1
|
Ricci C. Advances in Diagnosis of Skin and Superficial Tissue Disorders-"Old and Emerging" Diagnostic Tools. Diagnostics (Basel) 2024; 14:2414. [PMID: 39518381 PMCID: PMC11544959 DOI: 10.3390/diagnostics14212414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Skin and superficial tissue disorders (SSTDs) are some of the most common diseases affecting humans [...].
Collapse
Affiliation(s)
- Costantino Ricci
- Pathology Unit, DIAP-Dipartimento InterAziendale di Anatomia Patologica di Bologna, Maggiore Hospital-AUSL Bologna, 40133 Bologna, Italy
| |
Collapse
|
2
|
Markopoulos G, Lampri E, Tragani I, Kourkoumelis N, Vartholomatos G, Seretis K. Intraoperative Flow Cytometry for the Rapid Diagnosis and Validation of Surgical Clearance of Non-Melanoma Skin Cancer: A Prospective Clinical Feasibility Study. Cancers (Basel) 2024; 16:682. [PMID: 38398076 PMCID: PMC10887295 DOI: 10.3390/cancers16040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most prevalent cancer in humans, with a high global incidence. We present a prospective clinical feasibility study on the use of intraoperative flow cytometry (iFC) for the instant diagnosis of NMSC and its complete surgical clearance. Flow cytometry, a laser-based technique, quantifies cell features, which has applications in cancer research. This study aim is to explore the potential applicability of iFC in detecting and characterizing NMSC and its surgical margins. In total, 30 patients who underwent diagnosis for NMSC were recruited. The method demonstrated high sensitivity (95.2%) and specificity (87.1%), with an accuracy of 91.1%, as confirmed with a receiver operating characteristic curve analysis. The results also indicated that most tumors were diploid, with two cases being hypoploid. The average G0/G1 fractions for normal and tumor tissue samples were 96.03 ± 0.30% and 88.03 ± 1.29%, respectively, with the tumor index escalating from 3.89 ± 0.30% to 11.95 ± 1.29% in cancerous cells. These findings underscore iFC's capability for precise intraoperative NMSC characterization and margin evaluation, promising enhanced complete tumor excision rates. Given the technique's successful application in various other malignancies, its implementation in NMSC diagnosis and treatment holds significant promise and warrants further research in clinical trials.
Collapse
Affiliation(s)
- Georgios Markopoulos
- Haematology Laboratory-Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45110 Ioannina, Greece; (G.M.); (G.V.)
| | - Evangeli Lampri
- Department of Pathology, Medical School, University of Ioannina, 45110 Ioannina, Greece; (E.L.); (I.T.)
| | - Ioulia Tragani
- Department of Pathology, Medical School, University of Ioannina, 45110 Ioannina, Greece; (E.L.); (I.T.)
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, Medical School, University of Ioannina, 45110 Ioannina, Greece;
| | - Georgios Vartholomatos
- Haematology Laboratory-Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45110 Ioannina, Greece; (G.M.); (G.V.)
| | - Konstantinos Seretis
- Department of Plastic Surgery, Medical School, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
3
|
Hosler GA, Murphy KM. Ancillary testing for melanoma: current trends and practical considerations. Hum Pathol 2023; 140:5-21. [PMID: 37179030 DOI: 10.1016/j.humpath.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The diagnosis of melanocytic lesions is aided by ancillary testing, but clinical inspection with the histomorphological assessment on biopsy remains sufficient in most cases. Immunohistochemistry and molecular studies have proven useful for diminishing the pool of histomorphologically borderline lesions, and sequential testing may further improve overall diagnostic performance, but these assays should be used in a stepwise fashion if at all. Ancillary tests vary based on their technology, performance, and practical considerations, including but not limited to the specific diagnostic question, cost, and turn-around time, which impact test selection. This review examines currently used ancillary tests for the purpose of characterizing melanocytic lesions. Both scientific and practical considerations are discussed.
Collapse
Affiliation(s)
- Gregory A Hosler
- ProPath, Dallas, TX, 75247, USA; University of Texas Southwestern, Departments of Dermatology and Pathology, Dallas, TX, 75390, USA.
| | | |
Collapse
|
4
|
Boothby-Shoemaker W, Guan L, Jones B, Chaffins M, Kohen L, Pimentel J, Veenstra J, Friedman BJ. Real world validation of an adjunctive gene expression-profiling assay for melanoma diagnosis and correlation with clinical outcomes at an academic center. Hum Pathol 2023; 139:73-79. [PMID: 37423481 DOI: 10.1016/j.humpath.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
A commercially available diagnostic gene expression profiling (GEP) assay (MyPath™) reportedly has high sensitivity and specificity in distinguishing nevi from melanoma based on manufacturer-conducted studies. However, data regarding the performance of this GEP assay in routine clinical practice are lacking. The purpose of this study was to better assess the real-world performance of GEP in a large academic practice. Retrospective review of GEP scores were compared with final histomorphologic interpretation on a wide spectrum of melanocytic lesions demonstrating some degree of atypia. In a sample of 369 lesions, the sensitivity (76.1%) and specificity (83.9%) of the GEP test as compared with final dermatopathologist-rendered diagnosis in our dataset was appreciably lower than that reported in the prior manufacturer-conducted validation studies. Limitations of this study were that it was a single-center study, its retrospective nature, nonblinded nature of GEP test result, concordance of only two pathologists, and limited follow-up time.The sensitivity and specificity of a commercially available GEP diagnostic assay for melanoma may be lower in routine clinical practice, where melanocytic lesions typically exhibit some degree of histomorphologic atypia. Reported cost effectiveness of GEP testing is questionable if all ambiguous lesions that undergo such testing are re-excised in clinical practice.
Collapse
Affiliation(s)
| | - Linna Guan
- Henry Ford Health, Department of Dermatology, Detroit, MI 48202, USA
| | - Brittani Jones
- Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Marsha Chaffins
- Henry Ford Health, Department of Dermatology, Detroit, MI 48202, USA
| | - Laurie Kohen
- Henry Ford Health, Department of Dermatology, Detroit, MI 48202, USA
| | - Jason Pimentel
- Henry Ford Health, Department of Pathology and Laboratory Medicine, Detroit, MI 48202, USA
| | - Jesse Veenstra
- Henry Ford Health, Department of Dermatology, Detroit, MI 48202, USA
| | - Ben J Friedman
- Henry Ford Health, Department of Dermatology, Detroit, MI 48202, USA.
| |
Collapse
|
5
|
Hagstrom M, Fumero-Velázquez M, Dhillon S, Olivares S, Gerami P. An update on genomic aberrations in Spitz naevi and tumours. Pathology 2023; 55:196-205. [PMID: 36631338 DOI: 10.1016/j.pathol.2022.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Spitz neoplasms continue to be a diagnostic challenge for dermatopathologists and are defined by distinctive morphological and genetic features. With the recent advancements in genomic sequencing, the classification, diagnosis, and prognostication of these tumours have greatly improved. Several subtypes of Spitz neoplasms have been identified based on their specific genomic aberrations, which often correlate with distinctive morphologies and biological behaviour. These genetic driver events can be classified into four major groups, including: (1) mutations [HRAS mutations (with or without 11p amplification) and 6q23 deletions]; (2) tyrosine kinase fusions (ROS1, ALK, NTRK1-3, MET and RET); (3) serine/threonine kinase fusions and mutations (BRAF, MAP3K8, and MAP2K1); and (4) other rare genomic aberrations. These driver genomic events are hypothesised to enable the initial proliferation of melanocytes and are often accompanied by additional genomic aberrations that affect biological behaviour. The discovery of theses genomic fusions has allowed for a more objective definition of a Spitz neoplasm. Further studies have shown that the majority of morphologically Spitzoid appearing melanocytic neoplasms with aggressive behaviour are in fact BRAF or NRAS mutated tumours mimicking Spitz. Truly malignant fusion driven Spitz neoplasms may occur but are relatively uncommon, and biomarkers such as homozygous 9p21 (CDKN2A) deletions or TERT-p mutations can have some prognostic value in such cases. In this review, we discuss the importance and various methods of identifying Spitz associated genomic fusions to help provide more definitive classification. We also discuss characteristic features of the various fusion subtypes as well as prognostic biomarkers.
Collapse
Affiliation(s)
- Michael Hagstrom
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mónica Fumero-Velázquez
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Soneet Dhillon
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shantel Olivares
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
McAfee JL, Scarborough R, Jia XS, Azzato EM, Astbury C, Ronen S, Andea AA, Billings SD, Ko JS. Combined utility of p16 and BRAF V600E in the evaluation of spitzoid tumors: Superiority to PRAME and correlation with FISH. J Cutan Pathol 2023; 50:155-168. [PMID: 36261329 PMCID: PMC10099989 DOI: 10.1111/cup.14342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/16/2022] [Accepted: 10/15/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Spitzoid melanocytic neoplasms are diagnostically challenging; criteria for malignancy continue to evolve. The ability to predict chromosomal abnormalities with immunohistochemistry (IHC) could help select cases requiring chromosomal evaluation. METHODS Fluorescence in situ hybridization (FISH)-tested spitzoid neoplasms at our institution (2013-2021) were reviewed. p16, BRAF V600E, and preferentially expressed antigen in melanoma (PRAME) IHC results were correlated with FISH. RESULTS A total of 174 cases (1.9F:1M, median age 28 years; range, 5 months-74 years) were included; final diagnoses: Spitz nevus (11%), atypical Spitz tumor (47%), spitzoid dysplastic nevus (9%), and spitzoid melanoma (32%). Sixty (34%) were FISH positive, most commonly with absolute 6p25 gain (RREB1 > 2). Dermal mitotic count was the only clinicopathologic predictor of FISH. Among IHC-stained cases, p16 was lost in 55 of 134 cases (41%); loss correlated with FISH positive (p < 0.001, Fisher exact test). BRAF V600E (14/88, 16%) and PRAME (15/56, 27%) expression did not correlate with FISH alone (p = 0.242 and p = 0.359, respectively, Fisher exact test). When examined together, however, p16-retained/BRAF V600E-negative lesions had low FISH-positive rates (5/37, 14%; 4/37, 11% not counting isolated MYB loss); all other marker combinations had high rates (56%-75% of cases; p < 0.001). CONCLUSIONS p16/BRAF V600E IHC predicts FISH results. "Low-risk" lesions (p16+ /BRAF V600E- ) uncommonly have meaningful FISH abnormalities (11%). PRAME may have limited utility in this setting.
Collapse
Affiliation(s)
- John L McAfee
- Department of Anatomic Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Xuefei Sophia Jia
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Elizabeth M Azzato
- Department of Molecular Pathology and Cytogenetics, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Caroline Astbury
- Department of Molecular Pathology and Cytogenetics, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shira Ronen
- Department of Anatomic Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Aleodor A Andea
- Department of Molecular Genetic Pathology and Dermatopathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven D Billings
- Department of Anatomic Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jennifer S Ko
- Department of Anatomic Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Chen YP, Zhang WW, Qiu YT, Ke LF, Chen H, Chen G. PRAME is a useful marker for the differential diagnosis of melanocytic tumours and histological mimics. Histopathology 2023; 82:285-295. [PMID: 36200756 DOI: 10.1111/his.14814] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
AIMS Although the morphological assessment of melanoma is generally straightforward, diagnosis can be especially difficult when the significant morphological and immunohistochemical results overlap with those of benign and malignant melanocytic tumours and histological mimics. This study assessed the potential diagnostic utility of measuring PReferentially expressed Antigen in MElanoma (PRAME) immunohistochemically in naevi, melanomas and clear cell sarcomas (CCSs) in Chinese patients. METHODS We examined the immunohistochemical expression of PRAME in 317 melanocytic naevi, 178 primary melanomas, 72 metastatic melanomas and 19 CCSs and compared the sensitivity and specificity of PRAME immunohistochemistry (IHC) in the differential diagnosis of melanocytic tumours and histological mimics. RESULTS Of the 317 melanocytic naevi, 98.1%were completely negative for PRAME; six cases showed focal PRAME immunoreactivity in a minor population of lesional melanocytes. Diffuse nuclear immunoreactivity for PRAME was found in 89.9% of primary melanomas and 93.1% of metastatic melanomas. Regarding melanoma subtypes, PRAME was expressed in 100% of superficial spreading melanomas, 100% of melanomas arise in congenital naevus, 91.4% of nodular melanomas, 87.8% of acral lentigo melanomas, 80.0% of lentigo malignant melanomas, 60.0% of Spitz melanomas, 96.2% of mucosal melanomas and 80.0% of uveal melanomas. None of the two desmoplastic melanomas expressed PRAME. Of the 19 CCS cases, 89.5% were negative for PRAME and 10.5% showed focal weak PRAME immunoreactivity in a minor population of tumour cells. CONCLUSIONS Our findings indicate that PRAME may be a useful marker to support a suspected diagnosis of melanoma. In addition, lack of PRAME expression is a valuable hint to CCS in a suspected case, and then molecular confirmation of the presence of EWSR1 rearrangement is necessary.
Collapse
Affiliation(s)
- Yan-Ping Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou
| | - Wen-Wen Zhang
- Department of Pathology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou
| | - Ya-Ting Qiu
- Department of Pathology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou
| | - Long-Feng Ke
- Laboratory of Molecular Pathology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou
| | - Hao Chen
- Department of Pathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Gang Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou
| |
Collapse
|
8
|
Mito JK, Weber MC, Corbin A, Murphy GF, Zon LI. Modeling Spitz melanoma in zebrafish using sequential mutagenesis. Dis Model Mech 2022; 15:276442. [PMID: 36017742 PMCID: PMC9438928 DOI: 10.1242/dmm.049452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/13/2022] [Indexed: 01/13/2023] Open
Abstract
Spitz neoplasms are a diverse group of molecularly and histologically defined melanocytic tumors with varying biologic potentials. The precise classification of Spitz neoplasms can be challenging. Recent studies have revealed recurrent fusions involving multiple kinases in a large proportion of Spitz tumors. In this study, we generated a transgenic zebrafish model of Spitz melanoma using a previously identified ZCCHC8-ROS1 fusion gene. Animals developed grossly apparent melanocytic proliferations as early as 3 weeks of age and overt melanoma as early as 5 weeks. By 7 weeks, ZCCHC8-ROS1 induced a histologic spectrum of neoplasms ranging from hyperpigmented patches to melanoma. Given the swift onset of these tumors during development, we extended this approach into adult fish using a recently described electroporation technique. Tissue-specific expression of ZCCHC8-ROS1 in adults led to melanocyte expansion without overt progression to melanoma. Subsequent electroporation with tissue-specific CRISPR, targeting only tp53 was sufficient to induce transformation to melanoma. Our model exhibits the use of sequential mutagenesis in the adult zebrafish, and demonstrates that ZCCHC8-ROS1 induces a spectrum of melanocytic lesions that closely mimics human Spitz neoplasms. Summary: We describe the first animal model of Spitz neoplasms and demonstrate its use for modeling sequential mutagenesis and its potential for studying melanocyte development in vivo.
Collapse
Affiliation(s)
- Jeffrey K Mito
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Margaret C Weber
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Alexandra Corbin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
9
|
TERT Promoter Mutations and Telomerase in Melanoma. JOURNAL OF ONCOLOGY 2022; 2022:6300329. [PMID: 35903534 PMCID: PMC9325578 DOI: 10.1155/2022/6300329] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Malignant melanoma is an extremely malignant tumor with a high mortality rate and an increasing incidence with a high mutation load. The frequency of mutations in the TERT promoter exceeds the frequency of any known noncoding mutations in melanoma. A growing number of recent studies suggest that the most common mutations in the TERT promoter (ATG start site −124C>T and −146C>T) are associated with increased TERT mRNA expression, telomerase activity, telomere length, and poor prognosis. Recently, it has been shown that TERT promoter mutations are more correlated with the occurrence, development, invasion, and metastasis of melanoma, as well as emerging approaches such as the therapeutic potential of chemical inhibition of TERT promoter mutations, direct telomerase inhibitors, combined targeted therapy, and immunotherapies. In this review, we describe the latest advances in the role of TERT promoter mutations and telomerase in promoting the occurrence, development, and poor prognosis of melanoma and discuss the clinical significance of the TERT promoter and telomerase in the treatment of melanoma.
Collapse
|
10
|
Cheng TW, Ahern MC, Giubellino A. The Spectrum of Spitz Melanocytic Lesions: From Morphologic Diagnosis to Molecular Classification. Front Oncol 2022; 12:889223. [PMID: 35747831 PMCID: PMC9209745 DOI: 10.3389/fonc.2022.889223] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Spitz tumors represent a distinct subtype of melanocytic lesions with characteristic histopathologic features, some of which are overlapping with melanoma. More common in the pediatric and younger population, they can be clinically suspected by recognizing specific patterns on dermatoscopic examination, and several subtypes have been described. We now classify these lesions into benign Spitz nevi, intermediate lesions identified as “atypical Spitz tumors” (or Spitz melanocytoma) and malignant Spitz melanoma. More recently a large body of work has uncovered the molecular underpinning of Spitz tumors, including mutations in the HRAS gene and several gene fusions involving several protein kinases. Here we present an overarching view of our current knowledge and understanding of Spitz tumors, detailing clinical, histopathological and molecular features characteristic of these lesions.
Collapse
Affiliation(s)
- Tiffany W. Cheng
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Madeline C. Ahern
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Alessio Giubellino,
| |
Collapse
|
11
|
Ricci C, Dika E, Ambrosi F, Lambertini M, Veronesi G, Barbara C. Cutaneous Melanomas: A Single Center Experience on the Usage of Immunohistochemistry Applied for the Diagnosis. Int J Mol Sci 2022; 23:5911. [PMID: 35682589 PMCID: PMC9180684 DOI: 10.3390/ijms23115911] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cutaneous melanoma (cM) is the deadliest of all primary skin cancers. Its prognosis is strongly influenced by the stage at diagnosis, with early stages having a good prognosis and being potentially treatable with surgery alone; advanced stages display a much worse prognosis, with a high rate of recurrence and metastasis. For this reason, the accurate and early diagnosis of cM is crucial-misdiagnosis may have extremely dangerous consequences for the patient and drastically reduce their chances of survival. Although the histological exam remains the "gold standard" for the diagnosis of cM, a continuously increasing number of immunohistochemical markers that could help in diagnosis, prognostic characterization, and appropriate therapeutical choices are identified every day, with some of them becoming part of routine practice. This review aims to discuss and summarize all the data related to the immunohistochemical analyses that are potentially useful for the diagnosis of cM, thus rendering it easier to appropriately applicate to routine practice. We will discuss these topics, as well as the role of these molecules in the biology of cM and potential impact on diagnosis and treatment, integrating the literature data with the experience of our surgical pathology department.
Collapse
Affiliation(s)
- Costantino Ricci
- Pathology Unit, Ospedale Maggiore, 40139 Bologna, Italy; (C.R.); (F.A.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40139 Bologna, Italy;
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40139 Bologna, Italy;
| | - Francesca Ambrosi
- Pathology Unit, Ospedale Maggiore, 40139 Bologna, Italy; (C.R.); (F.A.)
| | - Martina Lambertini
- Dermatology Unit, IRCCS Policlinico Sant’Orsola-Malpighi, University of Bologna, 40139 Bologna, Italy; (M.L.); (G.V.)
| | - Giulia Veronesi
- Dermatology Unit, IRCCS Policlinico Sant’Orsola-Malpighi, University of Bologna, 40139 Bologna, Italy; (M.L.); (G.V.)
| | - Corti Barbara
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant’Orsola, 40139 Bologna, Italy
| |
Collapse
|
12
|
Dal Pozzo CA, Cappellesso R. The Morpho-Molecular Landscape of Spitz Neoplasms. Int J Mol Sci 2022; 23:ijms23084211. [PMID: 35457030 PMCID: PMC9030540 DOI: 10.3390/ijms23084211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/14/2022] Open
Abstract
Spitz neoplasms are a heterogeneous group of melanocytic proliferations with a great variability in the histological characteristics and in the biological behavior. Thanks to recent discoveries, the morpho-molecular landscape of Spitz lineage is becoming clearer, with the identification of subtypes with recurrent features thus providing the basis for a more solid and precise tumor classification. Indeed, specific mutually exclusive driver molecular events, namely HRAS or MAP2K1 mutations, copy number gains of 11p, and fusions involving ALK, ROS, NTRK1, NTRK2, NTRK3, MET, RET, MAP3K8, and BRAF genes, correlate with distinctive histological features. The accumulation of further molecular aberrations, instead, promotes the increasing malignant transformation of Spitz neoplasms. Thus, the detection of a driver genetic alteration can be achieved using the appropriate diagnostic tests chosen according to the histological characteristics of the lesion. This allows the recognition of subtypes with aggressive behavior requiring further molecular investigations. This review provides an update on the morpho-molecular correlations in Spitz neoplasms.
Collapse
Affiliation(s)
- Carlo Alberto Dal Pozzo
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy;
| | - Rocco Cappellesso
- Pathological Anatomy Unit, University Hospital of Padua, 35121 Padua, Italy
- Correspondence: ; Tel.: +39-049-8217962
| |
Collapse
|
13
|
Zhao J, Benton S, Zhang B, Olivares S, Asadbeigi S, Busam K, Gerami P. Benign and Intermediate-grade Melanocytic Tumors With BRAF Mutations and Spitzoid Morphology: A Subset of Melanocytic Neoplasms Distinct From Melanoma. Am J Surg Pathol 2022; 46:476-485. [PMID: 34753863 DOI: 10.1097/pas.0000000000001831] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The current classification of Spitz neoplasms in the World Health Organization (WHO), Fourth Edition defines Spitz neoplasms as melanocytic proliferations with characteristic Spitz morphology and a Spitz-associated genomic fusion or HRAS mutation. In contrast, melanocytic neoplasms with BRAF mutations are considered typical of common acquired nevi, dysplastic nevi, and melanomas from intermittent sun-damaged skin. However, increased utilization of ancillary testing methods such as BRAFV600E immunohistochemistry and sequencing studies have made apparent a subgroup of benign-grade and intermediate-grade melanocytic neoplasms with Spitzoid morphology that harbor BRAFV600E mutations. We refer to these cases as BRAF mutated and morphologically Spitzoid (BAMS) nevi and tumors. Two experienced dermatopathologists reviewed a series of 36 BAMS nevi/tumors. Cases in which a diagnosis of melanoma was favored were excluded. The histomorphologic, clinical, and molecular findings were assessed by immunohistochemistry, fluorescence in situ hybridization, and next-generation sequencing using validated gene panels. Characteristics of BAMS nevi/tumors were compared with a control set of Spitz tumors with previously reported fusion proteins. BAMS nevi/tumors had a decreased proportion of Kamino bodies (P=0.03) and a higher proportion of cytoplasmic pigmentation (P<0.00001). There were no differences in other morphologic features such as the silhouette, epidermal hyperplasia, pagetosis, and cytologic atypia compared with fusion-induced Spitz tumors. In 6/17 cases where next-generation sequencing studies were available, recurrent mutations in the KMT gene family were seen. This was higher than the proportion of such mutations seen in fusion Spitz tumors and lower than the frequency in cutaneous melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Klaus Busam
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Pedram Gerami
- Department of Dermatology
- Robert H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
14
|
Hussen BM, Abdullah ST, Salihi A, Sabir DK, Sidiq KR, Rasul MF, Hidayat HJ, Ghafouri-Fard S, Taheri M, Jamali E. The emerging roles of NGS in clinical oncology and personalized medicine. Pathol Res Pract 2022; 230:153760. [PMID: 35033746 DOI: 10.1016/j.prp.2022.153760] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has been increasingly popular in genomics studies over the last decade, as new sequencing technology has been created and improved. Recently, NGS started to be used in clinical oncology to improve cancer therapy through diverse modalities ranging from finding novel and rare cancer mutations, discovering cancer mutation carriers to reaching specific therapeutic approaches known as personalized medicine (PM). PM has the potential to minimize medical expenses by shifting the current traditional medical approach of treating cancer and other diseases to an individualized preventive and predictive approach. Currently, NGS can speed up in the early diagnosis of diseases and discover pharmacogenetic markers that help in personalizing therapies. Despite the tremendous growth in our understanding of genetics, NGS holds the added advantage of providing more comprehensive picture of cancer landscape and uncovering cancer development pathways. In this review, we provided a complete overview of potential NGS applications in scientific and clinical oncology, with a particular emphasis on pharmacogenomics in the direction of precision medicine treatment options.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq; Department of Biology, College of Science, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Dana Khdr Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Karzan R Sidiq
- Department of Biology, College of Education, University of Sulaimani, Sulaimani 334, Kurdistan, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zhou Y, Fang Y, Zhou J, Liu Y, Wu S, Xu B. NPM1 is a Novel Therapeutic Target and Prognostic Biomarker for Ewing Sarcoma. Front Genet 2021; 12:771253. [PMID: 34899858 PMCID: PMC8662625 DOI: 10.3389/fgene.2021.771253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Ewing sarcoma (ES) is a cancer that may originate from stem mesenchymal or neural crest cells and is highly prevalent in children and adolescents. In recent years, targeted therapies against immune-related genes have shown good efficacy in a variety of cancers. However, effective targets for immunotherapy in ES are yet to be developed. In our study, we first identified the immune-associated differential hub gene NPM1 by bioinformatics methods as a differentially expressed gene, and then validated it using real time-PCR and western blotting, and found that this gene is not only closely related to the immune infiltration in ES, but also can affect the proliferation and apoptosis of ES cells, and is closely related to the survival of patients. The results of our bioinformatic analysis showed that NPM1 can be a hub gene in ES and an immunotherapeutic target to reactivate immune infiltration in patients with ES. In addition, treatment with NPM1 promoted apoptosis and inhibited the proliferation of ES cells. The NPM1 inhibitor NSC348884 can induce apoptosis of ES cells in a dose-dependent manner and is expected to be a potential therapeutic agent for ES.
Collapse
Affiliation(s)
- Yangfan Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuan Fang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junjie Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yulian Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shusheng Wu
- The First Affiliated Hospital of (University of Science and Technology of China) USTC, Hefei, China
| | - Bin Xu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Grzywa TM, Koppolu AA, Paskal W, Klicka K, Rydzanicz M, Wejman J, Płoski R, Włodarski PK. Higher Mutation Burden in High Proliferation Compartments of Heterogeneous Melanoma Tumors. Int J Mol Sci 2021; 22:3886. [PMID: 33918692 PMCID: PMC8069012 DOI: 10.3390/ijms22083886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Melanoma tumors are the most heterogeneous of all tumor types. Tumor heterogeneity results in difficulties in diagnosis and is a frequent cause of failure in treatment. Novel techniques enable accurate examination of the tumor cells, considering their heterogeneity. The study aimed to determine the somatic variations among high and low proliferating compartments of melanoma tumors. In this study, 12 archival formalin-fixed paraffin-embedded samples of previously untreated primary cutaneous melanoma were stained with Ki-67 antibody. High and low proliferating compartments from four melanoma tumors were dissected using laser-capture microdissection. DNA was isolated and analyzed quantitatively and qualitatively. Libraries for amplicon-based next-generation sequencing (NGS) were prepared using NEBNext Direct Cancer HotSpot Panel. NGS detected 206 variants in 42 genes in melanoma samples. Most of them were located within exons (135, 66%) and were predominantly non-synonymous single nucleotide variants (99, 73.3%). The analysis showed significant differences in mutational profiles between high and low proliferation compartments of melanoma tumors. Moreover, a significantly higher percentage of variants were detected only in high proliferation compartments (39%) compared to low proliferation regions (16%, p < 0.05). Our results suggest a significant functional role of genetic heterogeneity in melanoma.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland; (T.M.G.); (W.P.); (K.K.)
- Doctoral School, Medical University of Warsaw, 61 Zwirki and Wigury Str., 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Str., 02-097 Warsaw, Poland
| | - Agnieszka A. Koppolu
- Department of Medical Genetics, Medical University of Warsaw, 3C Pawinskiego Str., 02-106 Warsaw, Poland; (A.A.K.); (M.R.); (R.P.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Wiktor Paskal
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland; (T.M.G.); (W.P.); (K.K.)
| | - Klaudia Klicka
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland; (T.M.G.); (W.P.); (K.K.)
- Doctoral School, Medical University of Warsaw, 61 Zwirki and Wigury Str., 02-091 Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 3C Pawinskiego Str., 02-106 Warsaw, Poland; (A.A.K.); (M.R.); (R.P.)
| | - Jarosław Wejman
- Department of Pathology, Medical Center of Postgraduate Education, 00-416 Warsaw, Poland;
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 3C Pawinskiego Str., 02-106 Warsaw, Poland; (A.A.K.); (M.R.); (R.P.)
| | - Paweł K. Włodarski
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland; (T.M.G.); (W.P.); (K.K.)
| |
Collapse
|