1
|
Chung KS, Heo SW, Lee JH, Han HS, Kim GH, Kim YR, Kim MS, Hong JE, Rhee KJ, Lee KT. Protective potential of nodakenin in high-fat diet-mediated colitis-associated cancer: Inhibition of STAT3 activation and Wnt/β-catenin pathway, and gut microbiota modulation. Int Immunopharmacol 2025; 157:114734. [PMID: 40318275 DOI: 10.1016/j.intimp.2025.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
A high-fat diet (HFD) exerts complex effects on the risk of colitis-associated cancer (CAC). Nodakenin, a key phytochemical isolated from the dried roots of Angelicae gigas Nakai (Umbelliferae), possesses anti-inflammatory and anti-adipogenic properties and shows potential as a therapeutic agent for colorectal cancer (CRC). In this study, we investigated the protective effects and underlying molecular mechanisms of nodakenin in an animal model of CRC induced by HFD, azoxymethane (AOM), and dextran sodium sulfate (DSS). Oral administration of nodakenin significantly alleviated clinical symptoms, such as recovery of weight, spleen weight, and colon length, and suppressed tumor progression in the colonic tissues of HFD/AOM/DSS-induced CRC mice. Nodakenin inhibited the activation of STAT3-related inflammatory mediators and downregulated proteins involved in the Wnt/β-catenin signaling pathway. These effects contributed to the disruption of epithelial-mesenchymal transition (EMT) and the restoration of tight junction integrity within the colonic tissue. Furthermore, nodakenin treatment improved the composition of the gut microbiota, leading to observable species-level differences. Network analysis revealed significant correlations between clinical parameters, inflammatory markers, EMT and apoptotic factors, and the composition of the gut microbiota. Specifically, negative correlations were observed between spleen weight and Alistipes, as well as between MCP-1 and Clostridium_g21. Positive correlations with spleen weight were observed with species belonging to Anaerotruncus, Emergencia, and Parvibacter. Bacteroidaceae_uc and Bacteroides correlated positively with MCP-1, Streptococcus correlated positively with PUMA, and Harryflintia, Odoribacteraceae_uc, and Roseburia correlated positively with cleaved caspase-3. Overall, our findings suggested that nodakenin effectively alleviates HFD/AOM/DSS-induced CRC by targeting inflammatory pathways (STAT3 and Wnt/β-catenin), suppressing EMT, and restoring gut microbiota balance. These multiple mechanisms underscore its potential as a promising agent for the prevention and treatment of colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Won Heo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gi-Hui Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ye-Rin Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Su Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Lü J, Jiang C, Drabick JJ, Joshi M, Perimbeti S. Angelica gigas Nakai (Korean Dang-gui) Root Alcoholic Extracts in Health Promotion and Disease Therapy - active Phytochemicals and In Vivo Molecular Targets. Pharm Res 2025; 42:25-47. [PMID: 39779619 PMCID: PMC11785709 DOI: 10.1007/s11095-024-03809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Angelica gigas Nakai (AGN) root is a medicinal herbal widely used in traditional medicine in Korea. AGN root ethanolic extracts have been marketed as dietary supplements in the United States for memory health and pain management. We have recently reviewed the pharmacokinetics (PK) and first-pass hepatic metabolism of ingested AGN supplements in humans for the signature pyranocoumarins decursin (D, Cmax 1x), decursinol angelate (DA, Cmax ~ 10x) and their common botanical precursor and hepatic metabolite decursinol (DOH, Cmax ~ 1000x). Here we update in vivo medicinal activities of AGN and/or its pyranocoumarins and furanocoumarin nodakenin in cancer, pain, memory loss, cerebral ischemia reperfusion stroke, metabolic syndrome and vascular endothelial dysfunctions, anxiety, sleep disorder, epilepsy, inflammatory bowel disease, osteoporosis and osteoarthritis. Given their polypharmacology nature, the pertinent mechanisms of action are likely misrepresented by many cell culture studies that did not consider the drug metabolism knowledge. We report here Rho-associated protein kinases (ROCK1/2) as novel targets for DA and DOH. Combining with published inhibitory activity of DOH on acetylcholinesterase, agonist activity of DOH and antagonist/degrader activity of DA/D on androgen and estrogen receptors, D/DA promoting activity for glutamic acid decarboxylase (GAD)- gamma-aminobutyric acid (GABA) inhibitory axis and inhibition of glutamate dehydrogenase (GDH), monoamine oxidase-A (MAO-A) and transient receptor potential vanilloid 1 (TRPV1), we postulate their contributions to neuro-cognitive, metabolic, oncologic, vascular and other beneficial bioactivities of AGN extracts. A clinical trial is being planned for an AGN extract to manage side effects of androgen deprivation therapy in prostate cancer patients.
Collapse
Affiliation(s)
- Junxuan Lü
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA.
- Center for Cannabis and Natural Product Pharmaceutics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Cheng Jiang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Center for Cannabis and Natural Product Pharmaceutics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joseph J Drabick
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Monika Joshi
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Stuthi Perimbeti
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
3
|
Lee E, Nam JO. Anti-Obesity and Anti-Diabetic Effects of Ostericum koreanum (Ganghwal) Extract. Int J Mol Sci 2024; 25:4908. [PMID: 38732125 PMCID: PMC11084156 DOI: 10.3390/ijms25094908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.
Collapse
Affiliation(s)
- Eunbi Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Song J, Qin BF, Zhang JJ, Feng QY, Liu GC, Zhao GY, Sun HM. Regulation of the Nur77-P2X7r Signaling Pathway by Nodakenin: A Potential Protective Function against Alcoholic Liver Disease. Molecules 2024; 29:1078. [PMID: 38474588 DOI: 10.3390/molecules29051078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Alcoholic liver disease (ALD) is the main factor that induces liver-related death worldwide and represents a common chronic hepatopathy resulting from binge or chronic alcohol consumption. This work focused on revealing the role and molecular mechanism of nodakenin (NK) in ALD associated with hepatic inflammation and lipid metabolism through the regulation of Nur77-P2X7r signaling. In this study, an ALD model was constructed through chronic feeding of Lieber-DeCarli control solution with or without NK treatment. Ethanol (EtOH) or NK was administered to AML-12 cells, after which Nur77 was silenced. HepG2 cells were exposed to ethanol (EtOH) and subsequently treated with recombinant Nur77 (rNur77). Mouse peritoneal macrophages (MPMs) were treated with lipopolysaccharide/adenosine triphosphate (LPS/ATP) and NK, resulting in the generation of conditioned media. In vivo, histopathological alterations were markedly alleviated by NK, accompanied by reductions in serum triglyceride (TG), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels and the modulation of Lipin-1, SREBP1, and Nur77 levels in comparison to the EtOH-exposed group (p < 0.001). Additionally, NK reduced the production of P2X7r and NLRP3. NK markedly upregulated Nur77, inhibited P2X7r and Lipin-1, and promoted the function of Cytosporone B, a Nur77 agonist (p < 0.001). Moreover, Nur77 deficiency weakened the regulatory effect of NK on P2X7r and Lipin-1 inhibition (p < 0.001). In NK-exposed MPMs, cleaved caspase-1 and mature IL-1β expression decreased following LPS/ATP treatment (p < 0.001). NK also decreased inflammatory-factor production in primary hepatocytes stimulated with MPM supernatant. NK ameliorated ETOH-induced ALD through a reduction in inflammation and lipogenesis factors, which was likely related to Nur77 activation. Hence, NK is a potential therapeutic approach to ALD.
Collapse
Affiliation(s)
- Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Jin-Jin Zhang
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Guan-Cheng Liu
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Gui-Yun Zhao
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin 132013, China
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin 132013, China
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin 132013, China
| |
Collapse
|
5
|
Liu C, Zhao M, Chen J, Xu L, Wang K, Li G. Nodakenin alleviates ovariectomy-induced osteoporosis by modulating osteoblastogenesis and osteoclastogenesis. Eur J Pharmacol 2023; 960:176121. [PMID: 37866743 DOI: 10.1016/j.ejphar.2023.176121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/13/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Osteoporosis, a systemic bone disease defined by decreased bone mass and deterioration of bone microarchitecture, is becoming a global concern. Nodakenin (NK) is a furanocoumarin-like compound isolated from the traditional Chinese medicine Radix Angelicae biseratae (RAB). NK has been reported to have various pharmacological activities, but osteoporosis has not been reported to be affected by NK. In this study, we used network pharmacology, molecular docking and molecular dynamics simulation techniques to identify potential targets and pathways of NK in osteoporosis. We found that NK treatment significantly promoted osteogenic differentiation of BMSCs while activating the PI3K/AKT/mTOR signalling pathway by measuring alkaline phosphatase activity and the expression of various osteogenic markers. In contrast, LY294002, an inhibitor of PI3K, reversed these changes and inhibited the osteogenic differentiation-enabling effect of NK. Meanwhile, prevent the Akt and NFκB signalling pathways by down-regulating c-Src and TRAF6 thereby effectively inhibiting RANKL-induced osteoclastogenesis. In addition, oral administration of NK to mice significantly elevated bone mass and ameliorated ovariectomized (OVX)-mediated bone microarchitectural disorders. In conclusion, these data suggest that NK attenuates OVX-induced bone loss by enhancing osteogenesis and inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Chunxiao Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingyue Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Liwen Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kaiying Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
6
|
Lü J, Jiang C, Schell TD, Joshi M, Raman JD, Xing C. Angelica gigas: Signature Compounds, In Vivo Anticancer, Analgesic, Neuroprotective and Other Activities, and the Clinical Translation Challenges. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1475-1527. [PMID: 35876033 DOI: 10.1142/s0192415x2250063x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Angelica gigas Nakai (AGN) root is a medicinal herbal widely used in traditional medicine in Korea. AGN root ethanolic extract dietary supplements are marketed in the United States for memory health and pain management. We comprehensively reviewed the anticancer, analgesic, pro-memory and other bio-activities of AGN extract and its signature phytochemicals decursin, decursinol angelate, and decursinol a decade ago in 2012 and updated their anticancer activities in 2015. In the last decade, significant progress has been made for understanding the pharmacokinetics (PK) and metabolism of these compounds in animal models and single dose human PK studies have been published by us and others. In addition to increased knowledge of the known bioactivities, new bioactivities with potential novel health benefits have been reported in animal models of cerebral ischemia/stroke, anxiety, sleep disorder, epilepsy, inflammatory bowel disease, sepsis, metabolic disorders, osteoporosis, osteoarthritis, and even male infertility. Herein, we will update PK and metabolism of pyranocoumarins, review in vivo bioactivities from animal models and human studies, and critically appraise the relevant active compounds, the cellular and molecular pharmacodynamic targets, and pertinent mechanisms of action. Knowledge gaps include whether human pyranocoumarin PK metrics are AGN dose dependent and subjected to metabolic ceiling, or metabolic adaptation after repeated use. Critical clinical translation challenges include sourcing of AGN extracts, product consistency and quality control, and AGN dose optimization for different health conditions and disease indications. Future research directions are articulated to fill knowledge gaps and address these challenges.
Collapse
Affiliation(s)
- Junxuan Lü
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Cheng Jiang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Todd D Schell
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Monika Joshi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jay D Raman
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Khutami C, Sumiwi SA, Khairul Ikram NK, Muchtaridi M. The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism. Int J Mol Sci 2022; 23:ijms23042056. [PMID: 35216172 PMCID: PMC8875143 DOI: 10.3390/ijms23042056] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a risk factor that leads to the development of other diseases such as dyslipidemia and diabetes. These three metabolic disorders can occur simultaneously, hence, the treatment requires many drugs. Antioxidant compounds have been reported to have activities against obesity, dyslipidemia and diabetes via several mechanisms. This review aims to discuss the antioxidant compounds that have activity against obesity, dyslipidemia and diabetes together with their molecular signaling mechanism. The literature discussed in this review was obtained from the PUBMED database. Based on the collection of literature obtained, antioxidant compounds having activity against the three disorders (obesity, dyslipidemia and diabetes) were identified. The activity is supported by various molecular signaling pathways that are influenced by these antioxidant compounds, further study of which would be useful in predicting drug targets for a more optimal effect. This review provides insights on utilizing one of these antioxidant compounds as opposed to several drugs. It is hoped that in the future, the number of drugs in treating obesity, dyslipidemia and diabetes altogether can be minimized consequently reducing the risk of side effects.
Collapse
Affiliation(s)
- Chindiana Khutami
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Research in Biotechnology for Agriculture (CEBAR), Kuala Lumpur 50603, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia
- Correspondence:
| |
Collapse
|
8
|
Jin BR, Kim HJ, Sim SA, Lee M, An HJ. Anti-Obesity Drug Orlistat Alleviates Western-Diet-Driven Colitis-Associated Colon Cancer via Inhibition of STAT3 and NF-κB-Mediated Signaling. Cells 2021; 10:cells10082060. [PMID: 34440829 PMCID: PMC8394553 DOI: 10.3390/cells10082060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/31/2022] Open
Abstract
Many researchers have argued that Western diet (WD)-induced obesity accelerates inflammation and that inflammation is a link between obesity and colorectal cancer (CRC). This study investigated the effect of WDs on the development and progression of colitis-associated colon cancer (CAC) and the efficacy of the anti-obesity agent orlistat on WD-driven CAC in mice. The results revealed that the WD exacerbated CAC in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mice, which showed increased mortality, tumor formation, and aggravation of tumor progression. Furthermore, WD feeding also upregulated inflammation, hyperplasia, and tumorigenicity levels through the activation of STAT3 and NF-κB signaling in an AOM/DSS-induced mouse model. In contrast, treatment with orlistat increased the survival rate and alleviated the symptoms of CAC, including a recovery in colon length and tumor production decreases in WD-driven AOM/DSS-induced mice. Additionally, orlistat inhibited the extent of inflammation, hyperplasia, and tumor progression via the inhibition of STAT3 and NF-κB activation. Treatment with orlistat also suppressed the β-catenin, slug, XIAP, Cdk4, cyclin D, and Bcl-2 protein levels in WD-driven AOM/DSS-induced mice. The results of this study indicate that orlistat alleviates colon cancer promotion in WD-driven CAC mice by suppressing inflammation, especially by inhibiting STAT3 and NF-κB activation.
Collapse
Affiliation(s)
- Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Gangwon-do, Korea; (B.-R.J.); (H.-J.K.); (S.-A.S.)
| | - Hyo-Jung Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Gangwon-do, Korea; (B.-R.J.); (H.-J.K.); (S.-A.S.)
| | - Seo-Ah Sim
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Gangwon-do, Korea; (B.-R.J.); (H.-J.K.); (S.-A.S.)
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea
- Correspondence: (M.L.); (H.-J.A.); Tel.: +82-33-738-7503 (H.-J.A.); Fax: +82-33-730-0679 (H.-J.A.)
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si 26339, Gangwon-do, Korea; (B.-R.J.); (H.-J.K.); (S.-A.S.)
- Correspondence: (M.L.); (H.-J.A.); Tel.: +82-33-738-7503 (H.-J.A.); Fax: +82-33-730-0679 (H.-J.A.)
| |
Collapse
|
9
|
Jin BR, Lee M, An HJ. Nodakenin represses obesity and its complications via the inhibition of the VLDLR signalling pathway in vivo and in vitro. Cell Prolif 2021; 54:e13083. [PMID: 34165214 PMCID: PMC8349651 DOI: 10.1111/cpr.13083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives Nodakenin (NK) is a coumarin glucoside that is found in the roots of Angelicae gigas. A limited number of studies have been conducted on the pharmacological activities of NK. Although NK is an important natural resource having anti‐inflammatory and antioxidant effects, no investigation has been conducted to examine the effects of NK on obesity and obesity‐induced inflammation. Materials and Methods The present study investigated the therapeutic effects of NK treatment on obesity and its complications, and its mechanism of action using differentiated 3T3‐L1 adipocytes and high‐fat diet (HFD)‐induced obese mice. Oil red O staining, western blot assay, qRT‐PCR assay, siRNA transfection, enzyme‐linked immunosorbent assay, H&E staining, immunohistochemistry, molecular docking and immunofluorescence staining were utilized. Results Treatment with NK demonstrated anti‐adipogenesis effects via the regulation of adipogenic transcription factors and genes associated with triglyceride synthesis in differentiated 3T3‐L1 adipocytes. Compared with the control group, the group administered NK showed a suppression in weight gain, dyslipidaemia and the development of fatty liver in HFD‐induced obese mice. In addition, NK administration inhibited adipogenic differentiation and obesity‐induced inflammation and oxidative stress via the suppression of the VLDLR and MEK/ERK1/2 pathways. This is the first study that has documented the interaction between NK and VLDLR structure. Conclusion These results demonstrate the potential of NK as a natural product‐based therapeutic candidate for the treatment of obesity and its complications by targeting adipogenesis and adipose tissue inflammation‐associated markers.
Collapse
Affiliation(s)
- Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang-si, Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Korea
| |
Collapse
|