1
|
Tang XH, Pesola G, Chen Q, Miller D, Nagy LE, McMullen MR, Schwartz RE, Tsoy S, Lim C, Chikara S, Gross SS, Trasino SE, Gudas LJ, Melis M. Ethanol causes rapid decreases in the hepatic retinoid levels shaping the early steps of alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:754-770. [PMID: 40016864 PMCID: PMC12014373 DOI: 10.1111/acer.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Chronic alcohol drinking causes hepatic vitamin A (retinoids and derivatives) decreases, which correlate with the progression and severity of alcohol-associated liver disease (ALD). However, the effects of short-term ethanol (EtOH) intake on liver retinoids and ALD are still undefined. METHODS Using high-performance liquid chromatography and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC, HPLC-MS/MS), and molecular biology techniques in mice and cultured human hepatocytes, we investigated the temporal EtOH effects on retinoids and ALD. RESULTS In female and male mice, acute EtOH intake caused hepatic retinol (ROL) and retinyl palmitate (RP) decreases within hours, whereas it did not significantly change the retinoic acid (RA) levels, and those of the RA catabolism metabolite, 4-oxo-RA. After EtOH withdrawal, the liver recovered the ROL and RP levels within 48 h, whereas RA and 4-oxo-RA levels remained almost undetectable by this time point. Compared with control diet-fed mice, hepatic ROL and RP levels remained decreased in the 10-day and 3-week-long EtOH treatments, while retinyl oleate and linoleate increased. Interestingly, some of the RA signaling receptors, Rarβ, along with Cyp26a1, revealed dramatic transcript increases during the 10-day-long experiments that attenuated over time (up to 8 weeks), reflecting impaired RA signaling. Our work also showed that primary human hepatocytes serve as a model to better define the role of EtOH in retinoid biology. CONCLUSIONS This work reveals that acute and short-term exposures to EtOH disrupt retinoid homeostasis, identifying key events in the early pathogenesis of ALD.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Glen Pesola
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Laura E. Nagy
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Megan R. McMullen
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Robert E. Schwartz
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Sergey Tsoy
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Christine Lim
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Shireen Chikara
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Steven E. Trasino
- Department of Nutrition and Public Health, Hunter College, City University of New York, New York, NY, USA
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Marta Melis
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Chang MC, Lin DPC, Chang HH. Hepatic Satellite Cell Activation and Alteration of Vitamin A Status Are Relevant to the Aggravation of Retinopathy by T2DM. Invest Ophthalmol Vis Sci 2025; 66:7. [PMID: 39903179 PMCID: PMC11801389 DOI: 10.1167/iovs.66.2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/28/2024] [Indexed: 02/06/2025] Open
Abstract
Purpose Type 2 diabetes mellitus (T2DM) leads to diabetic retinopathy (DR) and hepatic impairments. The potential mutual interaction and the intermediator between these two injuries are not well elucidated. Both the retina and liver are involved in vitamin A metabolism, suggesting a potential involvement of vitamin A and its metabolites in this mutual interaction. This study aimed to elucidate the impact of either DR or hepatic impairment on the pathogenesis and vitamin A status of each during injury progression. Methods A streptozotocin (STZ)-high-fat diet (HFD)-induced T2DM rodent model was applied to examine via electroretinography (ERG) retinal and hepatic histopathology at 0, 12, 16, 20, 24, 28, and 30 weeks after T2DM induction. The levels of retinol in the retina, liver, serum, all-trans-retinal in the retina, and retinyl palmitate in the liver were measured at various time points after T2DM induction. Results Retinal dysfunction, evidenced by reduced ERG responses, appeared at week 12, followed by photoreceptor and ganglion cell damage after the 16th week. Hepatic impairments began with hepatic stellate cell activation and decreased retinyl palmitate storage, concurrent with reduced retinal retinol and increased all-trans-retinal. Serum retinol levels remained stable, but reductions in transthyretin (TTR) and retinol-binding protein 4 (RBP4) were found, likely disrupting vitamin A transport in the serum. Conclusions These results provide novel insights into hepatic injury and vitamin A status, implicating both in the aggravation of retinopathy under the influence of T2DM. The current results may raise clinical awareness on hepatic issues and vitamin A involvement during DR progression.
Collapse
Affiliation(s)
- Min-Chun Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Isoherranen N, Wen YW. The interplay between retinoic acid binding proteins and retinoic acid degrading enzymes in modulating retinoic acid concentrations. Curr Top Dev Biol 2024; 161:167-200. [PMID: 39870433 DOI: 10.1016/bs.ctdb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The active metabolite of vitamin A, all-trans-retinoic acid (atRA), is critical for maintenance of many cellular processes. Although the enzymes that can synthesize and clear atRA in mammals have been identified, their tissue and cell-type specific roles are still not fully established. Based on the plasma protein binding, tissue distribution and lipophilicity of atRA, atRA partitions extensively to lipid membranes and other neutral lipids in cells. As a consequence, free atRA concentrations in cells are expected to be exceedingly low. As such mechanisms must exist that allow sufficiently high atRA concentrations to occur for binding to retinoic acid receptor (RARs) and for RAR mediated signaling. Kinetic simulations suggest that cellular retinoic acid binding proteins (CRABPs) provide a cytosolic reservoir for atRA to allow high enough cytosolic concentrations that enable RAR signaling. Yet, the different CRABP family members CRABP1 and CRABP2 may serve different functions in this context. CRABP1 may reside in the cytosol as a member of a cytosolic signalosome and CRABP2 may bind atRA in the cytosol and localize to the nucleus. Both CRABPs appear to interact with the atRA-degrading cytochrome P450 (CYP) family 26 enzymes in the endoplasmic reticulum. These interactions, together with the expression levels of the CRABPs and CYP26s, likely modulate cellular atRA concentration gradients and tissue atRA concentrations in a tightly coordinated manner. This review provides a summary of the current knowledge of atRA distribution, metabolism and protein binding and how these characteristics may alter tissue atRA concentrations.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington.
| | - Yue Winnie Wen
- Department of Pharmaceutics, School of Pharmacy, University of Washington
| |
Collapse
|
4
|
Dubois V, Lefebvre P, Staels B, Eeckhoute J. Nuclear receptors: pathophysiological mechanisms and drug targets in liver disease. Gut 2024; 73:1562-1569. [PMID: 38862216 DOI: 10.1136/gutjnl-2023-331741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors required for liver development and function. As a consequence, NRs have emerged as attractive drug targets in a wide range of liver diseases. However, liver dysfunction and failure are linked to loss of hepatocyte identity characterised by deficient NR expression and activities. This might at least partly explain why several pharmacological NR modulators have proven insufficiently efficient to improve liver functionality in advanced stages of diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this perspective, we review the most recent advances in the hepatic NR field and discuss the contribution of multiomic approaches to our understanding of their role in the molecular organisation of an intricated transcriptional regulatory network, as well as in liver intercellular dialogues and interorgan cross-talks. We discuss the potential benefit of novel therapeutic approaches simultaneously targeting multiple NRs, which would not only reactivate the hepatic NR network and restore hepatocyte identity but also impact intercellular and interorgan interplays whose importance to control liver functions is further defined. Finally, we highlight the need of considering individual parameters such as sex and disease stage in the development of NR-based clinical strategies.
Collapse
Affiliation(s)
- Vanessa Dubois
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical Sciences, Ghent University, Gent, Belgium
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Jerome Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
5
|
Wilhelmsen I, Combriat T, Dalmao-Fernandez A, Stokowiec J, Wang C, Olsen PA, Wik JA, Boichuk Y, Aizenshtadt A, Krauss S. The effects of TGF-β-induced activation and starvation of vitamin A and palmitic acid on human stem cell-derived hepatic stellate cells. Stem Cell Res Ther 2024; 15:223. [PMID: 39044210 PMCID: PMC11267759 DOI: 10.1186/s13287-024-03852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Hepatic stellate cells (HSC) have numerous critical roles in liver function and homeostasis, while they are also known for their importance during liver injury and fibrosis. There is therefore a need for relevant in vitro human HSC models to fill current knowledge gaps. In particular, the roles of vitamin A (VA), lipid droplets (LDs), and energy metabolism in human HSC activation are poorly understood. METHODS In this study, human pluripotent stem cell-derived HSCs (scHSCs), benchmarked to human primary HSC, were exposed to 48-hour starvation of retinol (ROL) and palmitic acid (PA) in the presence or absence of the potent HSC activator TGF-β. The interventions were studied by an extensive set of phenotypic and functional analyses, including transcriptomic analysis, measurement of activation-related proteins and cytokines, VA- and LD storage, and cell energy metabolism. RESULTS The results show that though the starvation of ROL and PA alone did not induce scHSC activation, the starvation amplified the TGF-β-induced activation-related transcriptome. However, TGF-β-induced activation alone did not lead to a reduction in VA or LD stores. Additionally, reduced glycolysis and increased mitochondrial fission were observed in response to TGF-β. CONCLUSIONS scHSCs are robust models for activation studies. The loss of VA and LDs is not sufficient for scHSC activation in vitro, but may amplify the TGF-β-induced activation response. Collectively, our work provides an extensive framework for studying human HSCs in healthy and diseased conditions.
Collapse
Affiliation(s)
- Ingrid Wilhelmsen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway.
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway.
| | - Thomas Combriat
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Andrea Dalmao-Fernandez
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, Oslo, 0316, Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Chencheng Wang
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
- Department of Transplantation Medicine, Institute for Surgical Research, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
| | - Petter Angell Olsen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Jonas Aakre Wik
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Yuliia Boichuk
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Aleksandra Aizenshtadt
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Stefan Krauss
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| |
Collapse
|
6
|
Bozhkov AI, Akzhyhitov RA, Bilovetska SG, Ivanov EG, Dobrianska NI, Bondar AY. The Effect of Retinol Acetate on Liver Fibrosis Depends on the Temporal Features of the Development of Pathology. J Clin Exp Hepatol 2024; 14:101338. [PMID: 38264572 PMCID: PMC10801314 DOI: 10.1016/j.jceh.2023.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Background The effect of vitamin A on the manifestations of liver fibrosis is controversial and establishing the causes of its multidirectional influence is an urgent problem. In the work, the functional characteristics of the liver with Cu-induced fibrosis were determined after the restoration of vitamin A to the control level at the F0/F1 stage. Methods In animals with liver fibrosis, classical indicators of physiology, functional activity of the liver, histological, and hematological characteristics were determined; the content of calcium and ROS was determined in bone marrow cells. Results It was shown that in the liver with Cu-induced fibrosis, the restoration of vitamin A content to control values after per os injections of a retinol acetate solution at a dose of 0.10 mg (300 IU)/100 g of body weight in the early stages of this pathology development (Fо/F1) was accompanied by: a decrease in the number of immunocompetent cells in the bloodstream to control values; normalization of the amount of calcium ions and ROS in bone marrow cells; restoration to the control level of activity of alkaline phosphatase; an increase in the number of binuclear hepatocytes; and restoration of the dynamics of body weight growth in experimental animals, even against the background of the ongoing action of the hepatotoxic factor. Conclusion We came to the conclusion that the multidirectional action of vitamin A, which occurs in liver fibrosis, depends not only on the concentration of vitamin A in the liver but also on temporal characteristics of cellular and metabolic links involved in the adaptive response formation. It was suggested that knowledge of the initial temporal metabolic characteristics and the amount of vitamin A in the liver, taking into account the stages of fibrosis development, can be an effective way to restore the altered homeostatic parameters of the body.
Collapse
Affiliation(s)
- Anatoly I. Bozhkov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Rustam A. Akzhyhitov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Svitlana G. Bilovetska
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Evgeny G. Ivanov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Nataliia I. Dobrianska
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Anastasiia Yu Bondar
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| |
Collapse
|
7
|
Czuba LC, Isoherranen N. LX-2 Stellate Cells Are a Model System for Investigating the Regulation of Hepatic Vitamin A Metabolism and Respond to Tumor Necrosis Factor α and Interleukin 1 β. Drug Metab Dispos 2024; 52:442-454. [PMID: 38485281 PMCID: PMC11023816 DOI: 10.1124/dmd.124.001679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/18/2024] Open
Abstract
Hepatic stellate cells (HSCs) are the major site of vitamin A (retinol) esterification and subsequent storage as retinyl esters within lipid droplets. However, retinyl esters become depleted in many pathophysiological states, including acute and chronic liver injuries. Recently, using a liver slice culture system as a model of acute liver injury and fibrogenesis, a time-dependent increase and decrease in the apparent formation of the bioactive retinoid all-trans-retinoic acid (atRA) and retinyl palmitate was measured, respectively. This coincided with temporal changes in the gene expression of retinoid-metabolizing enzymes and binding proteins, that preceded HSC activation. However, the underlying mechanisms that promote early changes in retinoid metabolism remain unresolved. We hypothesized that LX-2 cells could be applied to investigate differences in quiescent and activated HSC retinoid metabolism. We demonstrate that the hypermetabolic state of activated stellate cells relative to quiescent stellate cells may be attributed to induction of STRA6, RBP4, and CYP26A1, thereby reducing intracellular concentrations of atRA. We further hypothesized that paracrine and autocrine cytokine signaling regulates HSC vitamin A metabolism in both quiescent and activated cells. In quiescent cells, tumor necrosis factor α dose-dependently downregulated LRAT and CRBP1 mRNA, with EC50 values of 30-50 pg/mL. Likewise, interleukin-1β decreased LRAT and CRBP1 gene expression but with less potency. In activated stellate cells, multiple enzymes were downregulated, suggesting that the full effects of altered hepatic vitamin A metabolism in chronic conditions require both paracrine and autocrine signaling events. Further, this study suggests the potential for cell type-specific autocrine effects in hepatic retinoid signaling. SIGNIFICANCE STATEMENT: HSCs are the major site of vitamin A storage and important determinants of retinol metabolism during liver fibrogenesis. Here, two LX-2 culture methods were applied as models of hepatic retinoid metabolism to demonstrate the effects of activation status and dose-dependent cytokine exposure on the expression of genes involved in retinoid metabolism. This study suggests that compared to quiescent cells, activated HSCs are hypermetabolic and have reduced apparent formation of retinoic acid, which may alter downstream retinoic acid signaling.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| |
Collapse
|
8
|
Goel H, Printz RL, Pannala VR, AbdulHameed MDM, Wallqvist A. Probing Liver Injuries Induced by Thioacetamide in Human In Vitro Pooled Hepatocyte Experiments. Int J Mol Sci 2024; 25:3265. [PMID: 38542239 PMCID: PMC10970511 DOI: 10.3390/ijms25063265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024] Open
Abstract
Animal studies are typically utilized to understand the complex mechanisms associated with toxicant-induced hepatotoxicity. Among the alternative approaches to animal studies, in vitro pooled human hepatocytes have the potential to capture population variability. Here, we examined the effect of the hepatotoxicant thioacetamide on pooled human hepatocytes, divided into five lots, obtained from forty diverse donors. For 24 h, pooled human hepatocytes were exposed to vehicle, 1.33 mM (low dose), and 12 mM (high dose) thioacetamide, followed by RNA-seq analysis. We assessed gene expression variability using heat maps, correlation plots, and statistical variance. We used KEGG pathways and co-expression modules to identify underlying physiological processes/pathways. The co-expression module analysis showed that the majority of the lots exhibited activation for the bile duct proliferation module. Despite lot-to-lot variability, we identified a set of common differentially expressed genes across the lots with similarities in their response to amino acid, lipid, and carbohydrate metabolism. We also examined efflux transporters and found larger lot-to-lot variability in their expression patterns, indicating a potential for alteration in toxicant bioavailability within the cells, which could in turn affect the gene expression patterns between the lots. Overall, our analysis highlights the challenges in using pooled hepatocytes to understand mechanisms of toxicity.
Collapse
Affiliation(s)
- Himanshu Goel
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
| |
Collapse
|
9
|
Yang H, Su M, Liu M, Sheng Y, Zhu L, Yang L, Mu R, Zou J, Liu X, Liu L. Hepatic retinaldehyde deficiency is involved in diabetes deterioration by enhancing PCK1- and G6PC-mediated gluconeogenesis. Acta Pharm Sin B 2023; 13:3728-3743. [PMID: 37719384 PMCID: PMC10501888 DOI: 10.1016/j.apsb.2023.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
Type 2 diabetes (T2D) is often accompanied with an induction of retinaldehyde dehydrogenase 1 (RALDH1 or ALDH1A1) expression and a consequent decrease in hepatic retinaldehyde (Rald) levels. However, the role of hepatic Rald deficiency in T2D progression remains unclear. In this study, we demonstrated that reversing T2D-mediated hepatic Rald deficiency by Rald or citral treatments, or liver-specific Raldh1 silencing substantially lowered fasting glycemia levels, inhibited hepatic glucogenesis, and downregulated phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6-phosphatase (G6PC) expression in diabetic db/db mice. Fasting glycemia and Pck1/G6pc mRNA expression levels were strongly negatively correlated with hepatic Rald levels, indicating the involvement of hepatic Rald depletion in T2D deterioration. A similar result that liver-specific Raldh1 silencing improved glucose metabolism was also observed in high-fat diet-fed mice. In primary human hepatocytes and oleic acid-treated HepG2 cells, Rald or Rald + RALDH1 silencing resulted in decreased glucose production and downregulated PCK1/G6PC mRNA and protein expression. Mechanistically, Rald downregulated direct repeat 1-mediated PCK1 and G6PC expression by antagonizing retinoid X receptor α, as confirmed by luciferase reporter assays and molecular docking. These results highlight the link between hepatic Rald deficiency, glucose dyshomeostasis, and the progression of T2D, whilst also suggesting RALDH1 as a potential therapeutic target for T2D.
Collapse
Affiliation(s)
- Hanyu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengxiang Su
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Sheng
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Zhu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruijing Mu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaodong Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Abstract
Retinoic acid (RA) is a metabolite of vitamin A and is essential for development and growth as well as cellular metabolism. Through genomic and nongenomic actions, RA regulates a variety of physiological functions. Dysregulation of RA signaling is associated with many diseases. Targeting RA signaling has been proven valuable to human health. All-trans retinoic acid (AtRA) and anthracycline-based chemotherapy are the standard treatment of acute promyelocytic leukemia (APL). Both human and animal studies have shown a significant relationship between RA signaling and the development and progression of nonalcoholic fatty liver disease (NAFLD). In this review article, we will first summarize vitamin A metabolism and then focus on the role of RA signaling in NAFLD. AtRA inhibits the development and progression of NAFLD via regulating lipid metabolism, inflammation, thermogenesis, etc.
Collapse
Affiliation(s)
- Fathima N Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA 44272
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA 44272
| |
Collapse
|
11
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
12
|
Pi Z, Liu J, Xiao Y, He X, Zhu R, Tang R, Qiu X, Zhan Y, Zeng Z, Shi Y, Xiao R. ATRA ameliorates fibrosis by suppressing the pro-fibrotic molecule Fra2/AP-1 in systemic sclerosis. Int Immunopharmacol 2023; 121:110420. [PMID: 37331293 DOI: 10.1016/j.intimp.2023.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease that leads to irreversible fibrosis of the skin and the internal organs. The etiology of SSc is complex, its pathophysiology is poorly understood, and clinical therapeutic options are restricted. Thus, research into medications and targets for treating fibrosis is essential and urgent. Fos-related antigen 2 (Fra2) is a transcription factor that is a member of the activator protein-1 family. Fra2 transgenic mice were shown to have spontaneous fibrosis. All-trans retinoic acid (ATRA) is a vitamin A intermediate metabolite and ligand for the retinoic acid receptor (RAR), which possesses anti-inflammatory and anti-proliferative properties. Recent research has demonstrated that ATRA also has an anti-fibrotic effect. However, the exact mechanism is not fully understood. Interestingly, we identified potential binding sites for the transcription factor RARα to the promoter region of the FRA2 gene through JASPAR and PROMO databases. In this study, the pro-fibrotic effect of Fra2 in SSc is confirmed. SSc dermal fibroblasts and bleomycin-induced fibrotic tissues of SSc animals exhibit increased levels of Fra2. Inhibition of Fra2 expression in SSc dermal fibroblasts with Fra2 siRNA markedly decreased collagen I expression. ATRA reduced the expressions of Fra2, collagen I, and α-smooth muscle actin(α-SMA) in SSc dermal fibroblasts and bleomycin-induced fibrotic tissues of SSc mice. In addition, chromatin immunoprecipitation and dual-luciferase assays demonstrated that retinoic acid receptor RARα binds to the FRA2 promoter and modulates its transcriptional activity. ATRA decreases collagen I expression both in vivo and in vitro via the reduction of Fra2 expression. This work establishes the rationale for expanding the use of ATRA in the treatment of SSc and indicates that Fra2 can be used as an anti-fibrotic target.
Collapse
Affiliation(s)
- Zixin Pi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.; Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ruixuan Zhu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China..
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China..
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China..
| |
Collapse
|
13
|
Sohal A, Chaudhry H, Kowdley KV. Genetic Markers Predisposing to Nonalcoholic Steatohepatitis. Clin Liver Dis 2023; 27:333-352. [PMID: 37024211 DOI: 10.1016/j.cld.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The growing prevalence of nonalcoholic fatty liver disease (NAFLD) has sparked interest in understanding genetics and epigenetics associated with the development and progression of the disease. A better understanding of the genetic factors related to progression will be beneficial in the risk stratification of patients. These genetic markers can also serve as potential therapeutic targets in the future. In this review, we focus on the genetic markers associated with the progression and severity of NAFLD.
Collapse
Affiliation(s)
- Aalam Sohal
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA
| | - Hunza Chaudhry
- Department of Internal Medicine, UCSF Fresno, 155 North Fresno Street, Fresno, CA 93722, USA
| | - Kris V Kowdley
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA; Elson S. Floyd College of Medicine, Washington State University, WA, USA.
| |
Collapse
|
14
|
Ezhilarasan D, Najimi M. Intercellular communication among liver cells in the perisinusoidal space of the injured liver: Pathophysiology and therapeutic directions. J Cell Physiol 2023; 238:70-81. [PMID: 36409708 DOI: 10.1002/jcp.30915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022]
Abstract
Hepatic stellate cells (HSCs) in the perisinusoidal space are surrounded by hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and other resident immune cells. In the normal liver, HSCs communicate with these cells to maintain normal liver functions. However, after chronic liver injury, injured hepatocytes release several proinflammatory mediators, reactive oxygen species, and damage-associated molecular patterns into the perisinusoidal space. Consequently, such alteration activates quiescent HSCs to acquire a myofibroblast-like phenotype and express high amounts of transforming growth factor-β1, angiopoietins, vascular endothelial growth factors, interleukins 6 and 8, fibril forming collagens, laminin, and E-cadherin. These phenotypic and functional transdifferentiation lead to hepatic fibrosis with a typical abnormal extracellular matrix synthesis and disorganization of the perisinusoidal space of the injured liver. Those changes provide a favorable environment that regulates tumor cell proliferation, migration, adhesion, and survival in the perisinusoidal space. Such tumor cells by releasing transforming growth factor-β1 and other cytokines, will, in turn, activate and deeply interact with HSCs via a bidirectional loop. Furthermore, hepatocellular carcinoma-derived mediators convert HSCs and macrophages into protumorigenic cell populations. Thus, the perisinusoidal space serves as a critical hub for activating HSCs and their interactions with other cell types, which cause a variety of liver diseases such as hepatic inflammation, fibrosis, cirrhosis, and their complications, such as portal hypertension and hepatocellular carcinoma. Therefore, targeting the crosstalk between activated HSCs and tumor cells/immune cells in the tumor microenvironment may also support a promising therapeutic strategy.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
15
|
Ramos-Lopez O. Multi-Omics Nutritional Approaches Targeting Metabolic-Associated Fatty Liver Disease. Genes (Basel) 2022; 13:2142. [PMID: 36421817 PMCID: PMC9690481 DOI: 10.3390/genes13112142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 10/29/2023] Open
Abstract
Currently, metabolic-associated fatty liver disease (MAFLD) is a leading global cause of chronic liver disease, and is expected to become one of the most common indications of liver transplantation. MAFLD is associated with obesity, involving multiple mechanisms such as alterations in lipid metabolism, insulin resistance, hyperinflammation, mitochondrial dysfunction, cell apoptosis, oxidative stress, and extracellular matrix formation. However, the onset and progression of MAFLD is variable among individuals, being influenced by intrinsic (personal) and external environmental factors. In this context, sequence structural variants across the human genome, epigenetic phenomena (i.e., DNA methylation, histone modifications, and long non-coding RNAs) affecting gene expression, gut microbiota dysbiosis, and metabolomics/lipidomic fingerprints may account for differences in MAFLD outcomes through interactions with nutritional features. This knowledge may contribute to gaining a deeper understanding of the molecular and physiological processes underlying MAFLD pathogenesis and phenotype heterogeneity, as well as facilitating the identification of biomarkers of disease progression and therapeutic targets for the implementation of tailored nutritional strategies. This comprehensive literature review highlights the potential of nutrigenetic, nutriepigenetic, nutrimetagenomic, nutritranscriptomics, and nutrimetabolomic approaches for the prevention and management of MAFLD in humans through the lens of precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| |
Collapse
|
16
|
Mao Y, Wang M, Xiong Y, Wen X, Zhang M, Ma L, Zhang Y. MELTF Might Regulate Ferroptosis, Pyroptosis, and Autophagy in Platelet-Rich Plasma-Mediated Endometrial Epithelium Regeneration. Reprod Sci 2022; 30:1506-1520. [PMID: 36303086 DOI: 10.1007/s43032-022-01101-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
Abstract
The endometrial basal layer is essential for endometrial regeneration, whose disruption leads to thin endometrium or intrauterine adhesion (IUA) with an unsatisfactory prognosis. Emerging data indicate that platelet-rich plasma (PRP) can promote endometrial proliferation, but the mechanism by which PRP regulates endometrial regeneration remains unclear. Herein, we investigated the therapeutic effects and possible mechanisms of PRP on endometrial regeneration. IUA animal model was generated by sham, mechanically damaging endometrium with or without PRP for 10 days. The uterine section in the model group showed degenerative changes with a narrow endometrial lumen, atrophic columnar epithelium, decreased number of endometrial glands, decreased endometrial thickness, and increased collagen deposition. The above disruption could be ameliorated by the PRP. Transcriptome sequencing analysis displayed that the retinol metabolism pathway and extracellular matrix (ECM) receptor interaction pathway were up-regulated and enriched in differential expression genes (DEGs). Melanotransferrin (MELTF) was the key up-regulated gene in PRP-induced endometrial regeneration, which was verified in vivo and in vitro. Ferroptosis, autophagy, and pyroptosis were down-regulated in PRP-treated Ishikawa cells. Conclusively, PRP promotes endometrium regeneration by up-regulating the retinol metabolism and ECM receptor interaction pathway with MELTF. Meanwhile, PRP could also inhibit endometrial epithelial cell death by regulating ferroptosis, autophagy, and pyroptosis.
Collapse
Affiliation(s)
- Yanhong Mao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China
| | - Yao Xiong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China
| | - Xue Wen
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China.
| | - Yuanzhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China.
| |
Collapse
|
17
|
Yadav AS, Isoherranen N, Rubinow KB. Vitamin A homeostasis and cardiometabolic disease in humans: lost in translation? J Mol Endocrinol 2022; 69:R95-R108. [PMID: 35900842 PMCID: PMC9534526 DOI: 10.1530/jme-22-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Vitamin A (retinol) is an essential, fat-soluble vitamin that plays critical roles in embryonic development, vision, immunity, and reproduction. Severe vitamin A deficiency results in profound embryonic dysgenesis, blindness, and infertility. The roles of bioactive vitamin A metabolites in regulating cell proliferation, cellular differentiation, and immune cell function form the basis of their clinical use in the treatment of dermatologic conditions and hematologic malignancies. Increasingly, vitamin A also has been recognized to play important roles in cardiometabolic health, including the regulation of adipogenesis, energy partitioning, and lipoprotein metabolism. While these roles are strongly supported by animal and in vitro studies, they remain poorly understood in human physiology and disease. This review briefly introduces vitamin A biology and presents the key preclinical data that have generated interest in vitamin A as a mediator of cardiometabolic health. The review also summarizes clinical studies performed to date, highlighting the limitations of many of these studies and the ongoing controversies in the field. Finally, additional perspectives are suggested that may help position vitamin A metabolism within a broader biological context and thereby contribute to enhanced understanding of vitamin A's complex roles in clinical cardiometabolic disease.
Collapse
Affiliation(s)
- Aprajita S Yadav
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Katya B Rubinow
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Rubinow KB, Zhong G, Czuba LC, Chen JY, Williams E, Parr Z, Khandelwal S, Kim D, LaFrance J, Isoherranen N. Evidence of depot-specific regulation of all-trans-retinoic acid biosynthesis in human adipose tissue. Clin Transl Sci 2022; 15:1460-1471. [PMID: 35213790 PMCID: PMC9199890 DOI: 10.1111/cts.13259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
The prevalence of obesity continues to rise, underscoring the need to better understand the pathways mediating adipose tissue (AT) expansion. All-trans-retinoic acid (atRA), a bioactive vitamin A metabolite, regulates adipogenesis and energy metabolism, and, in rodent studies, aberrant vitamin A metabolism appears a key facet of metabolic dysregulation. The relevance of these findings to human disease is unknown, as are the specific enzymes implicated in vitamin A metabolism within human AT. We hypothesized that in human AT, family 1A aldehyde dehydrogenase (ALDH1A) enzymes contribute to atRA biosynthesis in a depot-specific manner. To test this hypothesis, parallel samples of subcutaneous and omental AT from participants (n = 15) were collected during elective abdominal surgeries to quantify atRA biosynthesis and key atRA synthesizing enzymes. ALDH1A1 was the most abundant ALDH1A isoform in both AT depots with expression approximately twofold higher in omental than subcutaneous AT. ALDH1A2 was detected only in omental AT. Formation velocity of atRA was approximately threefold higher (p = 0.0001) in omental AT (9.8 [7.6, 11.2]) pmol/min/mg) than subcutaneous AT (3.2 [2.1, 4.0] pmol/min/mg) and correlated with ALDH1A2 expression in omental AT (β-coefficient = 3.07, p = 0.0007) and with ALDH1A1 expression in subcutaneous AT (β-coefficient = 0.13, p = 0.003). Despite a positive correlation between body mass index (BMI) and omental ALDH1A1 protein expression (Spearman r = 0.65, p = 0.01), BMI did not correlate with atRA formation. Our findings suggest that ALDH1A2 is the primary mediator of atRA formation in omental AT, whereas ALDH1A1 is the principal atRA-synthesizing enzyme in subcutaneous AT. These data highlight AT depot as a critical variable for defining the roles of retinoids in human AT biology.
Collapse
Affiliation(s)
- Katya B. Rubinow
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
- Division of Metabolism, Endocrinology and NutritionDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Guo Zhong
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Lindsay C. Czuba
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Judy Y. Chen
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Estell Williams
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Zoe Parr
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Saurabh Khandelwal
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Daniel Kim
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Jeffrey LaFrance
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Nina Isoherranen
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
19
|
Melis M, Tang XH, Trasino SE, Gudas LJ. Retinoids in the Pathogenesis and Treatment of Liver Diseases. Nutrients 2022; 14:1456. [PMID: 35406069 PMCID: PMC9002467 DOI: 10.3390/nu14071456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A (VA), all-trans-retinol (ROL), and its analogs are collectively called retinoids. Acting through the retinoic acid receptors RARα, RARβ, and RARγ, all-trans-retinoic acid, an active metabolite of VA, is a potent regulator of numerous biological pathways, including embryonic and somatic cellular differentiation, immune functions, and energy metabolism. The liver is the primary organ for retinoid storage and metabolism in humans. For reasons that remain incompletely understood, a body of evidence shows that reductions in liver retinoids, aberrant retinoid metabolism, and reductions in RAR signaling are implicated in numerous diseases of the liver, including hepatocellular carcinoma, non-alcohol-associated fatty liver diseases, and alcohol-associated liver diseases. Conversely, restoration of retinoid signaling, pharmacological treatments with natural and synthetic retinoids, and newer agonists for specific RARs show promising benefits for treatment of a number of these liver diseases. Here we provide a comprehensive review of the literature demonstrating a role for retinoids in limiting the pathogenesis of these diseases and in the treatment of liver diseases.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Steven E. Trasino
- Nutrition Program, Hunter College, City University of New York, New York, NY 10065, USA;
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| |
Collapse
|
20
|
Yu Z, Xie X, Su X, Lv H, Song S, Liu C, You Y, Tian M, Zhu L, Wang L, Qi J, Zhu Q. ATRA-mediated-crosstalk between stellate cells and Kupffer cells inhibits autophagy and promotes NLRP3 activation in acute liver injury. Cell Signal 2022; 93:110304. [DOI: 10.1016/j.cellsig.2022.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
|
21
|
Wagner C, Hois V, Eggeling A, Pusch LM, Pajed L, Starlinger P, Claudel T, Trauner M, Zimmermann R, Taschler U, Lass A. KIAA1363 affects retinyl ester turnover in cultured murine and human hepatic stellate cells. J Lipid Res 2022; 63:100173. [PMID: 35101424 PMCID: PMC8953624 DOI: 10.1016/j.jlr.2022.100173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
Large quantities of vitamin A are stored as retinyl esters (REs) in specialized liver cells, the hepatic stellate cells (HSCs). To date, the enzymes controlling RE degradation in HSCs are poorly understood. In this study, we identified KIAA1363 (also annotated as arylacetamide deacetylase 1 or neutral cholesterol ester hydrolase 1) as a novel RE hydrolase. We show that KIAA1363 is expressed in the liver, mainly in HSCs, and exhibits RE hydrolase activity at neutral pH. Accordingly, addition of the KIAA1363-specific inhibitor JW480 largely reduced RE hydrolase activity in lysates of cultured murine and human HSCs. Furthermore, cell fractionation experiments and confocal microscopy studies showed that KIAA1363 localizes to the endoplasmic reticulum. We demonstrate that overexpression of KIAA1363 in cells led to lower cellular RE content after a retinol loading period. Conversely, pharmacological inhibition or shRNA-mediated silencing of KIAA1363 expression in cultured murine and human HSCs attenuated RE degradation. Together, our data suggest that KIAA1363 affects vitamin A metabolism of HSCs by hydrolyzing REs at the endoplasmic reticulum, thereby counteracting retinol esterification and RE storage in lipid droplets.
Collapse
Affiliation(s)
- Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Victoria Hois
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Annalena Eggeling
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Lisa-Maria Pusch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Laura Pajed
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Patrick Starlinger
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
22
|
Abstract
While the uses of retinoids for cancer treatment continue to evolve, this review focuses on other therapeutic areas in which retinoids [retinol (vitamin A), all-trans retinoic acid (RA), and synthetic retinoic acid receptor (RAR)α-, β-, and γ-selective agonists] are being used and on promising new research that suggests additional uses for retinoids for the treatment of disorders of the kidneys, skeletal muscles, heart, pancreas, liver, nervous system, skin, and other organs. The most mature area, in terms of US Food and Drug Administration-approved, RAR-selective agonists, is for treatment of various skin diseases. Synthetic retinoid agonists have major advantages over endogenous RAR agonists such as RA. Because they act through a specific RAR, side effects may be minimized, and synthetic retinoids often have better pharmaceutical properties than does RA. Based on our increasing knowledge of the multiple roles of retinoids in development, epigenetic regulation, and tissue repair, other exciting therapeutic areas are emerging. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA;
| |
Collapse
|