1
|
Antibody-mediated allograft rejection is associated with an increase in peripheral differentiated CD28-CD8+ T cells – Analyses of a cohort of 1032 kidney transplant recipients. EBioMedicine 2022; 83:104226. [PMID: 35988467 PMCID: PMC9420477 DOI: 10.1016/j.ebiom.2022.104226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
|
2
|
Seiler LK, Jonczyk R, Lindner P, Phung NL, Falk CS, Kaufeld J, Gwinner W, Scheffner I, Immenschuh S, Blume C. A new lateral flow assay to detect sIL-2R during T-cell mediated rejection after kidney transplantation. Analyst 2021; 146:5369-5379. [PMID: 34337623 DOI: 10.1039/d1an01001h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Kidney is the most frequently transplanted among all solid organs worldwide. Kidney transplant recipients (KTRs) undergo regular follow-up examinations for the early detection of acute rejections. The gold standard for proving a T-cell mediated rejection (TCMR) is a biopsy of the renal graft often occurring as indication biopsy, in parallel to an increased serum creatinine that may indicate deterioration of renal transplant function. The goal of the current work was to establish a lateral flow assay (LFA) for diagnosing acute TCMR to avoid harmful, invasive biopsies. Soluble interleukin-2 (IL-2) receptor (sIl-2R) is a potential biomarker representing the α-subunit of the IL-2 receptor produced by activated T-cells, e.g., after allogen contact. To explore the diagnostic potential of sIL-2R as a biomarker for TCMR and borderline TCMR, plasma and urine samples were collected from three independent KTR cohorts with various distinct histopathological diagnostic findings according to BANFF (containing 112 rsp. 71 rsp. 61 KTRs). Samples were analyzed by a Luminex-based multiplex technique and cut off-ranges were determined. An LFA was established with two specific sIL-2R-antibodies immobilized on a nitrocellulose membrane. A significant association between TCMR, borderline TCMR and sIL-2R in plasma and between TCMR and sIL-2R in urine of KTRs was confirmed using the Mann-Whitney U test. The LFA was tested with sIL-2R-spiked buffer samples establishing a detection limit of 25 pM. The performance of the new LFA was confirmed by analyzing urine samples of the 2nd and 3rd patient cohort with 35 KTRs with biopsy proven TCMRs, 3 KTRs diagnosed with borderline TCMR, 1 mixed AMR/TCMR rsp. AMR/borderline TCMR and 13 control patients with a rejection-free kidney graft proven by protocol biopsies. The new point-of-care assay showed a specificity of 84.6% and sensitivity of 87.5%, and a superior estimated glomerular filtration rate (eGFR) at the time point of biopsy (specificity 30.8%, sensitivity 85%).
Collapse
Affiliation(s)
- Lisa K Seiler
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstrasse 5, 30167 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Halpern SE, Moris D, Shaw BI, Krischak MK, Olaso DG, Kesseli SJ, Ravindra K, McElroy LM, Barbas AS. The Systemic Immune-Inflammation Index Predicts Clinical Outcomes in Kidney Transplant Recipients. In Vivo 2020; 34:3349-3360. [PMID: 33144442 PMCID: PMC7811637 DOI: 10.21873/invivo.12173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Outcomes after kidney transplantation (KTx) remain limited by delayed graft function (DGF) and acute rejection. Non-invasive biomarkers may help identify patients at increased risk for these events. We examined the association between the systemic immune-inflammation index (SII), a novel inflammatory biomarker, and outcomes after KTx and evaluated its ability to predict post-transplant prognosis. PATIENTS AND METHODS Adult patients who underwent primary KTx at our institution between 2016-2019 were included. SII was calculated from pre-transplant complete blood counts as the ratio of the neutrophil count to the lymphocyte count multiplied by the platelet count. The cutoff between high and low SII was determined by maximizing the area under the curve. Multivariable logistic and Cox regression were used to identify factors associated with DGF and patient, rejection-free, and graft survival respectively. RESULTS Overall, 378 KTx recipients were included; 224 (59.3%) had high SII. On unadjusted analysis, high SII was associated with reduced odds of DGF, and improved patient and rejection-free survival. After adjustment, high SII was independently associated with improved patient survival alone. Multivariable models incorporating SII performed well for the prediction of DGF (c-statistic=0.755) and patient survival (c-statistic=0.786), though rejection-free survival was more difficult to predict (c-statistic=0.635). CONCLUSION SII demonstrated limited utility as an independent predictor of outcomes after KTx. However, in combination with other clinically relevant parameters, SII is a useful predictor of post-KTx prognosis. Validation of this novel inflammatory biomarker in a multi-institutional study is needed to further elucidate its practical applications in transplantation.
Collapse
Affiliation(s)
| | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, NC, U.S.A.
| | - Brian I Shaw
- Department of Surgery, Duke University Medical Center, Durham, NC, U.S.A
| | | | - Danae G Olaso
- School of Medicine, Duke University, Durham, NC, U.S.A
| | - Samuel J Kesseli
- Department of Surgery, Duke University Medical Center, Durham, NC, U.S.A
| | - Kadiyala Ravindra
- Department of Surgery, Duke University Medical Center, Durham, NC, U.S.A
| | - Lisa M McElroy
- Department of Surgery, Duke University Medical Center, Durham, NC, U.S.A
| | - Andrew S Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC, U.S.A
| |
Collapse
|
4
|
Li YM, Li Y, Yan L, Tang JT, Wu XJ, Bai YJ, An YF, Dai B, Yang CL, Wang LL, Shi YY. Assessment of serum Tim-3 and Gal-9 levels in predicting the risk of infection after kidney transplantation. Int Immunopharmacol 2019; 75:105803. [PMID: 31401383 DOI: 10.1016/j.intimp.2019.105803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/02/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023]
Abstract
Infection remains a major cause of morbidity and mortality after kidney transplantation (KT). Reliable biomarkers to predict post-transplant infection are lacking. We investigated the predictive performance of pre- and post-transplant levels of T-cell immunoglobulin and mucin domain-3 (Tim-3) and Galectin-9 (Gal-9), two pleiotropic immunomodulatory molecules, in early identification of infection. Serum Tim-3 and Gal-9 were paired measured before and 30 days after transplantation (PTD 30) in 95 KT recipients (KTRs). The decline rates of Tim-3 and Gal-9 were calculated relative to pre-transplant levels. KTRs with infection history had significantly higher levels of PTD 30 Tim-3 and Gal-9, and slower decrease rates of Gal-9 compared to non-infected recipients, while no difference was observed between two groups regarding pre-transplant levels. The AUCs for predicting 1-year post-transplant infection were 0.653 and 0.711 for post-transplant Tim-3 and Gal-9, 0.664 and 0.670 for relative Tim-3 and Gal-9, respectively. After adjusting for potential confounders, PTD 30 Tim-3, Gal-9 and relative Gal-9 remained as independent risk factors for post-transplant infection. Our results suggested that PTD 30 Tim-3 and Gal-9 and relative decrease of Gal-9 were promising predictors for identifying KTRs with high risk of infection, while pre-transplant Tim-3 and Gal-9 showed no predictive power to infection.
Collapse
Affiliation(s)
- Ya Mei Li
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Yan
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Tao Tang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Juan Wu
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Juan Bai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Fei An
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Dai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Cui Li Yang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Lan Wang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Ying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Zhang W, Yi Z, Wei C, Keung KL, Sun Z, Xi C, Woytovich C, Farouk S, Gallon L, Menon MC, Magee C, Najafian N, Samaniego MD, Djamali A, Alexander SI, Rosales IA, Smith RN, O'Connell PJ, Colvin R, Cravedi P, Murphy B. Pretransplant transcriptomic signature in peripheral blood predicts early acute rejection. JCI Insight 2019; 4:127543. [PMID: 31167967 DOI: 10.1172/jci.insight.127543] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Commonly available clinical parameters fail to predict early acute cellular rejection (EAR, occurring within 6 months after transplant), a major risk factor for graft loss after kidney transplantation. We performed whole-blood RNA sequencing at the time of transplant in 235 kidney transplant recipients enrolled in a prospective cohort study (Genomics of Chronic Allograft Rejection [GoCAR]) and evaluated the relationship of pretransplant transcriptomic profiles with EAR. EAR was associated with downregulation of NK and CD8+ T cell gene signatures in pretransplant blood. We identified a 23-gene set that predicted EAR in the discovery (n = 81, and AUC = 0.80) and validation (n = 74, and AUC = 0.74) sets. Exclusion of recipients with 5 or 6 HLA donor mismatches increased the AUC to 0.89. The risk score derived from the gene set was also significantly associated with acute cellular rejection after 6 months, antibody-mediated rejection and/or de novo donor-specific antibodies, and graft loss in a cohort of 154 patients, combining the validation set and additional GoCAR patients with surveillance biopsies between 6 and 24 months (n = 80) posttransplant. This 23-gene set is a potentially important new tool for determination of the recipient's immunological risk before kidney transplantation, and facilitation of an individualized approach to immunosuppressive therapy.
Collapse
Affiliation(s)
- Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karen L Keung
- Department of Medicine, Westmead Clinical School, The University of Sydney, Sydney, Australia
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Caixia Xi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher Woytovich
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samira Farouk
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lorenzo Gallon
- Department of Medicine-Nephrology and Surgery-Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ciara Magee
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nader Najafian
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Stephen I Alexander
- Department of Medicine, Westmead Clinical School, The University of Sydney, Sydney, Australia
| | - Ivy A Rosales
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rex Neal Smith
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip J O'Connell
- Department of Medicine, Westmead Clinical School, The University of Sydney, Sydney, Australia
| | - Robert Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Cravedi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Barbara Murphy
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Wittenbrink N, Herrmann S, Blazquez-Navarro A, Bauer C, Lindberg E, Wolk K, Sabat R, Reinke P, Sawitzki B, Thomusch O, Hugo C, Babel N, Seitz H, Or-Guil M. A novel approach reveals that HLA class 1 single antigen bead-signatures provide a means of high-accuracy pre-transplant risk assessment of acute cellular rejection in renal transplantation. BMC Immunol 2019; 20:11. [PMID: 31029086 PMCID: PMC6486998 DOI: 10.1186/s12865-019-0291-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute cellular rejection (ACR) is associated with complications after kidney transplantation, such as graft dysfunction and graft loss. Early risk assessment is therefore critical for the improvement of transplantation outcomes. In this work, we retrospectively analyzed a pre-transplant HLA antigen bead assay data set that was acquired by the e:KID consortium as part of a systems medicine approach. RESULTS The data set included single antigen bead (SAB) reactivity profiles of 52 low-risk graft recipients (negative complement dependent cytotoxicity crossmatch, PRA < 30%) who showed detectable pre-transplant anti-HLA 1 antibodies. To assess whether the reactivity profiles provide a means for ACR risk assessment, we established a novel approach which differs from standard approaches in two aspects: the use of quantitative continuous data and the use of a multiparameter classification method. Remarkably, it achieved significant prediction of the 38 graft recipients who experienced ACR with a balanced accuracy of 82.7% (sensitivity = 76.5%, specificity = 88.9%). CONCLUSIONS The resultant classifier achieved one of the highest prediction accuracies in the literature for pre-transplant risk assessment of ACR. Importantly, it can facilitate risk assessment in non-sensitized patients who lack donor-specific antibodies. As the classifier is based on continuous data and includes weak signals, our results emphasize that not only strong but also weak binding interactions of antibodies and HLA 1 antigens contain predictive information. TRIAL REGISTRATION ClinicalTrials.gov NCT00724022 . Retrospectively registered July 2008.
Collapse
Affiliation(s)
- Nicole Wittenbrink
- Systems Immunology Lab, Department of Biology, Humboldt University Berlin, Berlin, Germany
| | - Sabrina Herrmann
- Fraunhofer Institute for Cell Therapy and Immunology, Bioanalytics und Bioprocesses, Potsdam, Germany
| | - Arturo Blazquez-Navarro
- Systems Immunology Lab, Department of Biology, Humboldt University Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | | | - Kerstin Wolk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
- Psoriasis Research and Treatment Center, Institute of Medical Immunology, Department of Dermatology and Allergy, Charité University Medicine Berlin, Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Institute of Medical Immunology, Department of Dermatology and Allergy, Charité University Medicine Berlin, Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Institute of Medical Immunology, Department of Dermatology and Allergy, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Campus Virchow Clinic, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité University Medicine Berlin, Campus Virchow Clinic, Berlin, Germany
| | - Birgit Sawitzki
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
- Molecular Immune Modulation, Institute for Medical Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Berlin, Germany
| | - Oliver Thomusch
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Christian Hugo
- University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Nina Babel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
- Medical Clinic I, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Harald Seitz
- Fraunhofer Institute for Cell Therapy and Immunology, Bioanalytics und Bioprocesses, Potsdam, Germany
| | - Michal Or-Guil
- Systems Immunology Lab, Department of Biology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
7
|
Mirzakhani M, Shahbazi M, Oliaei F, Mohammadnia-Afrouzi M. Immunological biomarkers of tolerance in human kidney transplantation: An updated literature review. J Cell Physiol 2018; 234:5762-5774. [PMID: 30362556 DOI: 10.1002/jcp.27480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
The half-life of transplanted kidneys is <10 years. Acute or chronic rejections have a negative impact on transplant outcome. Therefore, achieving to allograft tolerance for improving long-term transplant outcome is a desirable goal of transplantation field. In contrast, there are evidence that distinct immunological characteristics lead to tolerance in some transplant recipients. In contrast, the main reason for allograft loss is immunological responses. Various immune cells including T cells, B cells, dendritic cells, macrophages, natural killer, and myeloid-derived suppressor cells damage graft tissue and, thereby, graft loss happens. Therefore, being armed with the comprehensive knowledge about either preimmunological or postimmunological characteristics of renal transplant patients may help us to achieve an operational tolerance. In the present study, we are going to review and discuss immunological characteristics of renal transplant recipients with rejection and compare them with tolerant subjects.
Collapse
Affiliation(s)
- Mohammad Mirzakhani
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farshid Oliaei
- Kidney Transplantation Center, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Trailin AV, Ostapenko TI, Nykonenko TN, Nesterenko SN, Nykonenko OS. Peritransplant Soluble CD30 as a Risk Factor for Slow Kidney Allograft Function, Early Acute Rejection, Worse Long-Term Allograft Function, and Patients' Survival. DISEASE MARKERS 2017; 2017:9264904. [PMID: 28694560 PMCID: PMC5485490 DOI: 10.1155/2017/9264904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/27/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND We aimed to determine whether serum soluble CD30 (sCD30) could identify recipients at high risk for unfavorable early and late kidney transplant outcomes. METHODS Serum sCD30 was measured on the day of kidney transplantation and on the 4th day posttransplant. We assessed the value of these measurements in predicting delayed graft function, slow graft function (SGF), acute rejection (AR), pyelonephritis, decline of allograft function after 6 months, and graft and patient survival during 5 years of follow-up in 45 recipients. RESULTS We found the association between low pretransplant serum levels of sCD30 and SGF. The absence of significant decrease of sCD30 on the 4th day posttransplant was characteristic for SGF, early AR (the 8th day-6 months), late AR (>6 months), and early pyelonephritis (the 8th day-2 months). Lower pretransplant and posttransplant sCD30 predicted worse allograft function at 6 months and 2 years, respectively. Higher pretransplant sCD30 was associated with higher frequency of early AR, and worse patients' survival, but only in the recipients of deceased-donor graft. Pretransplant sCD30 also allowed to differentiate patients with early pyelonephritis and early AR. CONCLUSIONS Peritransplant sCD30 is useful in identifying patients at risk for unfavorable early and late transplant outcomes.
Collapse
Affiliation(s)
- Andriy V. Trailin
- Department of Laboratory Diagnostics and General Pathology, State Institution “Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine”, 20 Winter Boulevard, Zaporizhzhia 69096, Ukraine
| | - Tetyana I. Ostapenko
- Department of Transplantology, Endocrine Surgery and Cardiovascular Surgery, State Institution “Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine”, Zaporizhzhia Regional Hospital, 10 Orikhiv Highway, Zaporizhzhia 69050, Ukraine
| | - Tamara N. Nykonenko
- Institute of Cardiovascular Surgery and Transplantology, State Institution “Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine”, 20 Winter Boulevard, Zaporizhzhia 69096, Ukraine
| | - Svitlana N. Nesterenko
- Immunological Laboratory, Zaporizhzhia Regional Hospital, State Institution “Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine”, 10 Orikhiv Highway, Zaporizhzhia 69050, Ukraine
| | - Olexandr S. Nykonenko
- Department of Transplantology, Endocrine Surgery and Cardiovascular Surgery, State Institution “Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine”, Zaporizhzhia Regional Hospital, 10 Orikhiv Highway, Zaporizhzhia 69050, Ukraine
| |
Collapse
|
9
|
Wieland E, Shipkova M. Lymphocyte surface molecules as immune activation biomarkers. Clin Biochem 2015; 49:347-54. [PMID: 26247177 DOI: 10.1016/j.clinbiochem.2015.07.099] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/23/2015] [Accepted: 07/25/2015] [Indexed: 01/07/2023]
Abstract
Immunosuppression is mandatory after solid organ transplantation between HLA mismatched individuals. It is a lifelong therapy that needs to be closely monitored to avoid under- and over-immunosuppression. For many drugs, pharmacokinetic monitoring has been proven to be beneficial. However, the therapeutic ranges are statistically derived surrogate markers for the effects that cannot predict the individual response of single patients. Better tailored immunosuppression biomarkers are needed that indicate immune activation. T cells are critically involved in organ rejection, and the means to assess their activation state may be promising to individualize immunosuppressive therapies. Activated T cells can be monitored with flow cytometry based on surface molecules that are typically up regulated or with molecules that are cleaved off the cell surface. Among these molecules are the interleukin-2 receptor (CD25); transferrin receptor (CD71); the T cell co-stimulatory molecules CD28, CD69, and CD154 and sCD30, which is a member of the TNF-alpha family. The effect of immunosuppressive drugs on T cell activation can be recorded with indirect cell function assays or by directly monitoring activated T cells in whole blood. Soluble proteins can be measured with immunoassays. This review provides a summary of the experimental and clinical studies investigating the potential of surface molecules as a tool for immune monitoring. It critically discusses the obstacles and shortcomings from an analytical and diagnostic perspective that are currently preventing their use in multicenter trials and clinical routine monitoring of transplant patients.
Collapse
Affiliation(s)
- Eberhard Wieland
- Klinikum Stuttgart, Central Institute for Clinical Chemistry and Laboratory Medicine, Germany.
| | - Maria Shipkova
- Klinikum Stuttgart, Central Institute for Clinical Chemistry and Laboratory Medicine, Germany.
| |
Collapse
|