JR, Chan CHS, Tan EK. Genetic and pharmacologic p32-inhibition rescue CHCHD2-linked Parkinson's disease phenotypes in vivo and in cell models. J Biomed Sci 2024; 31:24. [PMID: 38395904 PMCID: PMC10893700 DOI: 10.1186/s12929-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Mutations in CHCHD2 have been linked to Parkinson's disease, however, their exact pathophysiologic roles are unclear. The p32 protein has been suggested to interact with CHCHD2, however, the physiological functions of such interaction in the context of PD have not been clarified. METHODS Interaction between CHCHD2 and p32 was confirmed by co-immunoprecipitation experiments. We studied the effect of p32-knockdown in the transgenic Drosophila and Hela cells expressing the wild type and the pathogenic variants of hCHCHD2. We further investigated the rescue ability of a custom generated p32-inhibitor in these models as well as in the human fibroblast derived neural precursor cells and the dopaminergic neurons harboring hCHCHD2-Arg145Gln. RESULTS Our results showed that wildtype and mutant hCHCHD2 could bind to p32 in vitro, supported by in vivo interaction between human CHCHD2 and Drosophila p32. Knockdown of p32 reduced mutant hCHCHD2 levels in Drosophila and in vitro. In Drosophila hCHCHD2 models, inhibition of p32 through genetic knockdown and pharmacological treatment using a customized p32-inhibitor restored dopaminergic neuron numbers and improved mitochondrial morphology. These were correlated with improved locomotor function, reduced oxidative stress and decreased mortality. Consistently, Hela cells expressing mutant hCHCHD2 showed improved mitochondrial morphology and function after treatment with the p32-inhibitor. As compared to the isogenic control cells, large percentage of the mutant neural precursor cells and dopaminergic neurons harboring hCHCHD2-Arg145Gln contained fragmented mitochondria which was accompanied by lower ATP production and cell viability. The NPCs harboring hCHCHD2-Arg145Gln also had a marked increase in α-synuclein expression. The p32-inhibitor was able to ameliorate the mitochondrial fragmentation, restored ATP levels, increased cell viability and reduced α-synuclein level in these cells. CONCLUSIONS Our study identified p32 as a modulator of CHCHD2, possibly exerting its effects by reducing the toxic mutant hCHCHD2 expression and/or mitigating the downstream effects. Inhibition of the p32 pathway can be a potential therapeutic intervention for CHCHD2-linked PD and diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
| | - Rujing Wen
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Cai Ning Choo
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Jian Bin Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Chua
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | | | | | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
- Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
40
|
Cunha-Oliveira T, Montezinho L, Simões RF, Carvalho M, Ferreiro E, Silva FSG. Mitochondria: A Promising Convergent Target for the Treatment of Amyotrophic Lateral Sclerosis. Cells 2024; 13:248. [PMID: 38334639 PMCID: PMC10854804 DOI: 10.3390/cells13030248] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Montezinho
- Center for Investigation Vasco da Gama (CIVG), Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal;
| | - Rui F. Simões
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marcelo Carvalho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Filomena S. G. Silva
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Mitotag Lda, Biocant Park, 3060-197 Cantanhede, Portugal
| |
Collapse
|
41
|
Germain K, So RWL, DiGiovanni LF, Watts JC, Bandsma RHJ, Kim PK. Upregulated pexophagy limits the capacity of selective autophagy. Nat Commun 2024; 15:375. [PMID: 38195640 PMCID: PMC10776696 DOI: 10.1038/s41467-023-44005-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
Selective autophagy is an essential process to maintain cellular homeostasis through the constant recycling of damaged or superfluous components. Over a dozen selective autophagy pathways mediate the degradation of diverse cellular substrates, but whether these pathways can influence one another remains unknown. We address this question using pexophagy, the autophagic degradation of peroxisomes, as a model. We show in cells that upregulated pexophagy impairs the selective autophagy of both mitochondria and protein aggregates by exhausting the autophagy initiation factor, ULK1. We confirm this finding in cell models of the pexophagy-mediated form of Zellweger Spectrum Disorder, a disease characterized by peroxisome dysfunction. Further, we extend the generalizability of limited selective autophagy by determining that increased protein aggregate degradation reciprocally reduces pexophagy using cell models of Parkinson's Disease and Huntington's Disease. Our findings suggest that the degradative capacity of selective autophagy can become limited by an increase in one substrate.
Collapse
Affiliation(s)
- Kyla Germain
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Raphaella W L So
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, M5T 0S8, Canada
| | - Laura F DiGiovanni
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joel C Watts
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, M5T 0S8, Canada
| | - Robert H J Bandsma
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada.
| | - Peter K Kim
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
42
|
Kapil L, Kumar V, Kaur S, Sharma D, Singh C, Singh A. Role of Autophagy and Mitophagy in Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:367-383. [PMID: 36974405 DOI: 10.2174/1871527322666230327092855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023]
Abstract
Autophagy is a self-destructive cellular process that removes essential metabolites and waste from inside the cell to maintain cellular health. Mitophagy is the process by which autophagy causes disruption inside mitochondria and the total removal of damaged or stressed mitochondria, hence enhancing cellular health. The mitochondria are the powerhouses of the cell, performing essential functions such as ATP (adenosine triphosphate) generation, metabolism, Ca2+ buffering, and signal transduction. Many different mechanisms, including endosomal and autophagosomal transport, bring these substrates to lysosomes for processing. Autophagy and endocytic processes each have distinct compartments, and they interact dynamically with one another to complete digestion. Since mitophagy is essential for maintaining cellular health and using genetics, cell biology, and proteomics techniques, it is necessary to understand its beginning, particularly in ubiquitin and receptor-dependent signalling in injured mitochondria. Despite their similar symptoms and emerging genetic foundations, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have all been linked to abnormalities in autophagy and endolysosomal pathways associated with neuronal dysfunction. Mitophagy is responsible for normal mitochondrial turnover and, under certain physiological or pathological situations, may drive the elimination of faulty mitochondria. Due to their high energy requirements and post-mitotic origin, neurons are especially susceptible to autophagic and mitochondrial malfunction. This article focused on the importance of autophagy and mitophagy in neurodegenerative illnesses and how they might be used to create novel therapeutic approaches for treating a wide range of neurological disorders.
Collapse
Affiliation(s)
- Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics (School of Pharmacy), H.N.B. Garhwal University, Srinagar - 246174, Garhwal (Uttarakhand), India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| |
Collapse
|
43
|
Subhan I, Siddique YH. Effect of Rotenone on the Neurodegeneration among Different Models. Curr Drug Targets 2024; 25:530-542. [PMID: 38698744 DOI: 10.2174/0113894501281496231226070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 05/05/2024]
Abstract
Rotenone is a naturally occurring plant product used as an insecticide, pesticide and piscicide. It is lipophilic in nature and can cross the blood-brain barrier and induce the degeneration of neurons. It inhibits the mitochondrial respiratory chain complex I and stops the transfer of electrons. It induces ROS generation, which impairs mitochondrial activity. Rotenone is a toxic agent which causes the death of neurons. The present review describes the effect of rotenone on neurodegeneration with an emphasis on behavioral, pathological and neuropathological components carried out on various experimental models such as cell lines, Drosophila melanogaster, mice and rats.
Collapse
Affiliation(s)
- Iqra Subhan
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
44
|
Pai MS, Wang KC, Yeh KC, Wang SJ. Stabilization of mitochondrial function by chlorogenic acid protects against kainic acid-induced seizures and neuronal cell death in rats. Eur J Pharmacol 2023; 961:176197. [PMID: 38000721 DOI: 10.1016/j.ejphar.2023.176197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
The current study investigated the effect of chlorogenic acid, a polyphenolic compound found in numerous plant products, on a kainic acid-induced seizure rat model and its potential mechanism. Rats were administered chlorogenic acid (10 and 50 mg/kg) intraperitoneally for 30 min before kainic acid (15 mg/kg) intraperitoneal administration. Pretreatment with chlorogenic acid decreased the seizure score, increased the latency to onset of the first seizure, and decreased the mortality rate. Chlorogenic acid pretreatment also resulted in a significant reduction in glutamate elevation and neuronal death in the hippocampus of kainic acid-treated rats. In addition, electron microscopy revealed that kainic acid-induced changes in hippocampal mitochondrial structure were prevented by chlorogenic acid pretreatment. Additionally, the levels of mitochondrial function-related proteins, including sirtuin 3, Complex I, glutamate dehydrogenase 1 and ATP synthase, were increased, and the level of the mitochondrial damage marker cytochrome C was decreased in the hippocampus of chlorogenic acid/kainic acid rats. Furthermore, the expression of mitochondrial biogenesis-related proteins [AMP-activated protein kinase (AMPK), sirtuin1, and peroxisome proliferator-activated receptor γ-coactivator-1α (PGC-1α)] and mitophagy-related proteins [phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), Parkin, and microtubule-associated protein 1 light chain 3 (LC3)] was decreased in the hippocampus of kainic acid-treated rats, which was reversed by chlorogenic acid pretreatment. These observations reveal the marked neuroprotective potential of chlorogenic acid against kainic acid-induced neurotoxicity and seizures through prevention of glutamate increase and preservation of AMPK/sirtuin 1/PGC-1α-mediated mitochondrial biogenesis and PINK1/Parkin-induced mitophagy to maintain adequate mitochondrial homeostasis and function.
Collapse
Affiliation(s)
- Ming-Shang Pai
- Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Kaw-Chen Wang
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Department of Neurology, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Kun-Chieh Yeh
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.
| |
Collapse
|
45
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
46
|
Bustamante-Barrientos FA, Luque-Campos N, Araya MJ, Lara-Barba E, de Solminihac J, Pradenas C, Molina L, Herrera-Luna Y, Utreras-Mendoza Y, Elizondo-Vega R, Vega-Letter AM, Luz-Crawford P. Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells. J Transl Med 2023; 21:613. [PMID: 37689642 PMCID: PMC10493034 DOI: 10.1186/s12967-023-04493-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Mitochondrial dysfunction is reiteratively involved in the pathogenesis of diverse neurodegenerative diseases. Current in vitro and in vivo approaches support that mitochondrial dysfunction is branded by several molecular and cellular defects, whose impact at different levels including the calcium and iron homeostasis, energetic balance and/or oxidative stress, makes it difficult to resolve them collectively given their multifactorial nature. Mitochondrial transfer offers an overall solution since it contains the replacement of damage mitochondria by healthy units. Therefore, this review provides an introducing view on the structure and energy-related functions of mitochondria as well as their dynamics. In turn, we summarize current knowledge on how these features are deregulated in different neurodegenerative diseases, including frontotemporal dementia, multiple sclerosis, amyotrophic lateral sclerosis, Friedreich ataxia, Alzheimer´s disease, Parkinson´s disease, and Huntington's disease. Finally, we analyzed current advances in mitochondrial transfer between diverse cell types that actively participate in neurodegenerative processes, and how they might be projected toward developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Javiera de Solminihac
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
47
|
Youn DH, Kim N, Lee A, Han SW, Kim JT, Hong EP, Jung H, Jeong MS, Cho SM, Jeon JP. Autophagy and mitophagy-related extracellular mitochondrial dysfunction of cerebrospinal fluid cells in patients with hemorrhagic moyamoya disease. Sci Rep 2023; 13:13753. [PMID: 37612316 PMCID: PMC10447448 DOI: 10.1038/s41598-023-40747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
We aimed to investigate whether mitochondrial dysfunction in extracellular cerebrospinal fluid (CSF), which is associated with autophagy and mitophagy, might be involved in neurological outcomes in adult patients with hemorrhagic moyamoya disease (MMD) whose pathogenesis related to poor outcomes is not well-known. CSF samples were collected from 43 adult MMD patients and analyzed according to outcomes at 3 months. Fluorescence-activated cell sorter analysis (FACS) and the JC-1 red/green ratio were used to assess mitochondrial cells and intact mitochondrial membrane potential (MMP). We performed quantitative real-time polymerase chain reaction and Western blotting analyses of autophagy and mitophagy-related markers, including HIF1α, ATG5, pBECN1, BECN1, BAX, BNIP3L, DAPK1, and PINK1. Finally, FACS analysis with specific fluorescence-conjugated antibodies was performed to evaluate the potential cellular origin of CSF mitochondrial cells. Twenty-seven females (62.8%) with a mean age of 47.4 ± 9.7 years were included in the study. Among 43 patients with hemorrhagic MMD, 23 (53.5%) had poor outcomes. The difference in MMP was evident between the two groups (2.4 ± 0.2 in patients with poor outcome vs. 3.5 ± 0.4 in patients with good outcome; p = 0.02). A significantly higher expression (2-ΔCt) of HIF1α, ATG5, DAPK1 followed by BAX and BNIP3L mRNA and protein was also observed in poor-outcome patients compared to those with good outcomes. Higher percentage of vWF-positive mitochondria, suggesting endothelial cell origins, was observed in patients with good outcome compared with those with poor outcome (25.0 ± 1.4% in patients with good outcome vs. 17.5 ± 1.5% in those with poor outcome; p < 0.01). We observed the association between increased mitochondrial dysfunction concomitant with autophagy and mitophagy in CSF cells and neurological outcomes in adult patients with hemorrhagic MMD. Further prospective multicenter studies are needed to determine whether it has a diagnostic value for risk prediction.
Collapse
Affiliation(s)
- Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Nayoung Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Aran Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | | | - Sung Min Cho
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, 77 Sakju-ro, Chuncheon, 24253, Korea.
| |
Collapse
|
48
|
Yang D, Li J, Li Z, Zhao M, Wang D, Sun Z, Wen P, Gou F, Dai Y, Ji Y, Li W, Zhao D, Yang L. Cardiolipin externalization mediates prion protein (PrP) peptide 106-126-associated mitophagy and mitochondrial dysfunction. Front Mol Neurosci 2023; 16:1163981. [PMID: 37333615 PMCID: PMC10272765 DOI: 10.3389/fnmol.2023.1163981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Proper mitochondrial performance is imperative for the maintenance of normal neuronal function to prevent the development of neurodegenerative diseases. Persistent accumulation of damaged mitochondria plays a role in prion disease pathogenesis, which involves a chain of events that culminate in the generation of reactive oxygen species and neuronal death. Our previous studies have demonstrated that PINK1/Parkin-mediated mitophagy induced by PrP106-126 is defective and leads to an accumulation of damaged mitochondria after PrP106-126 treatment. Externalized cardiolipin (CL), a mitochondria-specific phospholipid, has been reported to play a role in mitophagy by directly interacting with LC3II at the outer mitochondrial membrane. The involvement of CL externalization in PrP106-126-induced mitophagy and its significance in other physiological processes of N2a cells treated with PrP106-126 remain unknown. We demonstrate that the PrP106-126 peptide caused a temporal course of mitophagy in N2a cells, which gradually increased and subsequently decreased. A similar trend in CL externalization to the mitochondrial surface was seen, resulting in a gradual decrease in CL content at the cellular level. Inhibition of CL externalization by knockdown of CL synthase, responsible for de novo synthesis of CL, or phospholipid scramblase-3 and NDPK-D, responsible for CL translocation to the mitochondrial surface, significantly decreased PrP106-126-induced mitophagy in N2a cells. Meanwhile, the inhibition of CL redistribution significantly decreased PINK1 and DRP1 recruitment in PrP106-126 treatment but had no significant decrease in Parkin recruitment. Furthermore, the inhibition of CL externalization resulted in impaired oxidative phosphorylation and severe oxidative stress, which led to mitochondrial dysfunction. Our results indicate that CL externalization induced by PrP106-126 on N2a cells plays a positive role in the initiation of mitophagy, leading to the stabilization of mitochondrial function.
Collapse
|
49
|
Bai Y, Wang Z, Yu L, Dong K, Cheng L, Zhu R. The enhanced generation of motor neurons from mESCs by MgAl layered double hydroxide nanoparticles. Biomed Mater 2023; 18. [PMID: 36898160 DOI: 10.1088/1748-605x/acc375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
The committed differentiation of stem cells into neurons is a promising therapeutic strategy for neurological diseases. Predifferentiation of transplanted stem cells into neural precursors could enhance their utilization and control the direction of differentiation. Embryonic stem cells with totipotency can differentiate into specific nerve cells under appropriate external induction conditions. Layered double hydroxide (LDH) nanoparticles have been proven to regulate the pluripotency of mouse ESCs (mESCs), and LDH could be used as carrier in neural stem cells for nerve regeneration. Hence, we sought to study the effects of LDH without loaded factors on mESCs neurogenesis in this work. A series of characteristics analyses indicated the successful construction of LDH nanoparticles. LDH nanoparticles that may adhere to the cell membranes had insignificant effect on cell proliferation and apoptosis. The enhanced differentiation of mESCs into motor neurons by LDH was systematically validated by immunofluorescent staining, quantitative real-time PCR analysis and western blot analysis. In addition, transcriptome sequencing analysis and mechanism verification elucidated the significant regulatory roles of focal adhesion signaling pathway in the enhanced mESCs neurogenesis by LDH. Taken together, the functional validation of inorganic LDH nanoparticles promoting motor neurons differentiation provide a novel strategy and therapeutic prospect for the clinical transition of neural regeneration.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| | - Liqun Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| | - Kun Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| |
Collapse
|
50
|
Luan Y, Jiang L, Luan Y, Xie Y, Yang Y, Ren KD. Mitophagy and Traumatic Brain Injury: Regulatory Mechanisms and Therapeutic Potentials. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1649842. [PMID: 36846712 PMCID: PMC9957633 DOI: 10.1155/2023/1649842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/25/2022] [Accepted: 01/21/2023] [Indexed: 02/19/2023]
Abstract
Traumatic brain injury (TBI), a kind of external trauma-induced brain function alteration, has posed a financial burden on the public health system. TBI pathogenesis involves a complicated set of events, including primary and secondary injuries that can cause mitochondrial damage. Mitophagy, a process in which defective mitochondria are specifically degraded, segregates and degrades defective mitochondria allowing a healthier mitochondrial network. Mitophagy ensures that mitochondria remain healthy during TBI, determining whether neurons live or die. Mitophagy acts as a critical regulator in maintaining neuronal survival and healthy. This review will discuss the TBI pathophysiology and the consequences of the damage it causes to mitochondria. This review article will explore the mitophagy process, its key factors, and pathways and reveal the role of mitophagy in TBI. Mitophagy will be further recognized as a therapeutic approach in TBI. This review will offer new insights into mitophagy's role in TBI progression.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lulu Jiang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 463599, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|