1
|
Liu S, Wang Z, Li Y, Pan Z, Huang L, Cui J, Zhang X, Yang M, Zhang Y, Li D, Sun H. Erythropoietin-Stimulated Macrophage-Derived Extracellular Vesicles in Chitosan Hydrogel Rescue BMSCs Fate by Targeting EGFR to Alleviate Inflammatory Bone Loss in Periodontitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500554. [PMID: 40289904 DOI: 10.1002/advs.202500554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Loss of periodontal tissue due to persistent inflammation in periodontitis is a major cause of tooth loss in adults. Overcoming osteogenic inhibition in the inflammatory periodontal environment and restoring the regenerative capacity of endogenous bone marrow mesenchymal stem cells (BMSCs) remain critical challenges in current treatment approaches. Macrophage-derived extracellular vesicles (EVs) are key regulators of osteogenesis in recipient cells, yet the role of erythropoietin (EPO) in modifying macrophages and the function of their EVs in bone regeneration remain unclear. In this study, EVs from EPO-stimulated macrophages (EPO-EVs) are isolated, and they are encapsulated in a chitosan/β-sodium glycerophosphate/gelatin (CS/β-GP/gelatin) hydrogel to create a controlled-release EVs delivery system for localized periodontal environment. EPO-EVs restore the osteogenic function of mouse BMSCs (mBMSCs) and mitigate inflammatory bone loss in a periodontitis mouse model. Mechanistically, miR-5107-5p, significantly enriched in EPO-EVs, is delivered to mBMSCs, where it suppresses epidermal growth factor receptor (EGFR) expression and alleviates EGFR's inhibitory effect on RhoA. This process counteracts osteogenic inhibition in inflammatory settings through the EGFR/RhoA axis. Overall, EVs from EPO pretreated macrophages restore the osteogenic capacity of mBMSCs under inflammation by inhibiting EGFR expression, providing new insight into therapeutic mechanisms and offering a promising approach for future periodontitis treatment.
Collapse
Affiliation(s)
- Shuchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, China
| | - Zhuoran Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, China
| | - Yuhuan Li
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Berlin University Medicine, Free University of Berlin and Humboldt University of Berlin, 10117, Berlin, Germany
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130012, China
| | - Ziyi Pan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, China
| | - Xue Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuan Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, China
| |
Collapse
|
2
|
Zou Y, Zeng X, Wang K, Ye J, Zhao Y, Jin H, Zhang J, Cheng G, Nie X. CD271 regulates osteogenic differentiation of ectomesenchymal stem cells via the RhoA/ROCK signaling pathway. Int Immunopharmacol 2025; 148:114068. [PMID: 39826451 DOI: 10.1016/j.intimp.2025.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The low-affinity neurotrophic receptor CD271 plays a crucial role in the osteogenic differentiation of ectomesenchyme stem cells (EMSCs), which is essential for the development and regeneration of jaw bones. This study aimed to investigate the influence of CD271 on EMSCs osteogenic differentiation and to uncover the underlying mechanisms. CD271-deficient mice exhibited delayed mandibular bone development, with a significantly reduction in the expression of osteogenic makers such as ALP, Col-1, OPN, and RUNX2. Single-cell sequencing further proved that the RhoA/ROCK signaling pathway was downregulated in CD271ExIII-/- EMSCs, highlighting the potential role of CD271 in regulating the osteogenic differentiation of EMSCs. After treatment with Pentanoic Acid or Y27632, the protein expression of Runx2 and Col-1 in EMSCs was either enhanced or reduced, respectively. These findings suggest that CD271 facilitates the osteogenic differentiation of EMSCs in vitro and contributes to mandibular alveolar bone formation in vivo through activation of the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Yanhui Zou
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoke Zeng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Keyu Wang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaqi Ye
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yeke Zhao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoyang Jin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiajun Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Gu Cheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Xin Nie
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
3
|
Ang BC, Nam HY, Abdullah MF, Muhammad F, Truong YB. A Review on Advances and Challenges in Core-Shell Scaffolds for Bone Tissue Engineering: Design, Fabrication, and Clinical Translation. Macromol Rapid Commun 2024:e2400620. [PMID: 39489721 DOI: 10.1002/marc.202400620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Indexed: 11/05/2024]
Abstract
This review explores core-shell scaffolds in bone tissue engineering, highlighting their osteoconductive and osteoinductive properties critical for bone growth and regeneration. Key design factors include material selection, porosity, mechanical strength, biodegradation kinetics, and bioactivity. Electrospun core-shell nanofibrous scaffolds demonstrate potential in delivering therapeutic agents and enhancing bone regeneration. Critical characterization techniques include structural, surface, chemical composition, mechanical, and degradation analyses. Scaling up production poses challenges, addressed by innovative electrospinning techniques. Future research focuses on regulatory and commercial considerations, while exploring advanced materials and fabrication methods to optimize scaffold performance for improved clinical outcomes.
Collapse
Affiliation(s)
- Bee Chin Ang
- Center of Advanced Materials, University Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Chemical Engineering, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Hui Yin Nam
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, 43000, Malaysia
| | - Muhammad Faiq Abdullah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau Perlis, 02600, Malaysia
| | - Farina Muhammad
- Department of Biomedical Engineering, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yen Bach Truong
- CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| |
Collapse
|
4
|
Dhimmar B, Modi U, Parihar SS, Makwana P, Boldrini CL, Vasita R. Fabrication of micropatterned PCL-collagen nanofibrous scaffold for cellular confinement induced early osteogenesis. BIOMATERIALS ADVANCES 2024; 164:213991. [PMID: 39146607 DOI: 10.1016/j.bioadv.2024.213991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/06/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The intricate interaction of the scaffold's architecture/geometry and with the cells is essential for tissue engineering and regenerative medicine. Cells sense their surrounding dynamic cues such as biophysical, biomechanical, and biochemical, and respond to them differently. Numerous studies have recently explored and reported the effect of contact guidance by culturing various types of cells on different types of micropatterned substrates such as microgrooves, geometric (square and triangle) micropattern, microstrips, micropatterned nanofibers. Amongst all of these micropatterned polymeric substrates; electrospun nanofibers have been regarded as a suitable substrate as it mimics the native ECM architectures. Therefore, in the present study; stencil-assisted electrospun Grid-lined micropatterned PCL-Collagen nanofibers (GLMPCnfs) were fabricated and its influence on the alignment and differentiation of pre-osteoblast cells (MC3T3-E1) was investigated. The randomly orientated Non-patterned PCL-Collagen nanofibers (NPPCnfs) were used as control. The patterns were characterized for their geometrical features such as area and thickness of deposition using surface profiler and scanning electron microscopy. A 61 % decrease in the overall area of GLMPCnfs as compared to the stencil area demonstrated the potential of electrofocusing phenomenon in the process of patterning electrospun nanofibers into various micron-scale structures. The MC3T3-E1 cells were confined and aligned in the direction of GLMPCnfs as confirmed by a high cellular aspect ratio (AR = 5.41), lower cellular shape index (CSI = 0.243), and cytoskeletal reorganization assessed through the F-actin filament immunocytochemistry (ICC) imaging. The aligned cells along the GLMPCnfs exhibited elevated alkaline phosphatase activity and enhanced mineralization. Furthermore, the gene expression profiling revealed upregulation of key osteogenic markers, such as ALP, OCN, OPN, COL1A1, and osteocyte markers DMP1, and SOST. Consequently, the research highlights the impact of GLMPCnfs on the cellular behaviour that results to the pre-osteoblast differentiation and the potential for stimulant-free early osteogenesis. These results offer an extensive understanding and mechanistic insight into how scaffold topography can be modified to influence cellular responses for effective bone regeneration strategies.
Collapse
Affiliation(s)
- Bindiya Dhimmar
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Unnati Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Shayan Singh Parihar
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Pooja Makwana
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Chiara Liliana Boldrini
- Department of Materials Science and Solar Energy Research Center MIBSOLAR University of Milano-Biococca, and INSTM Milano-Biococca Research Unit Via Cozzi 55, I-20125 Milano, Italy
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India; Terasaki Institute of Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Wang H, Weng X, Chen Y, Mao S, Gao Y, Wu Q, Huang Y, Guan X, Xu Z, Lai Y. Biomimetic concentric microgrooved titanium surfaces influence bone marrow-derived mesenchymal stem cell osteogenic differentiation via H3K4 trimethylation epigenetic regulation. Dent Mater J 2024; 43:683-692. [PMID: 39135261 DOI: 10.4012/dmj.2023-327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Material surface micromorphology can modulate cellular behavior and promote osteogenic differentiation through cytoskeletal rearrangement. Bone reconstruction requires precise regulation of gene expression in cells, a process governed by epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling. We constructed osteon-mimetic concentric microgrooved titanium surfaces with different groove sizes and cultured bone marrow-derived mesenchymal stem cells (BMSCs) on the material surfaces to study how they regulate cell biological behavior and osteogenic differentiation through epigenetics. We found that the cells arranged in concentric circles along the concentric structure in the experimental group, and the concentric microgrooved surface did not inhibit cell proliferation. The results of a series of osteogenic differentiation experiments showed that the concentric microgrooves facilitated calcium deposition and promoted osteogenic differentiation of the BMSCs. Concentric microgrooved titanium surfaces that were 30 μm wide and 10 μm deep promoted osteogenic differentiation of BMSC by increasing WDR5 expression via H3K4 trimethylation upregulation.
Collapse
Affiliation(s)
- Hong Wang
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
- Stomatological Hospital of Xiamen Medical college
| | - Xinze Weng
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Yan Chen
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Shunjie Mao
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Yuerong Gao
- Department of Stomatology of The Third Affiliated Hospital of Xi'an Medical University
| | - Qinglin Wu
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Yanling Huang
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Xin Guan
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Zhiqiang Xu
- Department of Stomatology, Affiliated Hospital of Putian University
| | - Yingzhen Lai
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| |
Collapse
|
6
|
Yu Z, Yuan J, Yu Y. Heraclenin promotes the osteogenic differentiation of bone marrow stromal cells by activating the RhoA/ROCK pathway. Histol Histopathol 2024; 39:1065-1077. [PMID: 38258549 DOI: 10.14670/hh-18-702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
BACKGROUND Osteoporosis is a devastating skeletal disease, the pathogenesis of which is related to abnormal bone metabolism, featured by the imbalance between osteoblastic bone formation and osteoclastic bone resorption. Stem cell-based therapies have been demonstrated to improve osteoporosis treatment. Previously, the linear furanocoumarin heraclenin was reported to enhance osteoblast differentiation and mineralization in mouse mesenchymal stem cells (MSCs), suggesting its potential for osteogenic differentiation and bone regeneration. Our study was designed to confirm the promotive role of heraclenin on osteogenic differentiation of human bone MSCs (BMSCs) and explore the underlying mechanisms. METHODS Human BMSCs were treated for 24, 48, and 72h with heraclenin (5, 10, 20, 40, and 80 μM), and cell viability was determined by Cell Counting Kit-8 (CCK-8) assay. To further evaluate the cytotoxicity of heraclenin, cell suspension obtained from BMSCs treated with heraclenin (5, 10, and 20 μM) for 72h was subjected to a MUSE™ cell analyzer for cell viability and count assay. BMSCs were incubated in osteogenic induction medium for 7 days. Then, osteogenic differentiation and mineralization of BMSCs were assessed through alkaline phosphatase (ALP) and Alizarin Red S staining. The expression of osteogenesis markers including ALP, osteocalcin (OCN), osterix (OSX), and runt-related transcription factor 2 (RUNX2) was detected via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. The effects of heraclenin on the RhoA/ROCK pathway were estimated through western blotting. Y-27632, the ROCK inhibitor, was used to confirm the role of the RhoA/ROCK pathway in heraclenin-mediated osteogenic differentiation of BMSCs. RESULTS Heraclenin (5-80 μM) was non-toxic on human BMSCs. Heraclenin treatment (5-20 μM) dose-dependently enhanced ALP activity and calcium deposition. Furthermore, heraclenin promoted ALP, OCN, OSX, and RUNX2 mRNA and protein expression. Mechanically, heraclenin treatment increased RhoA and ROCK1 mRNA expression, stimulated the translocation of ROCK from the cytosolic to the membrane fraction, and elevated the protein levels of phosphorylated cofilin (p-cofilin) and active RhoA. Additionally, treatment with Y-27632 overturned the promotion of heraclenin on ALP activity, calcium deposition, the expression of osteogenesis markers, and the RhoA/ROCK signaling pathway. CONCLUSION Heraclenin facilitates the osteogenic differentiation of human BMSCs through the activation of the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Zuguang Yu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jun Yuan
- Department of Orthopedics 3, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yuanyuan Yu
- Department of Geriatrics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China.
| |
Collapse
|
7
|
Gonthier A, Botvinick EL, Grosberg A, Mohraz A. Effect of Porous Substrate Topographies on Cell Dynamics: A Computational Study. ACS Biomater Sci Eng 2023; 9:5666-5678. [PMID: 37713253 PMCID: PMC10565724 DOI: 10.1021/acsbiomaterials.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Controlling cell-substrate interactions via the microstructural characteristics of biomaterials offers an advantageous path for modulating cell dynamics, mechanosensing, and migration, as well as for designing immune-modulating implants, all without the drawbacks of chemical-based triggers. Specifically, recent in vivo studies have suggested that a porous implant's microscale curvature landscape can significantly impact cell behavior and ultimately the immune response. To investigate such cell-substrate interactions, we utilized a 3D computational model incorporating the minimum necessary physics of cell migration and cell-substrate interactions needed to replicate known in vitro behaviors. This model specifically incorporates the effect of membrane tension, which was found to be necessary to replicate in vitro cell behavior on curved surfaces. Our simulated substrates represent two classes of porous materials recently used in implant studies, which have markedly different microscale curvature distributions and pore geometries. We found distinct differences between the overall migration behaviors, shapes, and actin polymerization dynamics of cells interacting with the two substrates. These differences were correlated to the shape energy of the cells as they interacted with the porous substrates, in effect interpreting substrate topography as an energetic landscape interrogated by cells. Our results demonstrate that microscale curvature directly influences cell shape and migration and, therefore, is likely to influence cell behavior. This supports further investigation of the relationship between the surface topography of implanted materials and the characteristic immune response, a complete understanding of which would broadly advance principles of biomaterial design.
Collapse
Affiliation(s)
- Alyse
R. Gonthier
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Elliot L. Botvinick
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Beckman
Laser Institute and Medical Clinic, University
of California, Irvine, Irvine, California 92697, United States
- Department
of Surgery,University of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Anna Grosberg
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- The
NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California 92697, United States
- Sue
and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ali Mohraz
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
8
|
Shi H, Zhou K, Wang M, Wang N, Song Y, Xiong W, Guo S, Yi Z, Wang Q, Yang S. Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs. Theranostics 2023; 13:3245-3275. [PMID: 37351163 PMCID: PMC10283054 DOI: 10.7150/thno.84759] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
Large bone defects are a major global health concern. Bone tissue engineering (BTE) is the most promising alternative to avoid the drawbacks of autograft and allograft bone. Nevertheless, how to precisely control stem cell osteogenic differentiation has been a long-standing puzzle. Compared with biochemical cues, physicomechanical stimuli have been widely studied for their biosafety and stability. The mechanical properties of various biomaterials (polymers, bioceramics, metal and alloys) become the main source of physicomechanical stimuli. By altering the stiffness, viscoelasticity, and topography of materials, mechanical stimuli with different strengths transmit into precise signals that mediate osteogenic differentiation. In addition, externally mechanical forces also play a critical role in promoting osteogenesis, such as compression stress, tensile stress, fluid shear stress and vibration, etc. When exposed to mechanical forces, mesenchymal stem cells (MSCs) differentiate into osteogenic lineages by sensing mechanical stimuli through mechanical sensors, including integrin and focal adhesions (FAs), cytoskeleton, primary cilium, ions channels, gap junction, and activating osteogenic-related mechanotransduction pathways, such as yes associated proteins (YAP)/TAZ, MAPK, Rho-GTPases, Wnt/β-catenin, TGFβ superfamily, Notch signaling. This review summarizes various biomaterials that transmit mechanical signals, physicomechanical stimuli that directly regulate MSCs differentiation, and the mechanical transduction mechanisms of MSCs. This review provides a deep and broad understanding of mechanical transduction mechanisms and discusses the challenges that remained in clinical translocation as well as the outlook for the future improvements.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kaixuan Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang 832008, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
9
|
Jin Z, Huang X, Tan W, Luo X, Cen L, Zhou Y. Synergetic effect of 3D porous microsphere structure and activation of adenosine A2B receptor signal on promoting osteogenic differentiation of BMSCs. BIOMATERIALS ADVANCES 2023; 151:213457. [PMID: 37172432 DOI: 10.1016/j.bioadv.2023.213457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Biodegradable microspheres offer great potential as functional building blocks for bottom-up bone tissue engineering. However, it remains challenging to understand and regulate cell behaviors in fabrication of injectable bone microtissues using microspheres. The study aims to develop an adenosine functionalized poly (lactide-co-glycolide) (PLGA) microsphere to enhance cell loading efficiency and inductive osteogenesis potential, and subsequently to investigate adenosine signaling-mediated osteogenic differentiation in cells grown on three-dimensional (3D) microspheres and flat control. Adenosine was loaded on PLGA porous microspheres via polydopamine coating, and the cell adhesion and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were improved on these microspheres. It was found that adenosine A2B receptor (A2BR) was further activated by adenosine treatment, which consequently enhanced osteogenic differentiation of BMSCs. This effect was more obvious on 3D microspheres compared to 2D flats. However, the promotion of osteogenesis on the 3D microspheres was not eliminated by blocking the A2BR with antagonist. Finally, adenosine functionalized microspheres could fabricate injectable microtissues in vitro, and improve cell delivery and osteogenic differentiation after injection in vivo. Therefore, it is considered that adenosine loaded PLGA porous microspheres will be of good value in minimally invasive injection surgery and bone tissue repair.
Collapse
Affiliation(s)
- Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xing Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
10
|
Wang H, Wu Q, Lai Y, Cai Y. Effect of graphene-oxide-modified osteon-like concentric microgrooved surface on the osteoclastic differentiation of macrophages. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2023; 41:165-174. [PMID: 37056182 PMCID: PMC10427261 DOI: 10.7518/hxkq.2023.2022354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/24/2022] [Indexed: 04/15/2023]
Abstract
OBJECTIVES This study aimed to investigate the effect of new biomimetic micro/nano surfaces on the osteoclastic differentiation of RAW264.7 macrophages by simulating natural osteons for the design of concentric circular structures and modifying graphene oxide (GO). METHODS The groups were divided into smooth titanium surface group (SS), concentric microgrooved titanium surface group (CMS), and microgroove modified with GO group (GO-CMS). The physicochemical properties of the material surfaces were studied using scanning electron microscopy (SEM), contact-angle measurement, atomic force microscopy, X-ray photoelectron spectroscopy analysis, and Raman spectroscopy. The effect of the modified material surface on the cell biological behavior of RAW264.7 was investigated by cell-activity assay, SEM, and laser confocal microscopy. The effect on the osteoclastic differentiation of macrophages was investiga-ted by tartrate-resistant acid phosphatase (TRAP) immunofluorescence staining and quantitative real-time polymerase chain reaction (qRT-PCR) experiments. RESULTS Macrophages were arranged in concentric circles along the microgrooves, and after modification with GO, the oxygen-containing groups on the surface of the material increased and hydrophilicity increased. Osteoclasts in the GO-CMS group were small in size and number and had the lowest TRAP expression. Although it promoted the proliferation of macrophages in the GO-CMS group, the expression of osteoclastic differentiation-related genes was lower than that in the SS group, and the difference was statistically significant (P<0.05). CONCLUSIONS Concentric circular microgrooves restricted the fusion of osteoclasts and the formation of sealing zones. Osteomimetic concentric microgrooves modified with GO inhibited the osteoclastic differentiation of RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Hong Wang
- Dept. of Stomatology, Xiamen Medical College & Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen 361023, China
| | - Qinglin Wu
- Dept. of Stomatology, Xiamen Medical College & Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen 361023, China
| | - Yingzhen Lai
- Dept. of Stomatology, Xiamen Medical College & Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen 361023, China
| | - Yihuang Cai
- Dept. of Stomatology, Xiamen Medical College & Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen 361023, China
| |
Collapse
|
11
|
Dos Santos LMS, de Oliveira JM, da Silva ECO, Fonseca VML, Silva JP, Barreto E, Dantas NO, Silva ACA, Jesus-Silva AJ, Mendonça CR, Fonseca EJS. Mechanical and morphological responses of osteoblast-like cells to two-photon polymerized microgrooved surfaces. J Biomed Mater Res A 2023; 111:234-244. [PMID: 36239143 DOI: 10.1002/jbm.a.37454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
Microgrooved surfaces are recognized as an important strategy of tissue engineering to promote the alignment of bone cells. In this work, we have investigated the mechanical and morphological aspects of osteoblasts cells after interaction with different micro-structured polymeric surfaces. Femtosecond laser writing technique was used for the construction of circular and parallel microgrooved patterns in biocompatible polymeric surfaces based on pentaerythritol triacrylate. Additionally, we have studied the influence of the biocompatible TiO2 nanocrystals (NCs) related to the cell behavior, when incorporated to the photoresin. The atomic force microscopy technique was used to investigate the biomechanical reaction of the human osteoblast-like MG-63 cells for the different microgroove. It was demonstrated that osteoblasts grown on circular microgrooved surfaces exhibited significantly larger Young's modulus compared to cells sown on flat films. Furthermore, we could observe that TiO2 NCs improved the circular microgrooves effects, resulting in more populated sites, 34% more elongated cells, and increasing the cell stiffness by almost 160%. These results can guide the design and construction of effective scaffold surfaces with circular microgrooves for tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Laura M S Dos Santos
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | | | - Elaine C O da Silva
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Vitor M L Fonseca
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | - Juliane P Silva
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | - Emiliano Barreto
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | | | - Anielle C A Silva
- Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Alcenísio J Jesus-Silva
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Cléber R Mendonça
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Eduardo J S Fonseca
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| |
Collapse
|
12
|
Wang H, Lai Y, Xie Z, Lin Y, Cai Y, Xu Z, Chen J. Graphene Oxide-Modified Concentric Microgrooved Titanium Surfaces for the Dual Effects of Osteogenesis and Antiosteoclastogenesis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54500-54516. [PMID: 36454650 DOI: 10.1021/acsami.2c14271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface modification is an effective method to resolve the biocompatibility, mechanical, and functional issues of various titanium implant materials. Therefore, many researchers have modified the implant surface to promote the osseointegration of the implant and improve the implant survival rate. In this study, we used photolithography to construct concentric microgrooves with widths of 10 μm and depths of 10 μm, to produce an osteon-mimetic concentric microgrooved titanium surface that was further modified with graphene oxide by silanization (GO-CMS). The modified surface had great biocompatibility and promoted the proliferation of bone marrow-derived mesenchymal stem cells (BMSCs) and RAW264.7 macrophages. The concentric microgrooves on the titanium surface guided cell migration, altered actin cytoskeleton, and caused the cells to arrange in concentric circles. The titanium surface of the GO-modified osteon-mimetic concentric microgrooves promoted the osteogenic differentiation of BMSCs and inhibited the osteoclastogenic differentiation of RAW264.7 cells. Subsequently, we constructed an indirect coculture system and found that RAW264.7 cells cultured on a GO-CMS material surface in a BMSC-conditioned medium (BCM) decreased receptor activator of nuclear factor-κB ligand (RANKL) secretion and increased OPG secretion and also that the BCM inhibited osteoclastogenic differentiation. Additionally, the secretion of OSM increased in BMSCs cultured in RAW264.7-conditioned medium (RCM) in the GO-CMS group, which in turn promoted the osteogenic differentiation of BMSCs. In conclusion, the titanium surface of GO-modified osteon-mimetic concentric microgrooves had dual effects of osteogenesis and antiosteoclastogenesis under single and coculture conditions, which is beneficial for implant osseointegration and is a promising method for the future direction of surface modifications of implants.
Collapse
Affiliation(s)
- Hong Wang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
- Engineering Research Center of Stomatological Biomaterials, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Yingzhen Lai
- Department of Stomatology, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
- Engineering Research Center of Stomatological Biomaterials, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Zeyu Xie
- Department of Stomatology, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
- Engineering Research Center of Stomatological Biomaterials, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Yanyin Lin
- Department of Stomatology, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
- Engineering Research Center of Stomatological Biomaterials, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Yihuang Cai
- Department of Stomatology, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
- Engineering Research Center of Stomatological Biomaterials, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Zhiqiang Xu
- Department of Stomatology, Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
13
|
Milborne B, Murrell L, Cardillo-Zallo I, Titman J, Briggs L, Scotchford C, Thompson A, Layfield R, Ahmed I. Developing Porous Ortho- and Pyrophosphate-Containing Glass Microspheres; Structural and Cytocompatibility Characterisation. Bioengineering (Basel) 2022; 9:611. [PMID: 36354522 PMCID: PMC9687370 DOI: 10.3390/bioengineering9110611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 04/04/2024] Open
Abstract
Phosphate-based glasses (PBGs) are promising materials for bone repair and regeneration as they can be formulated to be compositionally similar to the inorganic components of bone. Alterations to the PBG formulation can be used to tailor their degradation rates and subsequent release of biotherapeutic ions to induce cellular responses, such as osteogenesis. In this work, novel invert-PBGs in the series xP2O5·(56 - x)CaO·24MgO·20Na2O (mol%), where x is 40, 35, 32.5 and 30 were formulated to contain pyro (Q1) and orthophosphate (Q0) species. These PBGs were processed into highly porous microspheres (PMS) via flame spheroidisation, with ~68% to 75% porosity levels. Compositional and structural analysis using EDX and 31P-MAS NMR revealed that significant depolymerisation occurred with reducing phosphate content which increased further when PBGs were processed into PMS. A decrease from 50% to 0% in Q2 species and an increase from 6% to 35% in Q0 species was observed for the PMS when the phosphate content decreased from 40 to 30 mol%. Ion release studies also revealed up to a four-fold decrease in cations and an eight-fold decrease in phosphate anions released with decreasing phosphate content. In vitro bioactivity studies revealed that the orthophosphate-rich PMS had favourable bioactivity responses after 28 days of immersion in simulated body fluid (SBF). Indirect and direct cell culture studies confirmed that the PMS were cytocompatible and supported cell growth and proliferation over 7 days of culture. The P30 PMS with ~65% pyro and ~35% ortho phosphate content revealed the most favourable properties and is suggested to be highly suitable for bone repair and regeneration, especially for orthobiologic applications owing to their highly porous morphology.
Collapse
Affiliation(s)
- Ben Milborne
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lauren Murrell
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Jeremy Titman
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Louise Briggs
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Colin Scotchford
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alexander Thompson
- Biodiscovery Institute, Division of Cancer and Stem Cells, University of Nottingham, Nottingham NG7 2RD, UK
| | - Robert Layfield
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
14
|
Gaussian curvature-driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffolds. Proc Natl Acad Sci U S A 2022; 119:e2206684119. [PMID: 36191194 PMCID: PMC9564829 DOI: 10.1073/pnas.2206684119] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leaf photosynthesis, coral mineralization, and trabecular bone growth depend on triply periodic minimal surfaces (TPMSs) with hyperboloidal structure on every surface point with varying Gaussian curvatures. However, translation of this structure into tissue-engineered bone grafts is challenging. This article reports the design and fabrication of high-resolution three-dimensional TPMS scaffolds embodying biomimicking hyperboloidal topography with different Gaussian curvatures, composed of body inherent β-tricalcium phosphate, by stereolithography-based three-dimensional printing and sintering. The TPMS bone scaffolds show high porosity and interconnectivity. Notably, compared with conventional scaffolds, they can reduce stress concentration, leading to increased mechanical strength. They are also found to support the attachment, proliferation, osteogenic differentiation, and angiogenic paracrine function of human mesenchymal stem cells (hMSCs). Through transcriptomic analysis, we theorize that the hyperboloid structure induces cytoskeleton reorganization of hMSCs, expressing elongated morphology on the convex direction and strengthening the cytoskeletal contraction. The clinical therapeutic efficacy of the TPMS scaffolds assessed by rabbit femur defect and mouse subcutaneous implantation models demonstrate that the TPMS scaffolds augment new bone formation and neovascularization. In comparison with conventional scaffolds, our TPMS scaffolds successfully guide the cell fate toward osteogenesis through cell-level directional curvatures and demonstrate drastic yet quantifiable improvements in bone regeneration.
Collapse
|
15
|
Kang K, Geng Q, Cui L, Wu L, Zhang L, Li T, Zhang Q, Gao S. Upregulation of Runt related transcription factor 1 (RUNX1) contributes to tendon-bone healing after anterior cruciate ligament reconstruction using bone mesenchymal stem cells. J Orthop Surg Res 2022; 17:266. [PMID: 35562802 PMCID: PMC9107123 DOI: 10.1186/s13018-022-03152-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Background Anterior cruciate ligament (ACL) injury could lead to functional impairment along with disabilities. ACL reconstruction often fails owing to the regeneration failure of tendon–bone interface. Herein, we aimed to investigate the effects of Runt related transcription factor 1 (RUNX1) on tendon–bone healing after ACL reconstruction using bone mesenchymal stem cells (BMSCs). Methods BMSCs were isolated from the marrow cavity of rat femur, followed by the modification of RUNX1 with lentiviral system. Then, an ACL reconstruction model of rats was established with autografts. Results Results of flow cytometry exhibited positive-antigen CD44 and CD90, as well as negative-antigen CD34 and CD45 of the BMSCs. Then, we found that RUNX1-upregulated BMSCs elevated the decreased biomechanical strength of the tendon grafts after ACL reconstruction. Moreover, based on the histological observation, upregulation of RUNX1 was linked with better recovery around the bone tunnel, a tighter tendon–bone interface, and more collagen fibers compared to the group of BMSCs infected with LV-NC. Next, RUNX1-upregulated BMSCs promoted osteogenesis after ACL reconstruction, as evidenced by the mitigation of severe loss and erosion of the cartilage and bone in the tibial and femur area, as well as the increased number of osteoblasts identified by the upregulation of alkaline phosphatase, osteocalcin, and osteopontin in the tendon–bone interface. Conclusion Elevated expression of RUNX1 contributed to tendon–bone healing after ACL reconstruction using BMSCs.
Collapse
Affiliation(s)
- Kai Kang
- The Second Department of Joint Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Qian Geng
- The Second Department of Joint Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Lukuan Cui
- The Second Department of Joint Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Lijie Wu
- The Second Department of Joint Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Lei Zhang
- The Second Department of Joint Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Tong Li
- The Second Department of Joint Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Qian Zhang
- The Second Department of Joint Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Shijun Gao
- The Second Department of Joint Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
16
|
Evdokimov PV, Tikhonova SA, Kiseleva AK, Filippov YY, Novoseletskaya ES, Efimenko AY, Putlayev VI. Effect of the Pore Size on the Biological Activity of β-Ca3(PO4)2-Based Resorbable Macroporous Ceramic Materials Obtained by Photopolymerization. RUSS J INORG CHEM+ 2021. [PMCID: PMC8601372 DOI: 10.1134/s0036023621110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
The effect of the pore size of macroporous ceramic materials based on β-Ca3(PO4)2 on their biological activity was studied. The formation conditions of macroporous ceramics with a porosity of >50% and a specified pore size were determined. The effect of components of the light-curing emulsion on the pore size in the final macroporous ceramics was studied. The biocompatibility of β-Ca3(PO4)2-based macroporous ceramics was demonstrated in in vitro biomedical assays. The effect of pore size of macroporous ceramic materials on mesenchymal stromal cell proliferation and viability was established.
Collapse
Affiliation(s)
- P. V. Evdokimov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow State University, 119991 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
17
|
Sankar D, Mony U, Rangasamy J. Combinatorial effect of plasma treatment, fiber alignment and fiber scale of poly (ε-caprolactone)/collagen multiscale fibers in inducing tenogenesis in non-tenogenic media. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112206. [PMID: 34225858 DOI: 10.1016/j.msec.2021.112206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Tendon being a hypocellular, low vascularized tissue often requires assistance for restoration after complete tear. Tendon tissue engineering aims in the development of suitable scaffold that could support the regeneration of tendon after damage. The success of such scaffolds is dependent on its integration with the native tissue which in turn is influenced by the cell-material interaction. In this work aligned poly(ε-caprolactone)/collagen (PCL/collagen) multiscale fibers were developed and plasma treatment using argon, nitrogen and its combination was accessed for inducing tenogenic differentiation in mesenchymal stem cells. The developed fibers mimicked tendon extracellular matrix (ECM) which upon plasma treatment maintained moderate hydrophilicity. Oxygen and nitrogen containing groups were observed to be incorporated after argon and nitrogen treatment respectively. Statistically significant (p < 0.001) enhancement was observed in average and root mean square (RMS) roughness after plasma treatment with the maximum in argon treated fibers. Vitronectin was competitively (statistically significant, p < 0.05) adsorbed after argon and combination treatment whereas nitrogen treatment led to the competitive adsorption of fibronectin (statistically significant, p < 0.05). Human mesenchymal stem cells (hMSCs) showed enhanced proliferation and attachment on plasma treated fibers. Increased porosity due to the presence of sacrificial collagen nanofibers improved cell infiltration which was further enhanced upon plasma treatment. RhoA activation was observed (statistically significant, p < 0.05) on aligned PCL/collagen multiscale fibers and PCL microfibers, which proved its impact on tenogenic differentiation. Further enhancement in rhoA expression was observed on argon (p < 0.01) and combination plasma (p < 0.05) treated fibers. Tenogenic differentiation of hMSCs was enhanced (statistically significant) on argon plasma treated aligned fibers which was confirmed by the expression of scleraxis, mohawk (early markers) and tenomodulin (late marker) at protein level and mohawk, collagen I, collagen III (early markers), thrombospondin 4 and tenascin C (late markers) at gene level. Thus argon plasma treatment on aligned fibers is an effective method to induce tenogenesis even in non-tenogenic media.
Collapse
Affiliation(s)
- Deepthi Sankar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
18
|
Zhu Y, Goh C, Shrestha A. Biomaterial Properties Modulating Bone Regeneration. Macromol Biosci 2021; 21:e2000365. [PMID: 33615702 DOI: 10.1002/mabi.202000365] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Biomaterial scaffolds have been gaining momentum in the past several decades for their potential applications in the area of tissue engineering. They function as three-dimensional porous constructs to temporarily support the attachment of cells, subsequently influencing cell behaviors such as proliferation and differentiation to repair or regenerate defective tissues. In addition, scaffolds can also serve as delivery vehicles to achieve sustained release of encapsulated growth factors or therapeutic agents to further modulate the regeneration process. Given the limitations of current bone grafts used clinically in bone repair, alternatives such as biomaterial scaffolds have emerged as potential bone graft substitutes. This review summarizes how physicochemical properties of biomaterial scaffolds can influence cell behavior and its downstream effect, particularly in its application to bone regeneration.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, 80 George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Materials Science and Engineering, University of Toronto, 84 College Street, Suite 140, Toronto, Ontario, M5S 3E4, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
19
|
Ke W, Wang B, Hua W, Song Y, Lu S, Luo R, Li G, Wang K, Liao Z, Xiang Q, Li S, Wu X, Zhang Y, Yang C. The distinct roles of myosin IIA and IIB under compression stress in nucleus pulposus cells. Cell Prolif 2021; 54:e12987. [PMID: 33415745 PMCID: PMC7848961 DOI: 10.1111/cpr.12987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives Inappropriate or excessive compression applied to intervertebral disc (IVD) contributes substantially to IVD degeneration. The actomyosin system plays a leading role in responding to mechanical stimuli. In the present study, we investigated the roles of myosin II isoforms in the compression stress‐induced senescence of nucleus pulposus (NP) cells. Material and methods Nucleus pulposus cells were exposed to 1.0 MPa compression for 0, 12, 24 or 36 hours. Immunofluorescence and co‐immunoprecipitation analysis were used to measure the interaction of myosin IIA and IIB with actin. Western blot analysis and immunofluorescence staining were used to detect nuclear expression and nuclear localization of MRTF‐A. In addition, the expression levels of p‐RhoA/RhoA, ROCK1/2 and p‐MLC/MLC were measured in human NP cells under compression stress and in degenerative IVD tissues. Results Compression stress increased the interaction of myosin IIA and actin, while the interaction of myosin IIB and actin was reduced. The actomyosin cytoskeleton remodelling was involved in the compression stress‐induced fibrotic phenotype mediated by MRTF‐A nuclear translocation and inhibition of proliferation in NP cells. Furthermore, RhoA/ROCK1 pathway activation mediated compression stress‐induced human NP cells senescence by regulating the interaction of myosin IIA and IIB with actin. Conclusions We for the first time investigated the regulation of actomyosin cytoskeleton in human NP cells under compression stress. It provided new insights into the development of therapy for effectively inhibiting IVD degeneration.
Collapse
Affiliation(s)
- Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Yamada S, Yassin MA, Schwarz T, Hansmann J, Mustafa K. Induction of osteogenic differentiation of bone marrow stromal cells on 3D polyester-based scaffolds solely by subphysiological fluidic stimulation in a laminar flow bioreactor. J Tissue Eng 2021; 12:20417314211019375. [PMID: 34262684 PMCID: PMC8243246 DOI: 10.1177/20417314211019375] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023] Open
Abstract
The fatal determination of bone marrow mesenchymal stem/stromal cells (BMSC) is closely associated with mechano-environmental factors in addition to biochemical clues. The aim of this study was to induce osteogenesis in the absence of chemical stimuli using a custom-designed laminar flow bioreactor. BMSC were seeded onto synthetic microporous scaffolds and subjected to the subphysiological level of fluid flow for up to 21 days. During the perfusion, cell proliferation was significantly inhibited. There were also morphological changes, with F-actin polymerisation and upregulation of ROCK1. Notably, in BMSC subjected to flow, mRNA expression of osteogenic markers was significantly upregulated and RUNX2 was localised in the nuclei. Further, under perfusion, there was greater deposition of collagen type 1 and calcium onto the scaffolds. The results confirm that an appropriate level of fluid stimuli preconditions BMSC towards the osteoblastic lineage on 3D scaffolds in the absence of chemical stimulation, which highlights the utility of flow bioreactors in bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Department of Clinical Dentistry,
Faculty of Medicine – Tissue engineering group, University of Bergen, Bergen,
Norway
| | - Mohammed Ahmed Yassin
- Department of Clinical Dentistry,
Faculty of Medicine – Tissue engineering group, University of Bergen, Bergen,
Norway
| | - Thomas Schwarz
- Fraunhofer Institute for Silicate
Research ISC, Translational Center Regenerative Therapies, Wurzburg, Bayern,
Germany
| | - Jan Hansmann
- Fraunhofer Institute for Silicate
Research ISC, Translational Center Regenerative Therapies, Wurzburg, Bayern,
Germany
- Chair of Tissue Engineering and
Regenerative Medicine, University Hospital Würzburg, Germany
- Department Electrical Engineering,
University of Applied Sciences Würzburg-Schweinfurt, Germany
| | - Kamal Mustafa
- Department of Clinical Dentistry,
Faculty of Medicine – Tissue engineering group, University of Bergen, Bergen,
Norway
| |
Collapse
|
21
|
Pahapale GJ, Gao S, Romer LH, Gracias DH. Hierarchically Curved Gelatin for 3D Biomimetic Cell Culture. ACS APPLIED BIO MATERIALS 2019; 2:6004-6011. [DOI: 10.1021/acsabm.9b00916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Zhang Y, Shen S, Li P, Fan Y, Zhang L, Li W, Liu Y. PLEXIN-B2 promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells via activation of the RhoA signaling pathway. Cell Signal 2019; 62:109343. [PMID: 31176746 DOI: 10.1016/j.cellsig.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 01/07/2023]
Abstract
Plexin-B2 (PLXNB2), a transmembrane protein is found in various tissues. Recent studies have indicated the presence of PLXNB2 in large quantity in the growth plates of Sprague-Dawley rats and are believed to be potentially involved in their skeletal development. This study endeavored to analyze the effect of PLXNB2 on the osteogenic differentiation of BMSCs by using gene overexpression and knockdown assays. The results of our study revealed that PLXNB2 was upregulated during BMSCs differentiation into an osteoblastic lineage. By determining the expression levels of specific markers and mineral deposition, the study established that PLXNB2 promotes the osteogenic differentiation of human BMSCs through the activation of the RhoA signaling pathway. In conclusion, the study identified PLXNB2 as a novel regulator that enhanced the osteogenic differentiation of human BMSCs. The enhancing effect of PLXNB2 on osteogenesis of human BMSCs was mediated through activation of RhoA signaling. The results of our study imply that pharmacological targeting of PLXNB2 may initiate a possible improvement in bone formation.
Collapse
Affiliation(s)
- Ying Zhang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China
| | - Sheng Shen
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China
| | - Peifeng Li
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China
| | - Yanan Fan
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China
| | - Leilei Zhang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China
| | - Wuyin Li
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China.
| | - Youwen Liu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Orthopedics Hospital of Henan Province, 82 Qiming South Road, Luoyang, Henan 471002, China.
| |
Collapse
|
23
|
Zhou M, Liu N, Zhang Q, Tian T, Ma Q, Zhang T, Cai X. Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif 2019; 52:e12566. [PMID: 30883969 PMCID: PMC6536416 DOI: 10.1111/cpr.12566] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To explore the effects and underlying biological mechanisms of tetrahedral DNA nanostructures (TDNs) on the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). MATERIALS AND METHODS Real-time cell analysis (RTCA) and CCK8 were used to screen the best concentration of TDN for PDLSCs. Cell proliferation and osteogenic differentiation were assessed after PDLSCs were treated with TDN. Data were analysed using one-way ANOVA. RESULTS Tetrahedral DNA nanostructures could play a crucial role in accelerating the proliferation of PDLSCs and had the strongest promotive effect on PDLSCs at a concentration of 250 nmol/L. Simultaneously, the osteogenic differentiation of PDLSCs could be promoted significantly by TDNs and the finding displayed that the Wnt/β-catenin signalling pathway might be the underlying biological mechanisms of TDNs on promoting the osteogenic differentiation of PDLSCs. CONCLUSION Tetrahedral DNA nanostructure treatment facilitated the proliferation of PDLSCs, significantly promoted osteogenic differentiation by regulating the Wnt/β-catenin signalling pathway. Therefore, TDNs could be a novel nanomaterial with great potential for application to PDLSC-based bone tissue engineering.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Nanxin Liu
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Qi Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Taoran Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Quanquan Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Tao Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| |
Collapse
|
24
|
Meng L, Ma W, Lin S, Shi S, Li Y, Lin Y. Tetrahedral DNA Nanostructure-Delivered DNAzyme for Gene Silencing to Suppress Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6850-6857. [PMID: 30698411 DOI: 10.1021/acsami.8b22444] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lingxian Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
25
|
Qin X, Li N, Zhang M, Lin S, Zhu J, Xiao D, Cui W, Zhang T, Lin Y, Cai X. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. NANOSCALE 2019; 11:20667-20675. [PMID: 31642452 DOI: 10.1039/c9nr07171g] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retinal ischemia-reperfusion (I/R) injuries are involved in the universal pathological processes of many ophthalmic diseases, including glaucoma, diabetic retinopathy, and retinal arterial occlusion.
Collapse
|
26
|
Nucleic acids and analogs for bone regeneration. Bone Res 2018; 6:37. [PMID: 30603226 PMCID: PMC6306486 DOI: 10.1038/s41413-018-0042-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
With the incidence of different bone diseases increasing, effective therapies are needed that coordinate a combination of various technologies and biological materials. Bone tissue engineering has also been considered as a promising strategy to repair various bone defects. Therefore, different biological materials that can promote stem cell proliferation, migration, and osteoblastic differentiation to accelerate bone tissue regeneration and repair have also become the focus of research in multiple fields. Stem cell therapy, biomaterial scaffolds, and biological growth factors have shown potential for bone tissue engineering; however, off-target effects and cytotoxicity have limited their clinical use. The application of nucleic acids (deoxyribonucleic acid or ribonucleic acid) and nucleic acid analogs (peptide nucleic acids or locked nucleic acids), which are designed based on foreign genes or with special structures, can be taken up by target cells to exert different effects such as modulating protein expression, replacing a missing gene, or targeting specific gens or proteins. Due to some drawbacks, nucleic acids and nucleic acid analogs are combined with various delivery systems to exert enhanced effects, but current studies of these molecules have not yet satisfied clinical requirements. In-depth studies of nucleic acid or nucleic acid analog delivery systems have been performed, with a particular focus on bone tissue regeneration and repair. In this review, we mainly introduce delivery systems for nucleic acids and nucleic acid analogs and their applications in bone repair and regeneration. At the same time, the application of conventional scaffold materials for the delivery of nucleic acids and nucleic acid analogs is also discussed. Used with an appropriate delivery system, nucleic acids and nucleic acid analogs have excellent potential for bone repair and regeneration. Owing to various challenges with bone tissue regeneration, current research is largely focused on gene therapy, which employs genes to treat or prevent disease, and such new materials as nucleic acids (DNA and RNA) and nucleic acid analogs (compounds structurally similar to naturally occurring nucleic acids). A team headed by Yunfeng Lin at Sichuan University, China conducted a review of delivery systems for nucleic acids and nucleic acid analogs and their application in bone repair and regeneration. The authors identified the use of biomaterial scaffolds (which mimic living tissue) as one of the most important research areas for gene therapy, and that strategy has proven effective with all types of bone regeneration and repair.
Collapse
|
27
|
Xue C, Huang Q, Zhang T, Zhao D, Ma Q, Tian T, Cai X. Matrix stiffness regulates arteriovenous differentiation of endothelial progenitor cells during vasculogenesis in nude mice. Cell Prolif 2018; 52:e12557. [PMID: 30485569 PMCID: PMC6495479 DOI: 10.1111/cpr.12557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives The aim of the study was to investigate the effect of matrix stiffness on arteriovenous differentiation of endothelial progenitor cells (EPCs) during vasculogenesis in nude mice. Materials and methods Dextran hydrogels of differing stiffnesses were first prepared by controlling the crosslinking reaction to generate different thioether bonds. Hydrogels with stiffnesses matching those of the arterial extracellular matrix and venous extracellular matrix were separately combined with mouse bone marrow‐derived EPCs and subcutaneously implanted on either side of the backs of nude mice. After 14 days, artery‐specific marker Efnb2 and vein‐specific marker Ephb4 in the neovasculature were detected to determine the effect of matrix stiffness on the arteriovenous differentiation of EPCs in vivo. Results Fourteen days after the implantation of the EPC‐loaded dextran hydrogels, new blood vessels were observed in both types of hydrogels. We further verified that matrix stiffness regulated the arteriovenous differentiation of EPCs during vasculogenesis via the Ras/Mek pathway. Conclusions Matrix stiffness regulates the arteriovenous differentiation of EPCs during vasculogenesis in nude mice through the Ras/Mek pathway.
Collapse
Affiliation(s)
- Changyue Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Qian Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Ma W, Xie X, Shao X, Zhang Y, Mao C, Zhan Y, Zhao D, Liu M, Li Q, Lin Y. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif 2018; 51:e12503. [PMID: 30091500 DOI: 10.1111/cpr.12503] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/20/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The main purpose of current study was to explore the effects of tetrahedral DNA nanostructures (TDNs) on neuroectodermal (NE-4C) stem cells migration and unveil the potential mechanisms. MATERIALS AND METHODS The successfully self-assembled TDNs were also determined by dynamic light scattering (DLS). A bidirectional wound-healing assay and transwell chamber assay were employed to test the migrating behaviour of NE-4C stem cells cultured under different conditions. RESULTS Through an in vitro study, we found that stem cells could internalize TDNs quickly, and the cells' parallel and vertical migration was promoted effectively. Besides, the effects of TDNs were found being exerted by upregulating the gene and protein expression levels of RhoA, Rock2 and Vinculin, indicating that the RHOA/ROCK2 pathway was activated by the TDNs during the cell migration. CONCLUSIONS In conclusion, TDNs could enter NSCs without the aid of other transfection reagents in large amounts, whereas only small amounts of ssDNA could enter the cells. TDNs taken up by NSCs activated the RHOA/ROCK2 signalling pathway, which had effects on the relevant genes and proteins expression, eventually promoting the migration of NE-4C stem cells. These findings suggested that TDNs have great potential in application for the repair and regeneration of neural tissue.
Collapse
Affiliation(s)
- Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoru Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxi Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianshun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Hasturk O, Ermis M, Demirci U, Hasirci N, Hasirci V. Square prism micropillars improve osteogenicity of poly(methyl methacrylate) surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:53. [PMID: 29721618 DOI: 10.1007/s10856-018-6059-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Osteogenicity and osteointegration of materials is one of the key elements of the success of bone implants. Poly(methyl methacrylate) (PMMA) is the basic compound of bone cement and has been widely investigated for other orthopedic applications, but its poor osteointegration and the subsequent loosening of implant material limits its widespread use as bone implants. Micropillar features on substrate surfaces were recently reported to modulate cell behavior through alteration of cell morphology and promotion of osteogenesis. Utilization of this pillar-decorated topography may be an effective approach to enhance osteogenicity of polymeric surfaces. The aim of this study was to investigate the effect of cell morphology on the micropillar features on attachment, proliferation, and osteogenic activity of human osteoblast-like cells. A series of solvent cast PMMA films decorated with 8 µm high square prism micropillars with pillar width and interpillar distances of 4, 8 and 16 µm were prepared from photolithographic templates, and primary human osteoblast-like cells (hOB) isolated from bone fragments were cultured on them. Micropillars increased cell attachment and early proliferation rate compared to unpatterned surfaces, and triggered distinct morphological changes in cell body and nucleus. Surfaces with pillar dimensions and gap width of 4 µm presented the best osteogenic activity. Expression of osteogenic marker genes was upregulated by micropillars, and cells formed bone nodule-like aggregates rich in bone matrix proteins and calcium phosphate. These results indicated that micropillar features enhance osteogenic activity on PMMA films, possibly by triggering morphological changes that promote the osteogenic phenotype of the cells.
Collapse
Affiliation(s)
- O Hasturk
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - M Ermis
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey
| | - U Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 942304, USA
- Electrical Engineering Department (by courtesy), Stanford University, Stanford, CA, 94305, USA
| | - N Hasirci
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey
- Department of Chemistry, METU, Ankara, 06800, Turkey
| | - V Hasirci
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey.
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey.
- Department of Biological Sciences, METU, Ankara, 06800, Turkey.
| |
Collapse
|
30
|
Abstract
Craniofacial bones, separate from the appendicular skeleton, bear a significant amount of strain and stress generated from mastication-related muscles. Current research on the regeneration of craniofacial bone focuses on the reestablishment of an elaborate vascular network. In this review, current challenges and efforts particularly in advances of scaffold properties and techniques for vascularization remodeling in craniofacial bone tissue engineering will be discussed. A microenvironment of ischemia and hypoxia in the biomaterial core drives propagation and reorganization of endothelial progenitor cells (EPCs) to assemble into a primitive microvascular framework. Co-culture strategies and delivery of vasculogenic molecules enhance EPCs' differentiation and stimulate the host regenerative response to promote vessel sprouting and strength. To optimize structural and vascular integration, well-designed microstructures of scaffolds are biologically considered. Proper porous structures, matrix stiffness, and surface morphology of scaffolds have a profound influence on cell behaviors and thus affect revascularization. In addition, advanced techniques facilitating angiogenesis and vaculogenesis have also been discussed. Oxygen delivery biomaterials, scaffold-free cell sheet techniques, and arteriovenous loop-induced axial vascularization strategies bring us new understanding and powerful strategies to manage revascularization of large craniofacial bone defects. Although promising histological results have been achieved, the efficient perfusion and functionalization of newly formed vessels are still challenging.
Collapse
Affiliation(s)
- T Tian
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Zhang
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Lin
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Cai
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Ma W, Shao X, Zhao D, Li Q, Liu M, Zhou T, Xie X, Mao C, Zhang Y, Lin Y. Self-Assembled Tetrahedral DNA Nanostructures Promote Neural Stem Cell Proliferation and Neuronal Differentiation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7892-7900. [PMID: 29424522 DOI: 10.1021/acsami.8b00833] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stem cell-based therapy is considered a promising approach for the repair of nervous tissues. Neural stem cells (NSCs) cannot proliferate or differentiate efficiently; hence, different biomaterials have been explored to improve NSC proliferation and differentiation. However, these agents either had low bioavailability or poor biocompatibility. In this work, our group investigated the effects of tetrahedral DNA nanostructures (TDNs), a novel DNA biological material, on the self-renew and differentiation of neuroectodermal (NE-4C) stem cells. We observed that TDN treatment promoted self-renew of the stem cells via activating the Wnt/β -catenin pathway. In addition, our findings suggested that NE-4C stem cells' neuronal differentiation could be promoted effectively by TDNs via inhibiting the notch signaling pathway. In summary, this is the first report about the effects of TDNs on the proliferation and differentiation of NE-4C stem cells and the results demonstrate that TDNs have a great potential in nerve tissue regeneration.
Collapse
Affiliation(s)
- Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xiaoru Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Qianshun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Tengfei Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Chenchen Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| |
Collapse
|
32
|
Zhou M, Liu NX, Shi SR, Li Y, Zhang Q, Ma QQ, Tian TR, Ma WJ, Cai XX, Lin YF. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1227-1236. [PMID: 29458214 DOI: 10.1016/j.nano.2018.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 02/05/2023]
Abstract
Dental pulp stem cells (DPSCs) derived from the human dental pulp tissue have multiple differentiation capabilities, such as osteo/odontogenic differentiation. Therefore, DPSCs are deemed as ideal stem cell sources for tissue regeneration. As new nanomaterials based on DNA, tetrahedral DNA nanostructures (TDNs) have tremendous potential for biomedical applications. Here, the authors aimed to explore the part played by TDNs in proliferation and osteo/odontogenic differentiation of DPSCs, and attempted to investigate if these cellular responses could be driven by activating the canonical Notch signaling pathway. Upon exposure to TDNs, proliferation and osteo/odontogenic differentiation of DPSCs were dramatically enhanced, accompanied by up regulation of Notch signaling. In general, our study suggested that TDNs can significantly promote proliferation and osteo/odontogenic differentiation of DPSCs, and this remarkable discovery can be applied in tissue engineering and regenerative medicine to develop a significant and novel method for bone and dental tissue regeneration.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan-Xin Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Si-Rong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yong Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan-Quan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao-Ran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen-Juan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao-Xiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Feng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Zhao D, Li Q, Liu M, Ma W, Zhou T, Xue C, Cai X. Substrate stiffness regulated migration and invasion ability of adenoid cystic carcinoma cells via RhoA/ROCK pathway. Cell Prolif 2018; 51:e12442. [PMID: 29424004 DOI: 10.1111/cpr.12442] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/31/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Human salivary adenoid cystic carcinoma (SACC) is one of the most common malignant tumours of the salivary gland and has strong migratory and invasive ability, which often lead to poor prognosis and lower survival rate. Tumour tissue tends to stiffen during solid tumour progression. This study aimed to investigate the influence of various substrate stiffness on the migration and invasion of SACC. METHODS Salivary adenoid cystic carcinoma cell line ACC2 cells were cultured on polydimethylsiloxane substrates (PDMS) with varying stiffness for investigating the effects of substrate stiffness on the activities of MMPs and TIMPs. The underlying mechanism was also explored. RESULTS When ACC2 cells were cultured on various stiffness of PDMS, the expressions of matrix metalloproteinases 2 (MMP2), MMP9, MMP14, RhoA, Rac1, Rho-associated protein kinase 1 (ROCK1) and ROCK2 were up-regulated with increasing substrate stiffness, whereas that of tissue inhibitor of matrix metalloproteinase 1 (TIMP1), TIMP2 and TIMP4 were down-regulated with increasing substrate stiffness. CONCLUSIONS Our results showed that substrate stiffness regulated the activities of MMPs and TIMPs and then modulate migratory and invasive ability of ACC2 cells via RhoA/ROCK pathway. This work indicate that matrix stiffness played an important role in progression of SACC, which not only can help understand the strong invasive ability of SACC, but also suggested that therapeutically targeting matrix stiffness may help reduce migration and invasion of SACC and improve effective therapies.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianshun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tengfei Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyue Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Zhang Q, Lin S, Shi S, Zhang T, Ma Q, Tian T, Zhou T, Cai X, Lin Y. Anti-inflammatory and Antioxidative Effects of Tetrahedral DNA Nanostructures via the Modulation of Macrophage Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3421-3430. [PMID: 29300456 DOI: 10.1021/acsami.7b17928] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) are a new type of nanomaterials that have recently attracted attention in the field of biomedicine. However, the practical application of nanomaterials is often limited owing to the host immune response. Here, the response of RAW264.7 macrophages to TDNs was comprehensively evaluated. The results showed that TDNs had no observable cytotoxicity and could induce polarization of RAW264.7 cells to the M1 type. TDNs attenuated the expression of NO IL-1β (interleukin-1β), IL-6 (interleukin-6), and TNF-α (tumor necrosis factor-α) in LPS-induced RAW264.7 cells by inhibiting MAPK phosphorylation. In addition, TDNs inhibited LPS-induced reactive oxygen species (ROS) production and cell apoptosis by up-regulating the mRNA expression of antioxidative enzyme heme oxygenase-1 (HO-1). The findings of this study demonstrated that TDNs have great potential as a novel theranostic agent because of their anti-inflammatory and antioxidant activities, high bioavailability, and ease of targeting.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Tengfei Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| |
Collapse
|
35
|
Liu N, Zhou M, Zhang Q, Zhang T, Tian T, Ma Q, Xue C, Lin S, Cai X. Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the WNT signalling pathway. Cell Prolif 2018; 51:e12435. [PMID: 29341308 DOI: 10.1111/cpr.12435] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/13/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Researches showed that stiffness of the extracellular matrix can affect the differentiation of many stem cells. Dental pulp stem cells (DPSCs) are a promising type of adult stem cell. However, we know little about whether and how the behaviour of DPSCs is influenced by stiffness. MATERIALS AND METHODS We carried out a study that cultured DPSCs on tunable elasticity polydimethylsiloxane substrates to investigate the influence on morphology, proliferation, osteogenic/odontogenic differentiation and its possible mechanism. RESULTS Soft substrates changed the cell morphology and inhibited the proliferation of DPSCs. Expression of markers related to osteogenic/odontogenic differentiation was significantly increased as the substrate stiffness increased, including ALP (alkaline phosphatase), OCN (osteocalcin), OPN (osteopontin), RUNX-2 (runt-related transcription factor-2), BMP-2 (bone morphogenetic protein-2), DSPP (dentin sialophosphoprotein) and DMP-1 (dentin matrix protein-1). Mechanical properties promote the function of DPSCs related to the Wnt signalling pathway. CONCLUSIONS Our results showed that mechanical factors can regulate the proliferation and differentiation of DPSCs via the WNT signalling pathway. This provides theoretical basis to optimize dental or bone tissue regeneration through increasing stiffness of extracelluar matrix.
Collapse
Affiliation(s)
- Nanxin Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyue Xue
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Xie X, Shao X, Ma W, Zhao D, Shi S, Li Q, Lin Y. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. NANOSCALE 2018; 10:5457-5465. [PMID: 29484330 DOI: 10.1039/c7nr09692e] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug-loaded tetrahedron DNA nanostructures and their cytotoxic effect on drug-resistant cells have been studied.
Collapse
Affiliation(s)
- X. Xie
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - X. Shao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - W. Ma
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - D. Zhao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - S. Shi
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Q. Li
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Y. Lin
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| |
Collapse
|
37
|
Shi S, Lin S, Li Y, Zhang T, Shao X, Tian T, Zhou T, Li Q, Lin Y. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chem Commun (Camb) 2018; 54:1327-1330. [PMID: 29349457 DOI: 10.1039/c7cc09397g] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) have gathered great attention and are being widely used in biomedicine.
Collapse
Affiliation(s)
- Sirong Shi
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yong Li
- Department of Oral and Maxillofacial Surgery
- Hospital of Stomatology
- Southwest Medical University
- Luzhou 646000
- China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Xiaoru Shao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Tengfei Zhou
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Qianshun Li
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| |
Collapse
|
38
|
Bachmann BJ, Giampietro C, Bayram A, Stefopoulos G, Michos C, Graeber G, Falk MV, Poulikakos D, Ferrari A. Honeycomb-structured metasurfaces for the adaptive nesting of endothelial cells under hemodynamic loads. Biomater Sci 2018; 6:2726-2737. [DOI: 10.1039/c8bm00660a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The thrombogenicity of artificial materials comprising ventricular assist devices (VADs) limits their long-term integration in the human body.
Collapse
Affiliation(s)
- Bjoern Johann Bachmann
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Costanza Giampietro
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Adem Bayram
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Georgios Stefopoulos
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Christos Michos
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Gustav Graeber
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Med Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery
- German Heart Institute Berlin
- Berlin
- Germany
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| |
Collapse
|
39
|
Zhou T, Li G, Lin S, Tian T, Ma Q, Zhang Q, Shi S, Xue C, Ma W, Cai X, Lin Y. Electrospun Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/Graphene Oxide Scaffold: Enhanced Properties and Promoted in Vivo Bone Repair in Rats. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42589-42600. [PMID: 29148704 DOI: 10.1021/acsami.7b14267] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tengfei Zhou
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Guo Li
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Shiyu Lin
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Taoran Tian
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Quanquan Ma
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Qi Zhang
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Sirong Shi
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Changyue Xue
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Wenjuan Ma
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Yunfeng Lin
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| |
Collapse
|
40
|
Zhang Q, Lin S, Zhang T, Tian T, Ma Q, Xie X, Xue C, Lin Y, Zhu B, Cai X. Curved microstructures promote osteogenesis of mesenchymal stem cells via the RhoA/ROCK pathway. Cell Prolif 2017; 50:e12356. [PMID: 28714177 PMCID: PMC6529063 DOI: 10.1111/cpr.12356] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Cells in the osteon reside in a curved space, accordingly, the curvature of the microenvironment is an important geometric feature in bone formation. However, it is not clear how curved microstructures affect cellular behaviour in bone tissue. MATERIALS AND METHODS Rat primary bone marrow mesenchymal stem cells (BMSCs) on wavy microgrooves were exposed to PDMS substrates with various curvatures to investigate alterations in cellular morphology and osteogenic differentiation. Additionally, the expression levels of RhoA and its effectors were examined by immunofluorescence and quantitative PCR to determine the mechanisms of curvature-dependent osteogenic differentiation. RESULTS Wavy microgrooves caused dramatic nuclear distortion and cytoskeletal remodelling. We detected a noticeable increase in the expression of osteogenic-related genes in BMSCs in wavy microgroove groups, and the maximum expression was observed in the high curvature group. Moreover, immunofluorescent staining and quantitative RT-PCR results for RhoA and its effectors showed that the RhoA/ROCK signalling pathway is associated with curvature-dependent osteogenic differentiation. CONCLUSIONS Our results illustrated that curved microstructures could promote BMSC differentiation to the osteogenic lineage, and the osteogenic effects of higher curvature are more obvious. Wavy microstructures could also influence the RhoA/ROCK pathway. Accordingly, curved microstructures may be useful in bone tissue engineering.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Shiyu Lin
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Tao Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Taoran Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Quanquan Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xueping Xie
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Changyue Xue
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Yunfeng Lin
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXianChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXianChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|