1
|
Heimpel GE, Abram PK, Causton CE, Celis SL, Coll M, Hardy ICW, Mangel M, Mills NJ, Segoli M. A benefit-risk analysis for biological control introductions based on the protection of native biodiversity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3012. [PMID: 39080812 DOI: 10.1002/eap.3012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024]
Abstract
The release of biological control agents has been an important means of controlling invasive species for over 150 years. While these releases have led to the sustainable control of over 250 invasive pest and weed species worldwide, a minority have caused environmental harm. A growing recognition of the risks of biological control led to a focus on risk assessment beginning in the 1990s along with a precipitous decline in releases. While this new focus greatly improved the safety of biological control, it came at the cost of lost opportunities to solve environmental problems associated with invasive species. A framework that incorporates benefits and risks of biological control is thus needed to understand the net environmental effects of biological control releases. We introduce such a framework, using native biodiversity as the common currency for both benefits and risks. The model is based on interactions among four categories of organisms: (1) the biological control agent, (2) the invasive species (pest or weed) targeted by the agent, (3) one or more native species that stand to benefit from the control of the target species, and (4) one or more native species that are at risk of being harmed by the released biological control agent. Conservation values of the potentially benefited and harmed native species are incorporated as well, and they are weighted according to three axes: vulnerability to extinction, the ecosystem services provided, and cultural significance. Further, we incorporate the potential for indirect risks to native species, which we consider will result mainly from the ecological process of agent enrichment that may occur if the agent exploits but does not control the target pest or weed. We illustrate the use of this framework by retrospectively analyzing the release of the vedalia beetle, Novius (= Rodolia) cardinalis, to control the cottony cushion scale, Icerya purchasi, in the Galapagos Islands. While the framework is particularly adaptable to biological control releases in natural areas, it can also be used in managed settings, where biological control protects native species through the reduction of pesticide use.
Collapse
Affiliation(s)
- George E Heimpel
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Paul K Abram
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada
| | - Charlotte E Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos, Ecuador
| | - Sabrina L Celis
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Moshe Coll
- Department of Entomology, the R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ian C W Hardy
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Mangel
- Theoretical Ecology Group, Department of Biology, University of Bergen, Bergen, Norway
| | - Nicholas J Mills
- Department of Environmental Science Policy and Management, University of California, Berkeley, California, USA
| | - Michal Segoli
- Mitrani Department of Desert Ecology, SIDEER, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
2
|
Bellis J, Osazuwa-Peters O, Maschinski J, Keir MJ, Parsons EW, Kaye TN, Kunz M, Possley J, Menges E, Smith SA, Roth D, Brewer D, Brumback W, Lange JJ, Niederer C, Turner-Skoff JB, Bontrager M, Braham R, Coppoletta M, Holl KD, Williamson P, Bell T, Jonas JL, McEachern K, Robertson KL, Birnbaum SJ, Dattilo A, Dollard JJ, Fant J, Kishida W, Lesica P, Link SO, Pavlovic NB, Poole J, Reemts CM, Stiling P, Taylor DD, Titus JH, Titus PJ, Adkins ED, Chambers T, Paschke MW, Heineman KD, Albrecht MA. Identifying predictors of translocation success in rare plant species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14190. [PMID: 37768181 DOI: 10.1111/cobi.14190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
The fundamental goal of a rare plant translocation is to create self-sustaining populations with the evolutionary resilience to persist in the long term. Yet, most plant translocation syntheses focus on a few factors influencing short-term benchmarks of success (e.g., survival and reproduction). Short-term benchmarks can be misleading when trying to infer future growth and viability because the factors that promote establishment may differ from those required for long-term persistence. We assembled a large (n = 275) and broadly representative data set of well-documented and monitored (7.9 years on average) at-risk plant translocations to identify the most important site attributes, management techniques, and species' traits for six life-cycle benchmarks and population metrics of translocation success. We used the random forest algorithm to quantify the relative importance of 29 predictor variables for each metric of success. Drivers of translocation outcomes varied across time frames and success metrics. Management techniques had the greatest relative influence on the attainment of life-cycle benchmarks and short-term population trends, whereas site attributes and species' traits were more important for population persistence and long-term trends. Specifically, large founder sizes increased the potential for reproduction and recruitment into the next generation, whereas declining habitat quality and the outplanting of species with low seed production led to increased extinction risks and a reduction in potential reproductive output in the long-term, respectively. We also detected novel interactions between some of the most important drivers, such as an increased probability of next-generation recruitment in species with greater seed production rates, but only when coupled with large founder sizes. Because most significant barriers to plant translocation success can be overcome by improving techniques or resolving site-level issues through early intervention and management, we suggest that by combining long-term monitoring with adaptive management, translocation programs can enhance the prospects of achieving long-term success.
Collapse
Affiliation(s)
- Joe Bellis
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, USA
- Center for Plant Conservation, Escondido, California, USA
| | - Oyomoare Osazuwa-Peters
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joyce Maschinski
- Center for Plant Conservation, Escondido, California, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| | - Matthew J Keir
- Department of Land and Natural Resources, Hawai'i Division of Forestry and Wildlife, Honolulu, Hawaii, USA
| | - Elliott W Parsons
- Pacific Regional Invasive Species and Climate Change Management Network, University of Hawaii at Mānoa, Honolulu, Hawaii, USA
| | - Thomas N Kaye
- Institute for Applied Ecology, Corvallis, Oregon, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Michael Kunz
- North Carolina Botanical Garden, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Eric Menges
- Archbold Biological Station, Venus, Florida, USA
| | - Stacy A Smith
- Archbold Biological Station, Venus, Florida, USA
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Daniela Roth
- New Mexico Energy, Minerals, and Natural Resources Department, Forestry Division, Santa Fe, New Mexico, USA
| | - Debbie Brewer
- Fort Huachuca Environmental and Natural Resources Division, Fort Huachuca, Arizona, USA
| | | | - James J Lange
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| | | | | | - Megan Bontrager
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Richard Braham
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Karen D Holl
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, California, USA
| | - Paula Williamson
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | | | - Jayne L Jonas
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Kathryn McEachern
- U.S. Geological Survey, WERC-Channel Islands Field Station, Ventura, California, USA
| | | | | | - Adam Dattilo
- Tennessee Valley Authority, Knoxville, Tennessee, USA
| | - John J Dollard
- Croatan National Forest, Forest Service, New Bern, North Carolina, USA
| | | | - Wendy Kishida
- Department of Land and Natural Resources, Hawai'i Division of Forestry and Wildlife, Honolulu, Hawaii, USA
| | - Peter Lesica
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Steven O Link
- Department of Natural Resources, Energy and Environmental Sciences Program, Pendleton, Oregon, USA
| | - Noel B Pavlovic
- U.S. Geological Survey, GLSC - Lake Michigan Ecological Research Station, Chesterton, Indiana, USA
| | - Jackie Poole
- Texas Parks & Wildlife Department, Austin, Texas, USA
| | | | - Peter Stiling
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - David D Taylor
- Daniel Boone National Forest, USDA Forest Service, Winchester, Kentucky, USA
| | - Jonathan H Titus
- Biology Department, Science Center, State University of New York, Fredonia, New York, USA
| | | | - Edith D Adkins
- Pacific Cooperative Studies Unit, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Timothy Chambers
- U.S Army Natural Resources Program on Oahu, Schofield Barracks, Hawaii, USA
| | - Mark W Paschke
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado, USA
| | | | - Matthew A Albrecht
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Iverson ENK. Conservation Mitonuclear Replacement: Facilitated mitochondrial adaptation for a changing world. Evol Appl 2024; 17:e13642. [PMID: 38468713 PMCID: PMC10925831 DOI: 10.1111/eva.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Most species will not be able to migrate fast enough to cope with climate change, nor evolve quickly enough with current levels of genetic variation. Exacerbating the problem are anthropogenic influences on adaptive potential, including the prevention of gene flow through habitat fragmentation and the erosion of genetic diversity in small, bottlenecked populations. Facilitated adaptation, or assisted evolution, offers a way to augment adaptive genetic variation via artificial selection, induced hybridization, or genetic engineering. One key source of genetic variation, particularly for climatic adaptation, are the core metabolic genes encoded by the mitochondrial genome. These genes influence environmental tolerance to heat, drought, and hypoxia, but must interact intimately and co-evolve with a suite of important nuclear genes. These coadapted mitonuclear genes form some of the important reproductive barriers between species. Mitochondrial genomes can and do introgress between species in an adaptive manner, and they may co-introgress with nuclear genes important for maintaining mitonuclear compatibility. Managers should consider the relevance of mitonuclear genetic variability in conservation decision-making, including as a tool for facilitating adaptation. I propose a novel technique dubbed Conservation Mitonuclear Replacement (CmNR), which entails replacing the core metabolic machinery of a threatened species-the mitochondrial genome and key nuclear loci-with those from a closely related species or a divergent population, which may be better-adapted to climatic changes or carry a lower genetic load. The most feasible route to CmNR is to combine CRISPR-based nuclear genetic editing with mitochondrial replacement and assisted reproductive technologies. This method preserves much of an organism's phenotype and could allow populations to persist in the wild when no other suitable conservation options exist. The technique could be particularly important on mountaintops, where rising temperatures threaten an alarming number of species with almost certain extinction in the next century.
Collapse
Affiliation(s)
- Erik N. K. Iverson
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
4
|
Morris AB, Visger CJ, Fox SJ, Scalf C, Fleming S, Call G. Defining Populations and Predicting Future Suitable Niche Space in the Geographically Disjunct, Narrowly Endemic Leafy Prairie-Clover ( Dalea foliosa; Fabaceae). PLANTS (BASEL, SWITZERLAND) 2024; 13:495. [PMID: 38498467 PMCID: PMC10891826 DOI: 10.3390/plants13040495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
Conservation actions for rare species are often based on estimates of population size and number, which are challenging to capture in natural systems. Instead, many definitions of populations rely on arbitrarily defined distances between occurrences, which is not necessarily biologically meaningful despite having utility from a conservation management perspective. Here, we introduce a case study using the narrowly endemic and highly geographically disjunct leafy prairie-clover (Dalea foliosa), for which we use nuclear microsatellite loci to assess the current delimitations of populations and management units across its entire known range. We model future potential suitable niche space for the species to assess how currently defined populations could fare under predicted changes in climate over the next 50 years. Our results indicate that genetic variation within the species is extremely limited, particularly so in the distal portions of its range (Illinois and Alabama). Within the core of its range (Tennessee), genetic structure is not consistent with populations as currently defined. Our models indicate that predicted suitable niche space may only marginally overlap with the geology associated with this species (limestone glades and dolomite prairies) by 2070. Additional studies are needed to evaluate the extent to which populations are ecologically adapted to local environments and what role this could play in future translocation efforts.
Collapse
Affiliation(s)
- Ashley B. Morris
- Department of Biology, Furman University, Greenville, SC 29613, USA;
- Independent Researcher, San Antonio, TX 78247, USA;
| | - Clayton J. Visger
- Department of Biological Sciences, California State University, Sacramento, CA 95819, USA;
| | - Skyler J. Fox
- Department of Biology, Furman University, Greenville, SC 29613, USA;
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | | | - Sunny Fleming
- Environmental Systems Research Institute, Inc. (ESRI), Redlands, CA 92373, USA;
| | - Geoff Call
- Tennessee Ecological Services Field Office, U.S. Fish and Wildlife Service, Cookeville, TN 38501, USA;
| |
Collapse
|
5
|
Doden E, Budy P, Conner M, Young JK. Comparing translocated beavers used as passive restoration tools to resident beavers in degraded desert rivers. Anim Conserv 2022. [DOI: 10.1111/acv.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- E. Doden
- Department of Wildland Resources Utah State University Logan UT USA
- The Ecology Center Utah State University Logan UT USA
| | - P. Budy
- The Ecology Center Utah State University Logan UT USA
- Utah Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey Utah State University Logan UT USA
- Department of Watershed Sciences Utah State University Logan UT USA
| | - M. Conner
- Department of Wildland Resources Utah State University Logan UT USA
| | - J. K. Young
- Department of Wildland Resources Utah State University Logan UT USA
| |
Collapse
|
6
|
Species movements within biogeographic regions: exploring the distribution of transplanted mollusc species in South America. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Cogoni D, Grace MK, Long B, Orsenigo S, Fenu G. The IUCN Green Status of Species: A Call for Mediterranean Botanists to Contribute to This New Ambitious Effort. PLANTS (BASEL, SWITZERLAND) 2022; 11:2592. [PMID: 36235458 PMCID: PMC9572627 DOI: 10.3390/plants11192592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In the Mediterranean Basin, a critical focal point for the conservation of plant diversity, there has been a large increase in practical conservation actions for many plant species to prevent extinction and to improve their conservation status; quantifying the effectiveness of these initiatives in reversing species declines is urgently important. In 2021, the International Union for Conservation of Nature (IUCN) launched a new tool that allows the impact of conservation actions on plant species to be assessed. The Green Status of Species is a new set of metrics under the Red List of Threatened Species that assigns species to recovery categories, complementary to the classic extinction risk categories. Crucially, the Green Status of Species provides methods to evaluate the impact of past conservation, and the potential for future conservation impact, on species status and recovery in a standardized way. Considering the efforts made so far for the conservation of Mediterranean threatened plants, using the Green Status of Species would be highly useful to direct future conservation policies. We, therefore, encourage botanists and practitioners working on threatened plants in the Mediterranean area to use this new assessment tool to inform conservation and recovery programs.
Collapse
Affiliation(s)
- Donatella Cogoni
- Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Molly K. Grace
- Wadham College, University of Oxford, Oxford OX1 3SZ, UK
| | - Barney Long
- Re: Wild, P.O. Box 129, Austin, TX 78767, USA
| | - Simone Orsenigo
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Fenu
- Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| |
Collapse
|
8
|
Vandergast AG, Kus BE, Smith JG, Mitelberg A. Recent declines in genetic diversity with limited dispersal among coastal cactus wren populations in San Diego County, California. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Amy G. Vandergast
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| | - Barbara E. Kus
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| | - Julia G. Smith
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| | - Anna Mitelberg
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| |
Collapse
|
9
|
Novak BJ, Phelan R, Weber M. Response to Strayer (2022). CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Ramirez IE, Causton CE, Gutierrez GA, Mosquera D, Piedrahita P, Heimpel GE. Specificity within bird–parasite–parasitoid food webs: A novel approach for evaluating potential biological control agents of the avian vampire fly. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ismael E. Ramirez
- Department of Entomology University of Minnesota St. Paul Minnesota USA
| | | | - George A. Gutierrez
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral Guayaquil Ecuador
| | - Denis A. Mosquera
- Charles Darwin Research Station Charles Darwin Foundation Santa Cruz Ecuador
| | - Paolo Piedrahita
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral Guayaquil Ecuador
| | - George E. Heimpel
- Department of Entomology University of Minnesota St. Paul Minnesota USA
| |
Collapse
|
11
|
Stead JE, Boucher VL, Moyle PB, Rypel AL. Growth of Lahontan cutthroat trout from multiple sources re-introduced into Sagehen Creek, CA. PeerJ 2022; 10:e13322. [PMID: 35607448 PMCID: PMC9123885 DOI: 10.7717/peerj.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/01/2022] [Indexed: 01/13/2023] Open
Abstract
Lahontan cutthroat trout Oncorhynchus clarkii henshawi have experienced massive declines in their native range and are now a threatened species under the US Endangered Species Act. A key management goal for this species is re-establishing extirpated populations using translocations and conservation hatcheries. In California USA, two broodstocks (Pilot Peak and Independence Lake) are available for reintroduction, in addition to translocations from wild and naturalized sources. Pilot Peak and Independence Lake fish are hatchery stocks derived from native fish from the Truckee River basin and used for recovery activities in the western Geographic Management Unit Areas only, specifically within the Truckee River basin. Yet suitability of these sources for re-introduction in different ecosystem types remains an open and important topic. We conducted growth experiments using Lahontan cutthroat trout stocked into Sagehen Creek, CA, USA. Experiments evaluated both available broodstocks and a smaller sample of fish translocated representing a naturalized population of unknown origin from a nearby creek. Fish from the Independence Lake source had significantly higher growth in weight and length compared to the other sources. Further, Independence Lake fish were the only stock that gained weight on average over the duration of the experiment. Our experiments suggest fish from the Independence Lake brood stock should be considered in reintroduction efforts.
Collapse
Affiliation(s)
- Jonathan E. Stead
- Department of Wildlife, Fish & Conservation Biology, University of California Davis, Davis, CA, United States,AECOM, Oakland, California, USA
| | - Virginia L. Boucher
- John Muir Institute of the Environment, University of California Davis, Davis, California, USA
| | - Peter B. Moyle
- Department of Wildlife, Fish & Conservation Biology, University of California Davis, Davis, CA, United States,Center for Watershed Sciences, University of California Davis, Davis, United States
| | - Andrew L. Rypel
- Department of Wildlife, Fish & Conservation Biology, University of California Davis, Davis, CA, United States,Center for Watershed Sciences, University of California Davis, Davis, United States
| |
Collapse
|
12
|
Strayer DL. Comment: Novak et al. (2021) overestimated the successes of species translocations and minimized their risks. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- David L. Strayer
- Cary Institute of Ecosystem Studies Millbrook New York USA
- Graham Sustainability Institute, University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
13
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Mitchell WF, Boulton RL, Sunnucks P, Clarke RH. Are we adequately assessing the demographic impacts of harvesting for wild‐sourced conservation translocations? CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Rebecca L. Boulton
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
| | - Paul Sunnucks
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Rohan H. Clarke
- School of Biological Sciences Monash University Clayton Victoria Australia
| |
Collapse
|
15
|
Gargiulo R, Adamo M, Cribb PJ, Bartolucci F, Sarasan V, Alessandrelli C, Bona E, Ciaschetti G, Conti F, Di Cecco V, Di Martino L, Gentile C, Juan A, Magrini S, Mucciarelli M, Perazza G, Fay MF. Combining current knowledge of
Cypripedium calceolus
with a new analysis of genetic variation in Italian populations to provide guidelines for conservation actions. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Martino Adamo
- Department of Life Sciences and Systems Biology Università di Torino Torino Italy
| | | | - Fabrizio Bartolucci
- Floristic Research Center of the Apennine (University of Camerino – Gran Sasso and Laga Mountains National Park) Barisciano (L'Aquila) Italy
| | | | | | - Enzo Bona
- Centro Studi Naturalistici Bresciani, Museo di Scienze Naturali Brescia (BS) Italy
| | - Giampiero Ciaschetti
- Maiella National Park – Office for Plant Biodiversity Monitoring and Conservation Sulmona (AQ) Italy
| | - Fabio Conti
- Floristic Research Center of the Apennine (University of Camerino – Gran Sasso and Laga Mountains National Park) Barisciano (L'Aquila) Italy
| | - Valter Di Cecco
- Maiella National Park – Office for Plant Biodiversity Monitoring and Conservation Sulmona (AQ) Italy
| | - Luciano Di Martino
- Maiella National Park – Office for Plant Biodiversity Monitoring and Conservation Sulmona (AQ) Italy
| | - Carmelo Gentile
- Abruzzo, Lazio and Molise National Park viale Santa Lucia Pescasseroli (AQ) Italy
| | - Ana Juan
- Ciencias Ambientales y Recursos Naturales University of Alicante Alicante Spain
| | - Sara Magrini
- Tuscia Germplasm Bank, Tuscia University, largo dell'Università blocco C Viterbo Italy
| | - Marco Mucciarelli
- Department of Life Sciences and Systems Biology Università di Torino Torino Italy
| | | | - Michael F. Fay
- Royal Botanic Gardens, Kew Richmond United Kingdom
- School of Plant Biology, University of Western Australia Crawley Western Australia Australia
| |
Collapse
|
16
|
Barbosa S, Andrews KR, Goldberg AR, Gour DS, Hohenlohe PA, Conway CJ, Waits LP. The role of neutral and adaptive genomic variation in population diversification and speciation in two ground squirrel species of conservation concern. Mol Ecol 2021; 30:4673-4694. [PMID: 34324748 DOI: 10.1111/mec.16096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Understanding the neutral (demographic) and adaptive processes leading to the differentiation of species and populations is a critical component of evolutionary and conservation biology. In this context, recently diverged taxa represent a unique opportunity to study the process of genetic differentiation. Northern and southern Idaho ground squirrels (Urocitellus brunneus - NIDGS, and U. endemicus - SIDGS, respectively) are a recently diverged pair of sister species that have undergone dramatic declines in the last 50 years and are currently found in metapopulations across restricted spatial areas with distinct environmental pressures. Here we genotyped single-nucleotide polymorphisms (SNPs) from buccal swabs with restriction site-associated DNA sequencing (RADseq). With these data we evaluated neutral genetic structure at both theinter- and intraspecific level, and identified putatively adaptive SNPs using population structure outlier detection and genotype-environment association (GEA) analyses. At the interspecific level, we detected a clear separation between NIDGS and SIDGS, and evidence for adaptive differentiation putatively linked to torpor patterns. At the intraspecific level, we found evidence of both neutral and adaptive differentiation. For NIDGS, elevation appears to be the main driver of adaptive differentiation, while neutral variation patterns match and expand information on the low connectivity between some populations identified in previous studies using microsatellite markers. For SIDGS, neutral substructure generally reflected natural geographic barriers, while adaptive variation reflected differences in land cover and temperature, as well as elevation. These results clearly highlight the roles of neutral and adaptive processes for understanding the complexity of the processes leading to species and population differentiation, which can have important conservation implications in susceptible and threatened species.
Collapse
Affiliation(s)
- Soraia Barbosa
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Kimberly R Andrews
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA
| | - Amanda R Goldberg
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Digpal S Gour
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Paul A Hohenlohe
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA.,Department of Biological Sciences, College of Science, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-3051, USA
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish & Wildlife Research Unit, Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844-1141, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| |
Collapse
|
17
|
Smith DW, Peterson RO. Intended and unintended consequences of wolf restoration to Yellowstone and Isle Royale National Parks. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Phelan R, Kareiva P, Marvier M, Robbins P, Weber M. Why intended consequences? CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
| | | | - Michelle Marvier
- Department of Environmental Studies and Sciences Santa Clara University Santa Clara California USA
| | - Paul Robbins
- Nelson Institute for Environmental Studies University of Wisconsin‐Madison Madison Wisconsin USA
| | | |
Collapse
|
19
|
Burgiel SW, Baumgartner B, Brister E, Fisher J, Gordon DR, Novak B, Palmer MJ, Seddon PJ, Weber M. Exploring the intersections of governance, constituencies, and risk in genetic interventions. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | | | - Evelyn Brister
- Philosophy Department Rochester Institute of Technology Rochester New York USA
| | - Joshua Fisher
- U.S. Fish and Wildlife Service†, Pacific Islands Fish and Wildlife Office Honolulu Hawaii USA
| | - Doria R. Gordon
- Environmental Defense Fund Washington District of Columbia USA
| | - Ben Novak
- Revive & Restore Sausalito California USA
| | - Megan J. Palmer
- Department of Bioengineering Stanford University Stanford California USA
| | | | | |
Collapse
|
20
|
Brister E, Holbrook JB, Palmer MJ. Conservation science and the ethos of restraint. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Evelyn Brister
- Philosophy Department Rochester Institute of Technology Rochester New York USA
| | - J. Britt Holbrook
- Department of Humanities New Jersey Institute of Technology Newark New Jersey USA
| | - Megan J. Palmer
- Department of Bioengineering Stanford University Stanford California USA
| |
Collapse
|