1
|
Mahboub P, Aburawi M, Ozgur OS, Pendexter C, Cronin S, Lin FM, Jain R, Karabacak MN, Karimian N, Tessier SN, Markmann JF, Yeh H, Uygun K. Gradual rewarming with a hemoglobin-based oxygen carrier improves viability of donation after circulatory death in rat livers. FRONTIERS IN TRANSPLANTATION 2024; 3:1353124. [PMID: 38993754 PMCID: PMC11235298 DOI: 10.3389/frtra.2024.1353124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Background Donation after circulatory death (DCD) grafts are vital for increasing available donor organs. Gradual rewarming during machine perfusion has proven effective in mitigating reperfusion injury and enhancing graft quality. Limited data exist on artificial oxygen carriers as an effective solution to meet the increasing metabolic demand with temperature changes. The aim of the present study was to assess the efficacy and safety of utilizing a hemoglobin-based oxygen carrier (HBOC) during the gradual rewarming of DCD rat livers. Methods Liver grafts were procured after 30 min of warm ischemia. The effect of 90 min of oxygenated rewarming perfusion from ice cold temperatures (4 °C) to 37 °C with HBOC after cold storage was evaluated and the results were compared with cold storage alone. Reperfusion at 37 °C was performed to assess the post-preservation recovery. Results Gradual rewarming with HBOC significantly enhanced recovery, demonstrated by markedly lower lactate levels and reduced vascular resistance compared to cold-stored liver grafts. Increased bile production in the HBOC group was noted, indicating improved liver function and bile synthesis capacity. Histological examination showed reduced cellular damage and better tissue preservation in the HBOC-treated livers compared to those subjected to cold storage alone. Conclusion This study suggests the safety of using HBOC during rewarming perfusion of rat livers as no harmful effect was detected. Furthermore, the viability assessment indicated improvement in graft function.
Collapse
Affiliation(s)
- Paria Mahboub
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Mohamed Aburawi
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - O Sila Ozgur
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Casie Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Stephanie Cronin
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Florence Min Lin
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Rohil Jain
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Murat N Karabacak
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Negin Karimian
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - James F Markmann
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Heidi Yeh
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| |
Collapse
|
2
|
Tingle SJ, Dobbins JJ, Thompson ER, Figueiredo RS, Mahendran B, Pandanaboyana S, Wilson C. Machine perfusion in liver transplantation. Cochrane Database Syst Rev 2023; 9:CD014685. [PMID: 37698189 PMCID: PMC10496129 DOI: 10.1002/14651858.cd014685.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
BACKGROUND Liver transplantation is the only chance of cure for people with end-stage liver disease and some people with advanced liver cancers or acute liver failure. The increasing prevalence of these conditions drives demand and necessitates the increasing use of donated livers which have traditionally been considered suboptimal. Several novel machine perfusion preservation technologies have been developed, which attempt to ameliorate some of the deleterious effects of ischaemia reperfusion injury. Machine perfusion technology aims to improve organ quality, thereby improving outcomes in recipients of suboptimal livers when compared to traditional static cold storage (SCS; ice box). OBJECTIVES To evaluate the effects of different methods of machine perfusion (including hypothermic oxygenated machine perfusion (HOPE), normothermic machine perfusion (NMP), controlled oxygenated rewarming, and normothermic regional perfusion) versus each other or versus static cold storage (SCS) in people undergoing liver transplantation. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 10 January 2023. SELECTION CRITERIA We included randomised clinical trials which compared different methods of machine perfusion, either with each other or with SCS. Studies comparing HOPE via both hepatic artery and portal vein, or via portal vein only, were grouped. The protocol detailed that we also planned to include quasi-randomised studies to assess treatment harms. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. overall participant survival, 2. quality of life, and 3. serious adverse events. Secondary outcomes were 4. graft survival, 5. ischaemic biliary complications, 6. primary non-function of the graft, 7. early allograft function, 8. non-serious adverse events, 9. transplant utilisation, and 10. transaminase release during the first week post-transplant. We assessed bias using Cochrane's RoB 2 tool and used GRADE to assess certainty of evidence. MAIN RESULTS We included seven randomised trials (1024 transplant recipients from 1301 randomised/included livers). All trials were parallel two-group trials; four compared HOPE versus SCS, and three compared NMP versus SCS. No trials used normothermic regional perfusion. When compared with SCS, it was uncertain whether overall participant survival was improved with either HOPE (hazard ratio (HR) 0.91, 95% confidence interval (CI) 0.42 to 1.98; P = 0.81, I2 = 0%; 4 trials, 482 recipients; low-certainty evidence due to imprecision because of low number of events) or NMP (HR 1.08, 95% CI 0.31 to 3.80; P = 0.90; 1 trial, 222 recipients; very low-certainty evidence due to imprecision and risk of bias). No trials reported quality of life. When compared with SCS alone, HOPE was associated with improvement in the following clinically relevant outcomes: graft survival (HR 0.45, 95% CI 0.23 to 0.87; P = 0.02, I2 = 0%; 4 trials, 482 recipients; high-certainty evidence), serious adverse events in extended criteria DBD liver transplants (OR 0.45, 95% CI 0.22 to 0.91; P = 0.03, I2 = 0%; 2 trials, 156 participants; moderate-certainty evidence) and clinically significant ischaemic cholangiopathy in recipients of DCD livers (OR 0.31, 95% CI 0.11 to 0.92; P = 0.03; 1 trial, 156 recipients; high-certainty evidence). In contrast, NMP was not associated with improvement in any of these clinically relevant outcomes. NMP was associated with improved utilisation compared with SCS (one trial found a 50% lower rate of organ discard; P = 0.008), but the reasons underlying this effect are unknown. We identified 11 ongoing studies investigating machine perfusion technologies. AUTHORS' CONCLUSIONS In situations where the decision has been made to transplant a liver donated after circulatory death or donated following brain death, end-ischaemic HOPE will provide superior clinically relevant outcomes compared with SCS alone. Specifically, graft survival is improved (high-certainty evidence), serious adverse events are reduced (moderate-certainty evidence), and in donors after circulatory death, clinically relevant ischaemic biliary complications are reduced (high-certainty evidence). There is no good evidence that NMP has the same benefits over SCS in terms of these clinically relevant outcomes. NMP does appear to improve utilisation of grafts that would otherwise be discarded with SCS; however, the reasons for this, and whether this effect is specific to NMP, is not clear. Further studies into NMP viability criteria and utilisation, as well as head-to-head trials with other perfusion technologies are needed. In the setting of donation following circulatory death transplantation, further trials are needed to assess the effect of these ex situ machine perfusion methods against, or in combination with, normothermic regional perfusion.
Collapse
Affiliation(s)
- Samuel J Tingle
- NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, UK
| | | | - Emily R Thompson
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | - Sanjay Pandanaboyana
- HPB and Liver Transplant Surgery, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Colin Wilson
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
von Horn C, Lüer B, Malkus L, Minor T. Comparison Between Terminal or Preterminal Conditioning of Donor Livers by Ex Situ Machine Perfusion. Transplantation 2023; 107:1286-1290. [PMID: 36922379 PMCID: PMC10205117 DOI: 10.1097/tp.0000000000004568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 03/18/2023]
Abstract
BACKGROUND The successful implementation of end-ischemic normothermic machine perfusion (NMP) into clinical practice comes along with unusual demands for trained personnel and technical facilities in the implantation clinic. This creates an interest to bundle expertise and professional equipment for execution of MP at regional pump centers at the disadvantage of adding a second short period of cold preservation while sending the reconditioned grafts to the actual implant clinic. Differences of liver recovery upon reperfusion either immediately after NMP or after 3 h of cold storage subsequent to NMP should therefore be evaluated. METHODS Rat livers were cold stored for 18 h, subjected to 2 h of NMP, and then either directly evaluated by ex vivo reperfusion or exposed to a second cold storage period of 3 h to simulate transport from the hub center to the implant clinic. Livers stored for 18 h by cold storage only served as controls. RESULTS Both MP regimens significantly reduced hepatic enzyme release and improved bile production, clearance of lactate, and energetic recovery compared with the controls. However, no differences were seen between the 2 MP groups. CONCLUSIONS The study provides first evidence that machine perfusion at regional perfusion centers may be a safe and economical alternative to the widespread individual efforts in the respective implantation clinics.
Collapse
Affiliation(s)
| | - Bastian Lüer
- Surgical Research Department, University Hospital Essen, Essen, Germany
| | - Laura Malkus
- Surgical Research Department, University Hospital Essen, Essen, Germany
| | - Thomas Minor
- Surgical Research Department, University Hospital Essen, Essen, Germany
| |
Collapse
|
4
|
Fodor M, Salcher S, Gottschling H, Mair A, Blumer M, Sopper S, Ebner S, Pircher A, Oberhuber R, Wolf D, Schneeberger S, Hautz T. The liver-resident immune cell repertoire - A boon or a bane during machine perfusion? Front Immunol 2022; 13:982018. [PMID: 36311746 PMCID: PMC9609784 DOI: 10.3389/fimmu.2022.982018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
The liver has been proposed as an important “immune organ” of the body, as it is critically involved in a variety of specific and unique immune tasks. It contains a huge resident immune cell repertoire, which determines the balance between tolerance and inflammation in the hepatic microenvironment. Liver-resident immune cells, populating the sinusoids and the space of Disse, include professional antigen-presenting cells, myeloid cells, as well as innate and adaptive lymphoid cell populations. Machine perfusion (MP) has emerged as an innovative technology to preserve organs ex vivo while testing for organ quality and function prior to transplantation. As for the liver, hypothermic and normothermic MP techniques have successfully been implemented in clinically routine, especially for the use of marginal donor livers. Although there is evidence that ischemia reperfusion injury-associated inflammation is reduced in machine-perfused livers, little is known whether MP impacts the quantity, activation state and function of the hepatic immune-cell repertoire, and how this affects the inflammatory milieu during MP. At this point, it remains even speculative if liver-resident immune cells primarily exert a pro-inflammatory and hence destructive effect on machine-perfused organs, or in part may be essential to induce liver regeneration and counteract liver damage. This review discusses the role of hepatic immune cell subtypes during inflammatory conditions and ischemia reperfusion injury in the context of liver transplantation. We further highlight the possible impact of MP on the modification of the immune cell repertoire and its potential for future applications and immune modulation of the liver.
Collapse
Affiliation(s)
- M. Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - H. Gottschling
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - M. Blumer
- Department of Anatomy and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - R. Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - D. Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - T. Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: T. Hautz,
| |
Collapse
|
5
|
Lee ACH, Edobor A, Lysandrou M, Mirle V, Sadek A, Johnston L, Piech R, Rose R, Hart J, Amundsen B, Jendrisak M, Millis JM, Donington J, Madariaga ML, Barth RN, di Sabato D, Shanmugarajah K, Fung J. The Effect of Normothermic Machine Perfusion on the Immune Profile of Donor Liver. Front Immunol 2022; 13:788935. [PMID: 35720395 PMCID: PMC9201055 DOI: 10.3389/fimmu.2022.788935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Background Normothermic machine perfusion (NMP) allows viability assessment and potential resuscitation of donor livers prior to transplantation. The immunological effect of NMP on liver allografts is undetermined, with potential implications on allograft function, rejection outcomes and overall survival. In this study we define the changes in immune profile of human livers during NMP. Methods Six human livers were placed on a NMP device. Tissue and perfusate samples were obtained during cold storage prior to perfusion and at 1, 3, and 6 hours of perfusion. Flow cytometry, immunohistochemistry, and bead-based immunoassays were used to measure leukocyte composition and cytokines in the perfusate and within the liver tissue. Mean values between baseline and time points were compared by Student’s t-test. Results Within circulating perfusate, significantly increased frequencies of CD4 T cells, B cells and eosinophils were detectable by 1 hour of NMP and continued to increase at 6 hours of perfusion. On the other hand, NK cell frequency significantly decreased by 1 hour of NMP and remained decreased for the duration of perfusion. Within the liver tissue there was significantly increased B cell frequency but decreased neutrophils detectable at 6 hours of NMP. A transient decrease in intermediate monocyte frequency was detectable in liver tissue during the middle of the perfusion run. Overall, no significant differences were detectable in tissue resident T regulatory cells during NMP. Significantly increased levels of pro-inflammatory and anti-inflammatory cytokines were seen following initiation of NMP that continued to rise throughout duration of perfusion. Conclusions Time-dependent dynamic changes are seen in individual leukocyte cell-types within both perfusate and tissue compartments of donor livers during NMP. This suggests a potential role of NMP in altering the immunogenicity of donor livers prior to transplant. These data also provide insights for future work to recondition the intrinsic immune profile of donor livers during NMP prior to transplantation.
Collapse
Affiliation(s)
| | - Arianna Edobor
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria Lysandrou
- Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Vikranth Mirle
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Amir Sadek
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Laura Johnston
- Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Ryan Piech
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Rebecca Rose
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Beth Amundsen
- Gift of Hope Tissue and Donor Network, Itasca, IL, United States
| | - Martin Jendrisak
- Gift of Hope Tissue and Donor Network, Itasca, IL, United States
| | | | - Jessica Donington
- Section of Transplant Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria Lucia Madariaga
- Section of Transplant Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Rolf N Barth
- Section of Thoracic Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Diego di Sabato
- Section of Thoracic Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | | | - John Fung
- Section of Thoracic Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Guo Z, Xu J, Huang S, Yin M, Zhao Q, Ju W, Wang D, Gao N, Huang C, Yang L, Chen M, Zhang Z, Zhu Z, Wang L, Zhu C, Zhang Y, Tang Y, Chen H, Liu K, Lu Y, Ma Y, Hu A, Chen Y, Zhu X, He X. Abrogation of graft ischemia-reperfusion injury in ischemia-free liver transplantation. Clin Transl Med 2022; 12:e546. [PMID: 35474299 PMCID: PMC9042797 DOI: 10.1002/ctm2.546] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Background Ischemia‐reperfusion injury (IRI) is considered an inherent component of organ transplantation that compromises transplant outcomes and organ availability. The ischemia‐free liver transplantation (IFLT) procedure has been developed to avoid interruption of blood supply to liver grafts. It is unknown how IFLT might change the characteristics of graft IRI. Methods Serum and liver biopsy samples were collected from IFLT and conventional liver transplantation (CLT) recipients. Pathological, metabolomics, transcriptomics, and proteomics analyses were performed to identify the characteristic changes in graft IRI in IFLT. Results Peak aspartate aminotransferase (539.59 ± 661.76 U/L versus 2622.28 ± 3291.57 U/L) and alanine aminotransferase (297.64 ± 549.50 U/L versus 1184.16 ± 1502.76 U/L) levels within the first 7 days and total bilirubin levels by day 7 (3.27 ± 2.82 mg/dl versus 8.33 ± 8.76 mg/dl) were lower in the IFLT versus CLT group (all p values < 0.001). The pathological characteristics of IRI were more obvious in CLT grafts. The antioxidant pentose phosphate pathway remained active throughout the procedure in IFLT grafts and was suppressed during preservation and overactivated postrevascularization in CLT grafts. Gene transcriptional reprogramming was almost absent during IFLT but was profound during CLT. Proteomics analysis showed that “metabolism of RNA” was the major differentially expressed process between the two groups. Several proinflammatory pathways were not activated post‐IFLT as they were post‐CLT. The activities of natural killer cells, macrophages, and neutrophils were lower in IFLT grafts than in CLT grafts. The serum levels of 14 cytokines were increased in CLT versus IFLT recipients. Conclusions IFLT can largely avoid the biological consequences of graft IRI, thus has the potential to improve transplant outcome while increasing organ utilization.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jinghong Xu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Shanzhou Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Meixian Yin
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Dongping Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Ningxin Gao
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Changjun Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Lu Yang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maogen Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhiheng Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zebin Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Linhe Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Caihui Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yixi Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yunhua Tang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Haitian Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Kunpeng Liu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yuting Lu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yi Ma
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Anbin Hu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yinghua Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaofeng Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
7
|
von Horn C, Zlatev H, Pletz J, Lüer B, Minor T. Comparison of thermal variations in post-retrieval graft conditioning on rat livers. Artif Organs 2022; 46:239-245. [PMID: 34606097 DOI: 10.1111/aor.14080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Machine perfusion was found an effective tool to recover organ grafts from ischemic insults during preservation. It could be observed that organ integrity is significantly affected by abrupt temperature shifts during hypothermic storage and implantation periods. Studies showed that a gentle and controlled rise of the temperature during oxygenated machine perfusion prior to implantation can protect the tissue from reperfusion injury. Now, the possible role of temperature kinetics upon retrieval of the graft and prior to later cold storage should be investigated. METHODS Rat livers were retrieved after cardiac arrest and subjected to a brief ex situ machine perfusion with either hypothermic resuscitation (HR) at 8°C, near-normothermic resuscitation (NR) at 30°C or progressive resuscitation with lowering the temperature in a controlled fashion from 30°C to 8°C (PR). After cold storage (CS), liver functional parameters were evaluated by an established ex vivo reperfusion system. RESULTS NR and PR resulted in significantly lower release of hepatic enzymes and less production of tumor necrosis factor upon reperfusion compared to CS while HR had a far less protective effect. An increase in bile production was only observed in the PR group, which also significantly increased the recovery of tissue adenosine triphosphate, the amount of which was, however, nearly paralleled by the NR protocol. CONCLUSION Within the limitations of this model, it seems that normothermic recirculation appears to be a superior approach for the restitution of warm-ischemically injured liver grafts than immediate hypothermic machine perfusion.
Collapse
Affiliation(s)
- Charlotte von Horn
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Hristo Zlatev
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Jessica Pletz
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Bastian Lüer
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Thomas Minor
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
8
|
Guo Z, Zhao Q, Huang S, Huang C, Wang D, Yang L, Zhang J, Chen M, Wu L, Zhang Z, Zhu Z, Wang L, Zhu C, Zhang Y, Tang Y, Sun C, Xiong W, Shen Y, Chen X, Xu J, Wang T, Ma Y, Hu A, Chen Y, Zhu X, Rong J, Cai C, Gong F, Guan X, Huang W, Ko DSC, Li X, Tullius SG, Huang J, Ju W, He X. Ischaemia-free liver transplantation in humans: a first-in-human trial. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2021; 16:100260. [PMID: 34590063 PMCID: PMC8406025 DOI: 10.1016/j.lanwpc.2021.100260] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
Background Ischaemia-reperfusion injury is considered an inevitable component of organ transplantation, compromising organ quality and outcomes. Although several treatments have been proposed, none has avoided graft ischaemia and its detrimental consequences. Methods Ischaemia-free liver transplantation (IFLT) comprises surgical techniques enabling continuous oxygenated blood supply to the liver of brain-dead donor during procurement, preservation, and implantation using normothermic machine perfusion technology. In this non-randomised study, 38 donor livers were transplanted using IFLT and compared to 130 conventional liver transplants (CLT). Findings Two recipients (5•3%) in the IFLT group experienced early allograft dysfunction, compared to 50•0% in patients receiving conventional transplants (absolute risk difference, 44•8%; 95% confidence interval, 33•6-55•9%). Recipients of IFLT had significantly reduced median (IQR) peak aspartate aminotransferase levels within the first week compared to CLT recipients (365, 238-697 vs 1445, 791-3244 U/L, p<0•001); likewise, median total bilirubin levels on day 7 were significantly lower (2•34, 1•39-4•09 mg/dL) in the IFLT group than in the CLT group (5•10, 1•90-11•65 mg/dL) (p<0•001). Moreover, IFLT recipients had a shorter median intensive care unit stay (1•48, 0•75-2•00 vs 1•81, 1•00-4•58 days, p=0•006). Both one-month recipient (97•4% vs 90•8%, p=0•302) and graft survival (97.4% vs 90•0%, p=0•195) were better for IFLT than CLT, albeit differences were not statistically significant. Subgroup analysis showed that the extended criteria donor livers transplanted using the IFLT technique yielded faster post-transplant recovery than did the standard criteria donor livers transplanted using the conventional approach. Interpretation IFLT provides a novel approach that may improve outcomes, and allow the successful utilisation of extended criteria livers. Funding This study was funded by National Natural Science Foundation of China, Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, and Guangdong Provincial international Cooperation Base of Science and Technology. Panel: Research in context.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Qiang Zhao
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Shanzhou Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Changjun Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Dongping Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Lu Yang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510080, China
| | - Maogen Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Linwei Wu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Zhiheng Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Zebin Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Linhe Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Caihui Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yixi Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yunhua Tang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Chengjun Sun
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Wei Xiong
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuekun Shen
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxiang Chen
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghong Xu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Tielong Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yi Ma
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Anbin Hu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yinghua Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Xiaofeng Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Jian Rong
- Department of Cardiopulmonary Bypass, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Changjie Cai
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fengqiu Gong
- Operating Room and Anaesthesia Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangdong Guan
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenqi Huang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Dicken Shiu-Chung Ko
- Department of Surgery, Steward St. Elizabeth's Medical Centre, Tufts University School of Medicine, Boston, MA 02115, USA
| | - Xianchang Li
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
- Immunobiology and Transplant Science Centre, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiefu Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Weiqiang Ju
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Xiaoshun He
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| |
Collapse
|
9
|
Tingle SJ, Thompson ER, Figueiredo RS, Mahendran B, Pandanaboyana S, Wilson CH. Machine perfusion in liver transplantation: a network meta-analysis. Hippokratia 2021. [DOI: 10.1002/14651858.cd014685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Samuel J Tingle
- NIHR Blood and Transplant Research Unit; Newcastle University and Cambridge University; Newcastle upon Tyne UK
| | - Emily R Thompson
- Institute of Transplantation; The Freeman Hospital; Newcastle upon Tyne UK
| | | | | | - Sanjay Pandanaboyana
- HPB and Liver Transplant Surgery; Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust; Newcastle upon Tyne UK
| | - Colin H Wilson
- Institute of Transplantation; The Freeman Hospital; Newcastle upon Tyne UK
| |
Collapse
|
10
|
Parente A, Osei-Bordom DC, Ronca V, Perera MTPR, Mirza D. Organ Restoration With Normothermic Machine Perfusion and Immune Reaction. Front Immunol 2020; 11:565616. [PMID: 33193335 PMCID: PMC7641637 DOI: 10.3389/fimmu.2020.565616] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Liver transplantation is the only recognized effective treatment for end-stage liver disease. However, organ shortages have become the main challenge for patients and physicians within the transplant community. Waiting list mortality remains an issue with around 10% of patients dying whilst waiting for an available organ. The post-transplantation period is also associated with an adverse complication rate for these specific cohorts of high-risk patients, particularly regarding patient and graft survival. Ischaemia reperfusion injury (IRI) has been highlighted as the mechanism of injury that increases parenchymal damage, which eventually lead to significant graft dysfunction and other poor outcome indicators. The consequences of IRI in clinical practice such as reperfusion syndrome, primary non-function of graft, allograft dysfunction, ischaemic biliary damage and early biliary complications can be life-threatening. IRI dictates the development of a significant inflammatory response that drives the pathway to eventual cell death. The main mechanisms of IRI are mitochondrial damage due to low oxygen tension within the hepatic micro-environment and severe adenosine triphosphate (ATP) depletion during the ischaemic period. After the restoration of normal blood flow, this damage is further enhanced by reoxygenation as the mitochondria respond to reperfusion by releasing reactive oxygen species (ROS), which in turn activate Kupffer cells within the hepatic micro-environment, leading to a pro-inflammatory response and eventual parenchymal cell apoptosis and associated tissue degradation. Machine perfusion (MP) is one emergent strategy considered to be one of the most important advances in organ preservation, restoration and transplantation. Indeed, MP has the potential to rescue frequently discarded organs and has been shown to limit the extent of IRI, leading to suppression of the deleterious pro-inflammatory response. This immunomodulation reduces the prevalence of allograft rejection, the use of immunosuppression therapy and minimizes post-transplant complications. This review aims to update the current knowledge of MP with a focus on normothermic machine liver perfusion (NMLP) and its potential role in immune response pathways.
Collapse
Affiliation(s)
- Alessandro Parente
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Daniel-Clement Osei-Bordom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Birmingham Liver Biomedical Research Centre, University Hospitals Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Vincenzo Ronca
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - M. Thamara P. R. Perera
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Darius Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Zhang A, Carroll C, Raigani S, Karimian N, Huang V, Nagpal S, Beijert I, Porte RJ, Yarmush M, Uygun K, Yeh H. Tryptophan Metabolism via the Kynurenine Pathway: Implications for Graft Optimization during Machine Perfusion. J Clin Med 2020; 9:E1864. [PMID: 32549246 PMCID: PMC7355886 DOI: 10.3390/jcm9061864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Access to liver transplantation continues to be hindered by the severe organ shortage. Extended-criteria donor livers could be used to expand the donor pool but are prone to ischemia-reperfusion injury (IRI) and post-transplant graft dysfunction. Ex situ machine perfusion may be used as a platform to rehabilitate discarded or extended-criteria livers prior to transplantation, though there is a lack of data guiding the utilization of different perfusion modalities and therapeutics. Since amino acid derivatives involved in inflammatory and antioxidant pathways are critical in IRI, we analyzed differences in amino acid metabolism in seven discarded non-steatotic human livers during normothermic- (NMP) and subnormothermic-machine perfusion (SNMP) using data from untargeted metabolomic profiling. We found notable differences in tryptophan, histamine, and glutathione metabolism. Greater tryptophan metabolism via the kynurenine pathway during NMP was indicated by significantly higher kynurenine and kynurenate tissue concentrations compared to pre-perfusion levels. Livers undergoing SNMP demonstrated impaired glutathione synthesis indicated by depletion of reduced and oxidized glutathione tissue concentrations. Notably, ATP and energy charge ratios were greater in livers during SNMP compared to NMP. Given these findings, several targeted therapeutic interventions are proposed to mitigate IRI during liver machine perfusion and optimize marginal liver grafts during SNMP and NMP.
Collapse
Affiliation(s)
- Anna Zhang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Tufts University School of Medicine, Boston, MA 02111, USA
| | - Cailah Carroll
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Siavash Raigani
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Negin Karimian
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Viola Huang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Sonal Nagpal
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Irene Beijert
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Division of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands;
| | - Robert J. Porte
- Division of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands;
| | - Martin Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
12
|
Ishihara Y, Bochimoto H, Kondoh D, Obara H, Matsuno N. The ultrastructural characteristics of bile canaliculus in porcine liver donated after cardiac death and machine perfusion preservation. PLoS One 2020; 15:e0233917. [PMID: 32470051 PMCID: PMC7259665 DOI: 10.1371/journal.pone.0233917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
The effects of each type of machine perfusion preservation (MP) of liver grafts donated after cardiac death on the bile canaliculi of hepatocytes remain unclear. We analyzed the intracellular three-dimensional ultrastructure of the bile canaliculi and hepatocyte endomembrane systems in porcine liver grafts after warm ischemia followed by successive MP with modified University of Wisconsin gluconate solution. Transmission and osmium-maceration scanning electron microscopy revealed that lumen volume of the bile canaliculi decreased after warm ischemia. In liver grafts preserved by hypothermic MP condition, bile canaliculi tended to recover in terms of lumen volume, while their microvilli regressed. In contrast, midthermic MP condition preserved the functional form of the microvilli of the bile canaliculi. Machine perfusion preservation potentially restored the bile canaliculus lumen and alleviated the cessation of cellular endocrine processes due to warm ischemia. In addition, midthermic MP condition prevented the retraction of the microvilli of bile canaliculi, suggesting further mitigation of the damage of the bile canaliculi.
Collapse
Affiliation(s)
- Yo Ishihara
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Bochimoto
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
- Division of Aerospace Medicine, Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Japan
- * E-mail:
| | - Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiromichi Obara
- Department of Mechanical Engineering, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoto Matsuno
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
13
|
Minor T, von Horn C, Gallinat A, Kaths M, Kribben A, Treckmann J, Paul A. First-in-man controlled rewarming and normothermic perfusion with cell-free solution of a kidney prior to transplantation. Am J Transplant 2020; 20:1192-1195. [PMID: 31599063 DOI: 10.1111/ajt.15647] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/08/2019] [Accepted: 09/25/2019] [Indexed: 01/25/2023]
Abstract
Cold preservation sensitizes organ grafts to exacerbation of tissue injury upon reperfusion. This reperfusion injury is not fully explained by the mere re-introduction of oxygen but rather is pertinent to the immediate rise in metabolic turnover associated with the abrupt restoration of normothermia. Here we report the first clinical case of gradual resumption of graft temperature upon ex vivo machine perfusion from hypothermia up to normothermic conditions using cell-free buffer as a perfusate. A kidney graft from an extended criteria donor was put on the machine after 12.5 hours of cold storage. During ex vivo perfusion, perfusion pressure and temperature were gradually elevated from 30 mm Hg and 8°C to 75 mm Hg and 35°C, respectively. Perfusate consisted of diluted Steen solution, oxygenated with 100% oxygen. Final flow rates at 35°C were 850 mL/min. The kidney was transplanted without complications and showed good immediate function. Serum creatinine fell from preoperative 720 µmol/L to 506 µmol/L during the first 24 hours after transplantation. Clearance after 1 week was 43.1 mL/min. Controlled oxygenated rewarming prior to transplantation can be performed up to normothermia without blood components or artificial oxygen carriers and may represent a promising tool to mitigate cold-induced reperfusion injury or to evaluate graft performance.
Collapse
Affiliation(s)
- Thomas Minor
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Charlotte von Horn
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Anja Gallinat
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Moritz Kaths
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, Essen, Germany
| | - Jürgen Treckmann
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Andreas Paul
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
14
|
Karimian N, Raigani S, Huang V, Nagpal S, Hafiz EOA, Beijert I, Mahboub P, Porte RJ, Uygun K, Yarmush M, Yeh H. Subnormothermic Machine Perfusion of Steatotic Livers Results in Increased Energy Charge at the Cost of Anti-Oxidant Capacity Compared to Normothermic Perfusion. Metabolites 2019; 9:E246. [PMID: 31652927 PMCID: PMC6918199 DOI: 10.3390/metabo9110246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
There continues to be significant debate regarding the most effective mode of ex situ machine perfusion of livers for transplantation. Subnormothermic (SNMP) and normothermic machine perfusion (NMP) are two methods with different benefits. We examined the metabolomic profiles of discarded steatotic human livers during three hours of subnormothermic or normothermic machine perfusion. Steatotic livers regenerate higher stores of ATP during SNMP than NMP. However, there is a significant depletion of available glutathione during SNMP, likely due to an inability to overcome the high energy threshold needed to synthesize glutathione. This highlights the increased oxidative stress apparent in steatotic livers. Rescue of discarded steatotic livers with machine perfusion may require the optimization of redox status through repletion or supplementation of reducing agents.
Collapse
Affiliation(s)
- Negin Karimian
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Shriners Hospital for Children, Boston, MA 02114, USA.
| | - Siavash Raigani
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Shriners Hospital for Children, Boston, MA 02114, USA.
| | - Viola Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Shriners Hospital for Children, Boston, MA 02114, USA.
| | - Sonal Nagpal
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Shriners Hospital for Children, Boston, MA 02114, USA.
| | - Ehab O A Hafiz
- Electron Microscopy Research Department, Theodor Bilharz Research Institute, 12411 Giza, Egypt.
| | - Irene Beijert
- Division of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands.
| | - Paria Mahboub
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Shriners Hospital for Children, Boston, MA 02114, USA.
| | - Robert J Porte
- Division of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands.
| | - Korkut Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Shriners Hospital for Children, Boston, MA 02114, USA.
| | - Martin Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Shriners Hospital for Children, Boston, MA 02114, USA.
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| | - Heidi Yeh
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Shriners Hospital for Children, Boston, MA 02114, USA.
| |
Collapse
|
15
|
Bellini MI, Yiu J, Nozdrin M, Papalois V. The Effect of Preservation Temperature on Liver, Kidney, and Pancreas Tissue ATP in Animal and Preclinical Human Models. J Clin Med 2019; 8:1421. [PMID: 31505880 PMCID: PMC6780500 DOI: 10.3390/jcm8091421] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
The recent advances in machine perfusion (MP) technology involve settings ranging between hypothermic, subnormothermic, and normothermic temperatures. Tissue level adenosine triphosphate (ATP) is a long-established marker of viability and functionality and is universal for all organs. In the midst of a growing number of complex clinical parameters for the quality assessment of graft prior to transplantation, a revisit of ATP may shed light on the underlying reconditioning mechanisms of different perfusion temperatures in the form of restoration of metabolic and energy status. This article aims to review and critically analyse animal and preclinical human studies (discarded grafts) during MP of three abdominal organs (liver, kidney, and pancreas) in which ATP was a primary endpoint. A selective review of recent novel reconditioning approaches relevant to mitigation of graft ischaemia-reperfusion injury via MP and for different perfusion temperatures was also conducted. With a current reiterated interest for oxygenation during MP, a re-introduction of tissue ATP levels may be valuable for graft viability assessment prior to transplantation. Further studies may help delineate the benefits of selective perfusion temperatures on organs viability.
Collapse
Affiliation(s)
| | - Janice Yiu
- School of Medicine, University College London, London WC1E 6BT, UK
| | - Mikhail Nozdrin
- School of Medicine, Imperial College London, London SW72AZ, UK
| | - Vassilios Papalois
- Renal and Transplant Directorate, Imperial College Healthcare NHS Trust, London W120HS, UK
- Department of Surgery and Cancer, Imperial College London, London SW72AZ, UK
| |
Collapse
|
16
|
[Modern concepts for the dynamic preservation of the liver and kidneys in the context of transplantation]. DER PATHOLOGE 2019; 40:292-298. [PMID: 30976824 DOI: 10.1007/s00292-019-0595-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The increasing demand on donor grafts has forced experimental research on transplantation medicine to develop more efficient organ preservation strategies. Simple cold storage of grafts rarely offers optimal conditions for extended criteria donor organs. Hypothermic, oxygenated machine perfusion (HMP) is a classical method of dynamic organ preservation, which enables the provision of oxygen and nutrients to the tissue and provides a metabolic recovery of the graft prior to implantation. A more modern approach is normothermic machine perfusion (NMP), which instead simulates physiological conditions and enables an ex vivo evaluation and treatment of organ grafts. However, studies have found that a preceding period of cold storage significantly mitigates the functional advantage of NMP. A strategy to circumvent this phenomenon is controlled oxygenated rewarming (COR). The cold-stored graft is slowly and gradually rewarmed to subnormothermic or normothermic temperatures, providing a gentle adaption of energy metabolism and counteracting events of rewarming injury.
Collapse
|
17
|
Thuillier R, Delpy E, Matillon X, Kaminski J, Kasil A, Soussi D, Danion J, Sauvageon Y, Rod X, Donatini G, Barrou B, Badet L, Zal F, Hauet T. Preventing acute kidney injury during transplantation: the application of novel oxygen carriers. Expert Opin Investig Drugs 2019; 28:643-657. [PMID: 31165652 DOI: 10.1080/13543784.2019.1628217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Delayed graft function (DGF) has a significant impact on kidney transplantation outcome. One of the underlying pivotal mechanisms is organ preservation and associated hypothermia and biochemical alteration. AREAS COVERED This paper focuses on organ preservation and its clinical consequences and describes 1. A comprehensive presentation of the pathophysiological mechanism involved in delayed graft function development; 2. The impact on endothelial cells and microvasculature integrity and the consequences on transplanted organ outcome; 3. The reassessment of dynamic organ preservation motivated by the growing use of extended criteria donors and the interest in the potential of normothermia; 4. The role of oxygenation during dynamic preservation; and 5. Novel oxygen carriers and their proof of concept in transplantation, among which M101 (HEMO2life®) is currently the most extensively investigated. EXPERT OPINION Metabolic disturbances and imbalance of oxygen supply during preservation highlight the importance of providing oxygen. Normothermia, permitted by recent advances in machine perfusion technology, appears to be the leading edge of preservation technology. Several oxygen transporters are compatible with normothermia; however, only M101 also demonstrates compatibility with standard hypothermic preservation.
Collapse
Affiliation(s)
- Raphael Thuillier
- a Inserm U1082 , Inserm, Poitiers , France.,b Fédération Hospitalo-Universitaire SUPORT , CHU Poitiers, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Eric Delpy
- e HEMARINA S.A., Aéropole centre, Biotechnopôle , Morlaix , France
| | - Xavier Matillon
- a Inserm U1082 , Inserm, Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,g Service d'urologie et de chirurgie de la transplantation , Hospices Civiles de Lyon , Lyon , France.,h Faculté de Médecine Lyon Est , Université Claude Bernard Lyon 1 , Villeurbanne , France
| | - Jacques Kaminski
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Abdelsalam Kasil
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - David Soussi
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Jerome Danion
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,i Service de Chirurgie viscérale et endocrinienne , CHU Poitiers , Poitiers , France
| | - Yse Sauvageon
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Xavier Rod
- a Inserm U1082 , Inserm, Poitiers , France
| | - Gianluca Donatini
- a Inserm U1082 , Inserm, Poitiers , France.,i Service de Chirurgie viscérale et endocrinienne , CHU Poitiers , Poitiers , France
| | - Benoit Barrou
- a Inserm U1082 , Inserm, Poitiers , France.,j Service de Transplantation Rénale, Département d'Urologie et de Transplantation , Groupe Hospitalier Pitié Salpétrière , Paris , France
| | - Lionel Badet
- a Inserm U1082 , Inserm, Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,g Service d'urologie et de chirurgie de la transplantation , Hospices Civiles de Lyon , Lyon , France.,h Faculté de Médecine Lyon Est , Université Claude Bernard Lyon 1 , Villeurbanne , France
| | - Franck Zal
- e HEMARINA S.A., Aéropole centre, Biotechnopôle , Morlaix , France
| | - Thierry Hauet
- a Inserm U1082 , Inserm, Poitiers , France.,b Fédération Hospitalo-Universitaire SUPORT , CHU Poitiers, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,k Consortium for Organ Preservation in Europe, Nuffield Department of Surgical Sciences , Oxford Transplant Centre, Churchill Hospital , Oxford , United Kingdom
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Despite high demand, a severe shortage of suitable allografts limits the use of liver transplantation for the treatment of end-stage liver disease. The transplant community is turning to the utilization of high-risk grafts to fill the void. This review summarizes the reemergence of ex-vivo machine perfusion for liver graft preservation, including results of recent clinical trials and its specific role for reconditioning DCD, steatotic and elderly grafts. RECENT FINDINGS Several phase-1 clinical trials demonstrate the safety and feasibility of machine perfusion for liver graft preservation. Machine perfusion has several advantages compared with static cold storage and may provide superior transplantation outcomes, particularly for marginal grafts. Ongoing multicenter trials aim to confirm the results of preclinical and pilot studies and establish the clinical utility of ex-vivo liver machine perfusion. SUMMARY Mounting evidence supports the benefits of machine perfusion for preservation of liver grafts. Thus, machine perfusion is a promising strategy to expand the donor pool by reconditioning and assessing viability of DCD, elderly and steatotic grafts during the preservation period. Additionally, machine perfusion will serve as a platform to facilitate graft intervention and modification to further optimize marginal grafts.
Collapse
|
19
|
Minor T, von Horn C. Rewarming Injury after Cold Preservation. Int J Mol Sci 2019; 20:ijms20092059. [PMID: 31027332 PMCID: PMC6539208 DOI: 10.3390/ijms20092059] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 01/14/2023] Open
Abstract
Organ dysfunction pertinent to tissue injury related to ischemic ex vivo preservation during transport from donor to recipient still represents a pivotal impediment in transplantation medicine. Cold storage under anoxic conditions minimizes metabolic activity, but eventually cannot prevent energetic depletion and impairment of cellular signal homeostasis. Reoxygenation of anoxically injured tissue may trigger additional damage to the graft, e.g., by abundant production of oxygen free radicals upon abrupt reactivation of a not yet equilibrated cellular metabolism. Paradoxically, this process is driven by the sudden restoration of normothermic conditions upon reperfusion and substantially less pronounced during re-oxygenation in the cold. The massive energy demand associated with normothermia is not met by the cellular systems that still suffer from hypothermic torpor and dys-equilibrated metabolites and eventually leads to mitochondrial damage, induction of apoptosis and inflammatory responses. This rewarming injury is partly alleviated by preceding supply of oxygen already in the cold but more effectively counteracted by an ensuing controlled and slow oxygenated warming up of the organ prior to implantation. A gentle restitution of metabolic turnover rates in line with the resumption of enzyme kinetics and molecular homeostasis improves post transplantation graft function and survival.
Collapse
Affiliation(s)
- Thomas Minor
- Department for Surgical Research, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany.
| | - Charlotte von Horn
- Department for Surgical Research, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany.
| |
Collapse
|
20
|
Barriers and Advances in Kidney Preservation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9206257. [PMID: 30643824 PMCID: PMC6311271 DOI: 10.1155/2018/9206257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/15/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022]
Abstract
Despite the fact that a significant fraction of kidney graft dysfunctions observed after transplantation is due to ischemia-reperfusion injuries, there is still no clear consensus regarding optimal kidney preservation strategy. This stems directly from the fact that as of yet, the mechanisms underlying ischemia-reperfusion injury are poorly defined, and the role of each preservation parameter is not clearly outlined. In the meantime, as donor demography changes, organ quality is decreasing which directly increases the rate of poor outcome. This situation has an impact on clinical guidelines and impedes their possible harmonization in the transplant community, which has to move towards changing organ preservation paradigms: new concepts must emerge and the definition of a new range of adapted preservation method is of paramount importance. This review presents existing barriers in transplantation (e.g., temperature adjustment and adequate protocol, interest for oxygen addition during preservation, and clear procedure for organ perfusion during machine preservation), discusses the development of novel strategies to overcome them, and exposes the importance of identifying reliable biomarkers to monitor graft quality and predict short and long-term outcomes. Finally, perspectives in therapeutic strategies will also be presented, such as those based on stem cells and their derivatives and innovative models on which they would need to be properly tested.
Collapse
|
21
|
von Horn C, Hannaert P, Hauet T, Leuvenink H, Paul A, Minor T. Cold flush after dynamic liver preservation protects against ischemic changes upon reperfusion - an experimental study. Transpl Int 2018; 32:218-224. [PMID: 30251360 PMCID: PMC7380013 DOI: 10.1111/tri.13354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/04/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
Ex vivo machine perfusion of the liver after cold storage has found to be most effective if combined with controlled oxygenated rewarming up to (sub)‐normothermia. On disconnection of the warm graft from the machine, most surgeons usually perform a cold flush of the organ as protection against the second warm ischemia incurred upon implantation. Experimental evidence, however, is lacking and protective effect of deep hypothermia has been challenged for limited periods of liver ischemia in other models. A first systematic test was carried out on porcine livers, excised 30 min after cardiac arrest, subjected to 18 h of cold storage in UW and then machine perfused for 90 min with Aqix‐RSI solution. During machine perfusion, livers were gradually rewarmed up to 20 °C. One group (n = 6) was then reflushed with 4 °C cold Belzer UW solution whereas the second group (n = 6) remained without cold flush. All livers were exposed to 45 min warm ischemia at room temperature to simulate the surgical implantation period. Organ function was evaluated in an established reperfusion model using diluted autologous blood. Cold reflush after disconnection from the machine resulted in a significant increase in bile production upon blood reperfusion, along with a significant reduction in transaminases release alanine aminotransferase and of the intramitochondrial enzyme glutamate dehydrogenase. Interestingly, free radical‐mediated lipid peroxidation was also found significantly lower after cold reflush. No differences between the groups could be evidenced concerning histological injury and recovery of hepatic energy metabolism (tissue content of adenosine triphosphate). Post‐machine preservation cold reflush seems to be beneficial in this particular setting, even if the organs are warmed up only to 20 °C, without notion of adverse effects, and should therefore be implemented in the protocol.
Collapse
Affiliation(s)
- Charlotte von Horn
- Department for Surgical Research - General Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Patrick Hannaert
- IRTOMIT, INSERM U1082, Université de Médecine et de Pharmacie de Poitiers, Poitiers, France
| | - Thierry Hauet
- IRTOMIT, INSERM U1082, Université de Médecine et de Pharmacie de Poitiers, Poitiers, France
| | - Henri Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Paul
- Department for Surgical Research - General Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Thomas Minor
- Department for Surgical Research - General Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
22
|
Boteon YL, Afford SC, Mergental H. Pushing the Limits: Machine Preservation of the Liver as a Tool to Recondition High-Risk Grafts. CURRENT TRANSPLANTATION REPORTS 2018; 5:113-120. [PMID: 29774176 PMCID: PMC5945712 DOI: 10.1007/s40472-018-0188-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF THE REVIEW Machine perfusion (MP) is a novel technology recently introduced in liver transplantation, redefining the current practice of organ preservation and pushing the limits of high-risk liver utilisation. This review highlights the key benefits of machine perfusion over conventional static cold storage (SCS), demonstrated in human liver research and clinical transplants. RECENT FINDINGS The first clinical trials have demonstrated both safety and feasibility of MP. The most recent transplant series and result from a randomised trial suggest the technology is superior to SCS. The key benefits include extended period of organ preservation, decreased incidence of early allograft dysfunction and reduction of biliary complications. Normothermic liver perfusion allows viability testing to guide transplantability of the highest-risk organs. This technology also provides opportunities for therapeutic interventions to improve liver function and quality in organs that are currently declined for clinical use. SUMMARY Machine perfusion is likely to transform the liver preservation pathway and to improve utilisation of high-risk grafts.
Collapse
Affiliation(s)
- Yuri L. Boteon
- Liver Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH UK
- National Institute for Health Research, Birmingham Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Simon C. Afford
- National Institute for Health Research, Birmingham Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH UK
- National Institute for Health Research, Birmingham Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|