1
|
Mulà C, Bradshaw CJA, Cabeza M, Manca F, Montano S, Strona G. Restoration cannot be scaled up globally to save reefs from loss and degradation. Nat Ecol Evol 2025; 9:822-832. [PMID: 40200110 DOI: 10.1038/s41559-025-02667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/18/2025] [Indexed: 04/10/2025]
Abstract
Coral restoration is gaining popularity as part of a continuum of approaches addressing the widespread, recurring mass mortality events of corals that-together with elevated and chronic mortality, slower growth and recruitment failure-threaten the persistence of coral reefs worldwide. However, the monetary costs associated with broad-scale coral restoration are massive, making widespread implementation challenging, especially with the lack of coordinated and ecologically informed planning. By combining a comprehensive dataset documenting the success of coral restoration with current and forecasted environmental, ecological and climate data, we highlight how such a coordinated and ecologically informed approach is not forthcoming, despite the extent of previous and ongoing efforts. We show that: (1) restoration sites tend to be disproportionally close to human settlements and therefore more vulnerable to local anthropogenic impacts; (2) the immediate outcomes of restoration do not appear to be influenced by relevant ecological and environmental predictors such as cumulative impact; and (3) most restored localities have a high and severe bleaching risk by the middle of this century, with more than half of recently restored sites already affected. Our findings highlight the need for the coral reef community to reinforce joint development of restoration guidelines that go beyond local objectives, with attention to ocean warming trends and their long-term impacts on coral resilience and restoration success.
Collapse
Affiliation(s)
- Clelia Mulà
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Corey J A Bradshaw
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
- Australian Research Council Centre of Excellence for Indigenous and Environmental Histories and Futures, Cairns, Queensland, Australia
- Global Ecology, Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Mar Cabeza
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Federica Manca
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Simone Montano
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
- Marine Research and High Education Center, Magoodhoo Island, Republic of Maldives
| | | |
Collapse
|
2
|
Karimi Z, Flores I, Kolle S, Kundu S, Walton E, Badder L, Levy N, Berry DB, Schar D, Levy J, Aizenberg J, R3D consortium, Wangpraseurt D. Mitigating Algal Competition with Fouling-Prevention Coatings for Coral Restoration and Reef Engineering. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:5808-5817. [PMID: 40313778 PMCID: PMC12042296 DOI: 10.1021/acssuschemeng.4c07508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Coral reefs are undergoing unprecedented degradation due to rising ocean temperatures, acidification, overfishing, and coastal pollution. Despite conservation efforts, including marine protected areas and sustainable fishing practices, the magnitude of these challenges calls for innovative approaches to repair and restore coral reefs. In this study, we explore the application of bioinspired materials to address the challenge of algal competition, a key bottleneck for effective restoration approaches. We develop and optimize slippery liquid-infused porous surfaces (SLIPS), as a fouling-prevention coating tailored for coral reef restoration and engineering. Through aquarium experiments and in situ trials on O'ahu, Hawai'i, we assess the effectiveness of these coatings in mitigating algal competition and facilitating coral growth. Our results demonstrate that PDMS-based SLIPS coatings significantly reduce algal coverage compared to commercial aragonite-based surfaces, with up to 70% reduction observed over a 12-week deployment period in situ. We also develop coral-guards, which are slippery substrates customized for coral fragment outplanting. Coral-guards facilitate tissue growth of Stylophora pistillata fragments, without competitive turf algal growth. These approaches hold promise for advancing restoration efforts, including the engineering of hybrid reefs and targeted coral gardening approaches.
Collapse
Affiliation(s)
- Zahra Karimi
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
| | - Isabel Flores
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - Stefan Kolle
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - Samapti Kundu
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - Emily Walton
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - Lindsey Badder
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - Natalie Levy
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - David B. Berry
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
| | - Daniel Schar
- Hawai‘i
Institute of Marine Biology, University of Hawai‘i, Ma̅noa, Ka̅ne‘ohe, Hawaii 96744, United States
| | - Joshua Levy
- Applied
Research Laboratory, University of Hawai‘i, Honolulu, Hawaii 96822, United States
| | - Joanna Aizenberg
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States
| | | | - Daniel Wangpraseurt
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Thompson S, Jarman S, Griffin K, Spencer C, Cummins G, Partridge J, Langlois T. Novel Drop-Sampler for Simultaneous Collection of Stereo-Video, Environmental DNA and Oceanographic Data. Ecol Evol 2024; 14:e70705. [PMID: 39717650 PMCID: PMC11664325 DOI: 10.1002/ece3.70705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
There is an increasing interest in environmental DNA (eDNA) as a method to survey marine biota, enhancing traditional survey methods, and a need to ground truth eDNA-based interpretations with visual surveys to understand biases in both the eDNA and visual datasets. We designed and tested a rapidly deployable, robust method pairing water sampling for eDNA collection and stereo-video imagery, comparing inferred fish assemblages with interspersed baited remote underwater video (stereo-BRUV) samples. The system is capable of rapidly collecting simultaneous wide-field stereo-video imagery, oceanographic measurements and multiple water samples across a range of habitats and depths (up to 600 m). A platform demonstration was conducted in a no-take National Park Zone of the Ningaloo Marine Park, Western Australia, with samples being collected whilst the system is resting on the seafloor. Combining simultaneous visual survey data with eDNA species estimates increased the total diversity of the fish assemblage by ca. 6.5% over eDNA estimates alone, whilst the analysis of the assemblage composition sampled by each method revealed significant differences. The platform demonstration highlights the biases of each sampling method and their complementarity to one another. We suggest that these biases will be better understood by advancements that allow eDNA metabarcoding to discriminate the abundance and life stage of marine biota. Furthermore, investigation of the relationship between eDNA metabarcoding data and concomitant imagery-derived length, age and habitat data is needed.
Collapse
Affiliation(s)
- Samuel Thompson
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
- School of Molecular and Life SciencesCurtin UniversityPerthWAAustralia
| | - Simon Jarman
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
- School of Molecular and Life SciencesCurtin UniversityPerthWAAustralia
| | - Kingsley Griffin
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
| | - Claude Spencer
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
| | - Gabrielle Cummins
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
| | - Julian Partridge
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
| | - Tim Langlois
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
| |
Collapse
|
4
|
Gutierrez L, Polidoro B, Obura D, Cabada-Blanco F, Linardich C, Pettersson E, Pearce-Kelly P, Kemppinen K, Alvarado JJ, Alvarez-Filip L, Banaszak A, Casado de Amezua P, Crabbe J, Croquer A, Feingold J, Goergen E, Goffredo S, Hoeksema B, Huang D, Kennedy E, Kersting D, Kitahara M, Kružić P, Miller M, Nunes F, Quimbayo JP, Rivera-Sosa A, Rodríguez-Martínez R, Santodomingo N, Sweet M, Vermeij M, Villamizar E, Aeby G, Alliji K, Bayley D, Couce E, Cowburn B, Nuñez Lendo CI, Porter S, Samimi-Namin K, Shlesinger T, Wilson B. Half of Atlantic reef-building corals at elevated risk of extinction due to climate change and other threats. PLoS One 2024; 19:e0309354. [PMID: 39546544 PMCID: PMC11567617 DOI: 10.1371/journal.pone.0309354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/09/2024] [Indexed: 11/17/2024] Open
Abstract
Atlantic reef-building corals and coral reefs continue to experience extensive decline due to increased stressors related to climate change, disease, pollution, and numerous anthropogenic threats. To understand the impact of ocean warming and reef loss on the estimated extinction risk of shallow water Atlantic reef-building scleractinians and milleporids, all 85 valid species were reassessed under the IUCN Red List Categories and Criteria, updating the previous Red List assessment of Atlantic corals published in 2008. For the present assessment, individual species declines were estimated based on the modeled coral cover loss (1989-2019) and projected onset of annual severe bleaching events (2020-2050) across the Atlantic. Species traits were used to scale species' relative vulnerability to the modeled cover declines and forecasted bleaching events. The updated assessments place 45.88%-54.12% of Atlantic shallow water corals at an elevated extinction risk compared to the previous assessments conducted in 2008 (15.19%-40.51%). However, coral cover loss estimates indicate an improvement in reef coverage compared to the historic time-series used for the 2008 assessments. Based on this, we infer that, although remaining dangerously high, the rate of Atlantic reef coral cover decline has surprisingly slowed in recent decades. However, based on modeled projections of sea-surface temperature that predict the onset of annual severe bleaching events within the next 30 years, we listed 26 (out of 85) species as Critically Endangered in the IUCN Red List. Each of these species had previously been listed under a lower threatened category and this result alone highlights the severe threat future bleaching events pose to coral survival and the reef ecosystems they support.
Collapse
Affiliation(s)
- Luis Gutierrez
- Arizona State University, Tempe, Arizona, United States of America
| | - Beth Polidoro
- Arizona State University, Tempe, Arizona, United States of America
- Species Survival Commission, Coral Specialist Group, International Union for the Conservation of Nature, Gland, Switzerland
| | - David Obura
- Species Survival Commission, Coral Specialist Group, International Union for the Conservation of Nature, Gland, Switzerland
- Coastal Oceans Research and Development in the Indian Ocean East Africa, Mombasa, Kenya
| | - Francoise Cabada-Blanco
- Species Survival Commission, Coral Specialist Group, International Union for the Conservation of Nature, Gland, Switzerland
- Institute of Marine Sciences, School of the Environment and Life Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Christi Linardich
- Old Dominion University, Norfolk, Virginia, United States of America
| | - Emma Pettersson
- Species Survival Commission, Coral Specialist Group, International Union for the Conservation of Nature, Gland, Switzerland
| | | | - Krista Kemppinen
- Arizona State University, Tempe, Arizona, United States of America
| | | | - Lorenzo Alvarez-Filip
- Unidad Academia de Sistemas Arrecificales, Universidad Nacional Autónoma de México, México, Mexico
| | - Anastazia Banaszak
- Unidad Academia de Sistemas Arrecificales, Universidad Nacional Autónoma de México, México, Mexico
| | | | - James Crabbe
- University of Bedfordshire, Wolfson College, Oxford, United Kingdom
| | | | - Joshua Feingold
- Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Elizabeth Goergen
- Department of Biology and Environmental Science, Qatar University, Doha, Qatar
| | | | - Bert Hoeksema
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Danwei Huang
- National University of Singapore, Singapore, Singapore
| | | | - Diego Kersting
- Spanish National Research Council, Instituto de Acuicultura de Torre de la Sal, Castellón de la Plana, Spain
| | - Marcelo Kitahara
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Margaret Miller
- SECORE International, Hilliard, Ohio, United States of America
| | - Flavia Nunes
- Institut Français pour la Recherche et Exploitation de la Mer, Plouzané, France
| | | | - Andrea Rivera-Sosa
- Coral Reef Alliance, San Francisco, California, United States of America
| | - Rosa Rodríguez-Martínez
- Unidad Academia de Sistemas Arrecificales, Universidad Nacional Autónoma de México, México, Mexico
| | | | | | | | - Estrella Villamizar
- Ecología en la Facultad de Ciencias, Universidad Central de Venezuela, Caracas, venezuela
| | - Greta Aeby
- The Hawaiʻi Institute of Marine Biology, Kaneohe, Hawaiʻi, United States of America
| | - Khatija Alliji
- Centre for Environmental, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - Daniel Bayley
- Fauna & Flora International, Cambridge, United Kingdom
| | - Elena Couce
- Centre for Environmental, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - Benjamin Cowburn
- Centre for Environmental, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | | | - Sean Porter
- Oceanographic Research Institute, Durban, KwaZulu-Natal, South Africa
| | | | | | | |
Collapse
|
5
|
Huang L, McWilliam M, Liu C, Yu X, Jiang L, Zhang C, Luo Y, Yang J, Yuan X, Lian J, Huang H. Loss of Coral Trait Diversity and Impacts on Reef Fish Assemblages on Recovering Reefs. Ecol Evol 2024; 14:e70510. [PMID: 39493612 PMCID: PMC11522916 DOI: 10.1002/ece3.70510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Understanding patterns of biodiversity change is essential as coral reefs experience recurrent cycles of disturbance and recovery. Shifts in the total cover and species composition of habitat-forming corals can have far-reaching consequences, including shifts in coral functional traits and impacts on local fish assemblages. We surveyed coral and fish assemblages along the southern coast of Hainan Island near Sanya, China, in 2006, 2010, and 2018, during a period with repeated mass bleaching events. We showed that coral biodiversity in this region is in a state of flux, with losses and gains in coral cover and an increase in species richness over time. Despite increasing species diversity, the region suffered a loss of coral trait diversity by 2010, with an incomplete recovery by 2018, owing to declines in species with key habitat-forming traits (e.g., high surface areas and fractal structure) such as corymbose corals. Concurrently, there was an increase in functional redundancy due to the proliferation of the dominant encrusting and massive corals. Coral cover was positively associated with the abundance of reef fish, indicating that the changes observed in coral abundance can impact reef-associated species. These results demonstrate that the slow recovery of coral biodiversity in southern Hainan Island has been hampered by the loss of specific coral traits and highlight the importance of protecting vulnerable coral traits in conservation and management strategies.
Collapse
Affiliation(s)
- Lintao Huang
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mike McWilliam
- Hawaii Institute of Marine BiologyUniversity of Hawaii ManoaKaneoheHawaiiUSA
- Centre for Biological Diversity, Scottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Chengyue Liu
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Xiaolei Yu
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Chen Zhang
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong Luo
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| | - Jianhui Yang
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| | - Xiangcheng Yuan
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| | - Jiansheng Lian
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science ResearchKey Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanyaChina
- Sanya National Marine Ecosystem Research Station; Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
| |
Collapse
|
6
|
Loiseau N, Mouillot D, Velez L, Seguin R, Casajus N, Coux C, Albouy C, Claverie T, Duhamet A, Fleure V, Langlois J, Villéger S, Mouquet N. Inferring the extinction risk of marine fish to inform global conservation priorities. PLoS Biol 2024; 22:e3002773. [PMID: 39208027 PMCID: PMC11361419 DOI: 10.1371/journal.pbio.3002773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
While extinction risk categorization is fundamental for building robust conservation planning for marine fishes, empirical data on occurrence and vulnerability to disturbances are still lacking for most marine teleost fish species, preventing the assessment of their International Union for the Conservation of Nature (IUCN) status. In this article, we predicted the IUCN status of marine fishes based on two machine learning algorithms, trained with available species occurrences, biological traits, taxonomy, and human uses. We found that extinction risk for marine fish species is higher than initially estimated by the IUCN, increasing from 2.5% to 12.7%. Species predicted as Threatened were mainly characterized by a small geographic range, a relatively large body size, and a low growth rate. Hotspots of predicted Threatened species peaked mainly in the South China Sea, the Philippine Sea, the Celebes Sea, the west coast Australia and North America. We also explored the consequences of including these predicted species' IUCN status in the prioritization of marine protected areas through conservation planning. We found a marked increase in prioritization ranks for subpolar and polar regions despite their low species richness. We suggest to integrate multifactorial ensemble learning to assess species extinction risk and offer a more complete view of endangered taxonomic groups to ultimately reach global conservation targets like the extending coverage of protected areas where species are the most vulnerable.
Collapse
Affiliation(s)
- Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Laure Velez
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Raphaël Seguin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | | | - Camille Albouy
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Thomas Claverie
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- ENTROPIE, Univ La Réunion, IRD, IFREMER, Univ Nouvelle-Calédonie, CNRS, Saint-Denis, France CUFR of Mayotte, Dembeni, France
| | - Agnès Duhamet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Valentine Fleure
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- ZooParc de Beauval & Beauval Nature, Saint-Aignan, France
| | | | | | - Nicolas Mouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- FRB–CESAB, Montpellier, France
| |
Collapse
|
7
|
Filbee-Dexter K, Starko S, Pessarrodona A, Wood G, Norderhaug KM, Piñeiro-Corbeira C, Wernberg T. Marine protected areas can be useful but are not a silver bullet for kelp conservation. JOURNAL OF PHYCOLOGY 2024; 60:203-213. [PMID: 38546039 DOI: 10.1111/jpy.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Kelp forests are among the most valuable ecosystems on Earth, but they are increasingly being degraded and lost due to a range of human-related stressors, leading to recent calls for their improved management and conservation. One of the primary tools to conserve marine species and biodiversity is the establishment of marine protected areas (MPAs). International commitments to protect 30% of the world's ecosystems are gaining momentum, offering a promising avenue to secure kelp forests into the Anthropocene. However, a clear understanding of the efficacy of MPAs for conserving kelp forests in a changing ocean is lacking. In this perspective, we question whether strengthened global protection will create meaningful conservation outcomes for kelp forests. We explore the benefits of MPAs for kelp conservation under a suite of different stressors, focusing on empirical evidence from protected kelp forests. We show that MPAs can be effective against some drivers of kelp loss (e.g., overgrazing, kelp harvesting), particularly when they are maintained in the long-term and enforced as no-take areas. There is also some evidence that MPAs can reduce impacts of climate change through building resilience in multi-stressor situations. However, MPAs also often fail to provide protection against ocean warming, marine heatwaves, coastal darkening, and pollution, which have emerged as dominant drivers of kelp forest loss globally. Although well-enforced MPAs should remain an important tool to protect kelp forests, successful kelp conservation will require implementing an additional suite of management solutions that target these accelerating threats.
Collapse
Affiliation(s)
- Karen Filbee-Dexter
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| | - Samuel Starko
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Albert Pessarrodona
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Georgina Wood
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias, and CICA - Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| | - Thomas Wernberg
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
8
|
Randrianarivo M, Botosoamananto RL, Guilhaumon F, Penin L, Todinanahary G, Adjeroud M. Effects of Madagascar marine reserves on juvenile and adult coral abundance, and the implication for population regulation. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106080. [PMID: 37422994 DOI: 10.1016/j.marenvres.2023.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Recruitment is a critical component in the dynamics of coral assemblages, and a key question is to determine the degree to which spatial heterogeneity of adults is influenced by pre-vs. post-settlement processes. We analyzed the density of juvenile and adult corals among 18 stations located at three regions around Madagascar, and examined the effects of Marine Protected Areas (MPAs). Our survey did not detect a positive effect of MPAs on juveniles, except for Porites at the study scale. The MPA effect was more pronounced for adults, notably for Acropora, Montipora, Seriatopora, and Porites at the regional scale. For most dominant genera, densities of juveniles and adults were positively correlated at the study scale, and at least at one of the three regions. These outcomes suggest recruitment-limitation relationships for several coral taxa, although differences in post-settlement events may be sufficiently strong to distort the pattern established at settlement for other populations. The modest benefits of MPAs on the density of juvenile corals demonstrated here argue in favor of strengthening conservation measures more specifically focused to protect recruitment processes.
Collapse
Affiliation(s)
- Mahery Randrianarivo
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Radonirina Lebely Botosoamananto
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - François Guilhaumon
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Lucie Penin
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France; Laboratoire d'Excellence "CORAIL", Paris, France
| | - Gildas Todinanahary
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar
| | - Mehdi Adjeroud
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de la Nouvelle-Calédonie, Perpignan, France; Laboratoire d'Excellence "CORAIL", Paris, France; PSL Université Paris, UAR 3278, CRIOBE EPHE-UPVD-CNRS, Perpignan, France.
| |
Collapse
|
9
|
So JY, Kwok Y, Lai C, Fong HW, Pang LY. Underwater Impact and Intention-Behaviour Gap of Scuba Divers on Coral Communities in Hong Kong SAR, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3896. [PMID: 36900906 PMCID: PMC10001808 DOI: 10.3390/ijerph20053896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Recreational diving, under the continual growth of the scuba diving industry, may escalate coral reef damage as one of the substantial anthropogenic impacts and is of pressing concern. Besides unregulated and excessive diving activities, accidental contact with corals by inexperienced divers can cause recurring physical damage and heighten the pressure on coral communities. Understanding the ecological impacts of underwater contact with marine biota will thus be crucial to develop more sustainable scuba diving practices in Hong Kong. To probe the scuba diving impacts of divers' contact with coral communities, WWF-Hong Kong started a citizen science monitoring programme and invited 52 advanced divers to conduct direct underwater observations. Questionnaires were also developed to examine and address the research gap between the associated attitudes and the perceived contact rate of divers. Results from analysing the underwater behaviours of 102 recreational divers showed inconsistent perceived and actual contact rates. It was revealed that recreational divers might often overlook the ecological effects of their activities underwater on coral communities. The questionnaire findings will be utilised to improve the framework of the dive-training programmes and enhance divers' awareness to minimise their influence on the marine environment.
Collapse
Affiliation(s)
| | - Ying Kwok
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Christie Lai
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Hei-Wut Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | |
Collapse
|
10
|
Villegas‐Ríos D, Freitas C, Moland E, Olsen EM. Eco-evolutionary dynamics of Atlantic cod spatial behavior maintained after the implementation of a marine reserve. Evol Appl 2022; 15:1846-1858. [PMID: 36426127 PMCID: PMC9679232 DOI: 10.1111/eva.13483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
The effects of marine reserves on the life history and demography of the protected populations are well-established, typically increasing population density and body size. However, little is known about how marine reserves may alter the behavior of the populations that are the target of protection. In theory, marine reserves can relax selection on spatial behavioral phenotypes that were previously targeted by the fishery and also drive selection in favor of less mobile individuals. In this study, we used acoustic telemetry to monitor the individual spatial behavior of 566 Atlantic cod (Gadus morhua Linnaeus, 1758) moving within a marine reserve and a control site in southern Norway, starting 1 year before the implementation of the marine reserve and lasting up to 9 years after. Following a before-after-control-impact approach, we investigated changes in (1) survival, (2) selection acting on behavioral traits, and (3) mean behavioral phenotypes, after the implementation of the marine reserve. We focused on three behavioral traits commonly used to describe the mobility of aquatic animals: home range size, depth position, and diel vertical migration range. Survival increased after reserve implementation, but contrary to our expectations, it subsequently decreased to preprotection levels after just 3 years. Further, we found no significance in selection patterns acting on any of the three behavioral traits after reserve implementation. Although some changes related to water column use (the tendency to occupy deeper waters) were observed in the marine reserve after 9 years, they cannot unequivocally be attributed to protection. Our results show that survival and behavioral responses to marine reserves in some cases may be more complex than previously anticipated and highlight the need for appropriately scaled management experiments and more integrated approaches to understand the effects of marine protected areas on harvested aquatic species.
Collapse
Affiliation(s)
- David Villegas‐Ríos
- Instituto Mediterráneo de Estudios Avanzados (CSIC‐UiB)EsporlesSpain
- Instituto de Investigaciones Marinas (IIM‐CSIC)VigoSpain
| | - Carla Freitas
- Institute of Marine ResearchHisNorway
- MARE, Marine and Environmental Sciences CenterMadeira TecnopoloFunchalPortugal
| | - Even Moland
- Institute of Marine ResearchHisNorway
- Department of Natural Sciences, Centre for Coastal Research (CCR)University of AgderKristiansandNorway
| | - Esben M. Olsen
- Institute of Marine ResearchHisNorway
- Department of Natural Sciences, Centre for Coastal Research (CCR)University of AgderKristiansandNorway
| |
Collapse
|
11
|
A contemporary baseline of Madagascar's coral assemblages: Reefs with high coral diversity, abundance, and function associated with marine protected areas. PLoS One 2022; 17:e0275017. [PMID: 36264983 PMCID: PMC9584525 DOI: 10.1371/journal.pone.0275017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
Madagascar is a major hotspot of biodiversity in the Western Indian Ocean, but, as in many other regions, coral reefs surrounding the island confront large-scale disturbances and human-induced local stressors. Conservation actions have been implemented with encouraging results for fisheries, though their benefit on coral assemblages has never been rigorously addressed. In this context, we analyzed the multiscale spatial variation of the composition, generic richness, abundance, life history strategies, and cover of coral assemblages among 18 stations placed at three regions around the island. The potential influences of marine protected areas (MPAs), algal cover, substrate rugosity, herbivorous fish biomass, and geographic location were also analyzed. Our results highlight the marked spatial variability, with variation at either or both regional and local scales for all coral descriptors. The northeast coastal region of Masoala was characterized by the high abundance of coral colonies, most notably of the competitive Acropora and Pocillopora genera and stress-tolerant taxa at several stations. The southwest station of Salary Nord was distinguished by lower abundances, with depauperate populations of competitive taxa. On the northwest coast, Nosy-Be was characterized by higher diversity and abundance as well as by high coral cover (~42-70%) recorded at unfished stations. Results clearly underline the positive effects of MPAs on all but one of the coral descriptors, particularly at Nosy-Be where the highest contrast between fished and unfished stations was observed. Biomass of herbivorous fishes, crustose coralline algae cover, and substrate rugosity were also positively related to several coral descriptors. The occurrence of reefs with high diversity, abundance, and cover of corals, including the competitive Acropora, is a major finding of this study. Our results strongly support the implementation of locally managed marine areas with strong involvement by primary users, particularly to assist in management in countries with reduced logistic and human resources such as Madagascar.
Collapse
|
12
|
Navarro-Martínez ZM, Armenteros M, Espinosa L, González-Díaz P, Apprill A. Coral reef fish assemblages exhibit signs of depletion in two protected areas from the eastern of Los Canarreos archipelago (Cuba, Caribbean Sea). PeerJ 2022; 10:e14229. [PMID: 36262415 PMCID: PMC9575676 DOI: 10.7717/peerj.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023] Open
Abstract
Understanding the impact of marine protected areas on the distribution and composition of fishes is key to the protection and management of coral reef ecosystems, and especially for fish-based activities such as SCUBA diving and recreational fishing. The aim of this research is to compare the ichthyofauna structure in three areas in the eastern part of Los Canarreos archipelago in Cuba with different management schemes: Cayo Campos-Cayo Rosario Fauna Refuge (CCCR), Cayo Largo Ecological Reserve (CL) and non-protected area (nMPA), and considering habitat differences and depth variation. A total of 131 video transects were conducted using diver operated stereo-video (stereo-DOV) in November, 2015 in backreef and forereef along the CCCR, CL and the adjacent nMPA. We recorded 84 species and 27 functional groups suggesting high complementarity of functions. Several multispecies schools were observed along surveys, which explain the biomass peaks in some sites, mainly for Lutjanidae, Haemulidae and Carangidae. A concerning issue was the bare representation of critical functional groups and threatened species. The effect of sites nested within habitats was significant and the most important driver structuring fish assemblages, while MPA condition was not evident. Favorable habitat features (habitat heterogeneity and surrounding coastal ecosystems) are likely enhancing fish assemblages and counteracting the effects of pouching derived from insufficient management. We recommend immediate actions within a strategy of precautionary management including, but not limited to, the appointment of staff for the administration of CL, frequent monitoring and effective enforcement.
Collapse
Affiliation(s)
| | - Maickel Armenteros
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Leonardo Espinosa
- Empresa Nacional para la Protección de la Flora y la Fauna, La Habana, Cuba
| | | | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
13
|
Johnson JV, Dick JTA, Pincheira-Donoso D. Marine protected areas do not buffer corals from bleaching under global warming. BMC Ecol Evol 2022; 22:58. [PMID: 35508975 PMCID: PMC9066861 DOI: 10.1186/s12862-022-02011-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rising temperature of the oceans has been identified as the primary driver of mass coral reef declines via coral bleaching (expulsion of photosynthetic endosymbionts). Marine protected areas (MPAs) have been implemented throughout the oceans with the aim of mitigating the impact of local stressors, enhancing fish biomass, and sustaining biodiversity overall. In coral reef regions specifically, protection from local stressors and the enhanced ecosystem function contributed by MPAs are expected to increase coral resistance to global-scale stressors such as marine heatwaves. However, MPAs still suffer from limitations in design, or fail to be adequately enforced, potentially reducing their intended efficacy. Here, we address the hypothesis that the local-scale benefits resulting from MPAs moderate coral bleaching under global warming related stress. RESULTS Bayesian analyses reveal that bleaching is expected to occur in both larger and older MPAs when corals are under thermal stress from marine heatwaves (quantified as Degree Heating Weeks, DHW), but this is partially moderated in comparison to the effects of DHW alone. Further analyses failed to identify differences in bleaching prevalence in MPAs relative to non-MPAs for coral reefs experiencing different levels of thermal stress. Finally, no difference in temperatures where bleaching occurs between MPA and non-MPA sites was found. CONCLUSIONS Our findings suggest that bleaching is likely to occur under global warming regardless of protected status. Thus, while protected areas have key roles for maintaining ecosystem function and local livelihoods, combatting the source of global warming remains the best way to prevent the decline of coral reefs via coral bleaching.
Collapse
Affiliation(s)
- Jack V Johnson
- Macrobiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Daniel Pincheira-Donoso
- Macrobiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
14
|
Baumann JH, Zhao L, Stier AC, Bruno JF. Remoteness does not enhance coral reef resilience. GLOBAL CHANGE BIOLOGY 2022; 28:417-428. [PMID: 34668280 PMCID: PMC8671335 DOI: 10.1111/gcb.15904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 05/02/2023]
Abstract
Remote coral reefs are thought to be more resilient to climate change due to their isolation from local stressors like fishing and pollution. We tested this hypothesis by measuring the relationship between local human influence and coral community resilience. Surprisingly, we found no relationship between human influence and resistance to disturbance and some evidence that areas with greater human development may recover from disturbance faster than their more isolated counterparts. Our results suggest remote coral reefs are imperiled by climate change, like so many other geographically isolated ecosystems, and are unlikely to serve as effective biodiversity arks. Only drastic and rapid cuts in greenhouse gas emissions will ensure coral survival. Our results also indicate that some reefs close to large human populations were relatively resilient. Focusing research and conservation resources on these more accessible locations has the potential to provide new insights and maximize conservation outcomes.
Collapse
Affiliation(s)
- Justin H. Baumann
- The Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280 USA
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3300 USA
- Biology Department, Bowdoin College, Brunswick, Maine, 04011 USA
- Correspondence to: or
| | - Lily Zhao
- Department of Ecology, Evolution, and Marine Biology, The University of California Santa Barbara, Santa Barbara CA, 93106-9620, USA
| | - Adrian C. Stier
- Department of Ecology, Evolution, and Marine Biology, The University of California Santa Barbara, Santa Barbara CA, 93106-9620, USA
| | - John F. Bruno
- The Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280 USA
- Correspondence to: or
| |
Collapse
|
15
|
Hadj-Hammou J, McClanahan TR, Graham NAJ. Decadal shifts in traits of reef fish communities in marine reserves. Sci Rep 2021; 11:23470. [PMID: 34873242 PMCID: PMC8648868 DOI: 10.1038/s41598-021-03038-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
Abstract
Marine reserves are known to impact the biomass, biodiversity, and functions of coral reef fish communities, but the effect of protective management on fish traits is less explored. We used a time-series modelling approach to simultaneously evaluate the abundance, biomass, and traits of eight fish families over a chronosequence spanning 44 years of protection. We constructed a multivariate functional space based on six traits known to respond to management or disturbance and affect ecosystem processes: size, diet, position in the water column, gregariousness, reef association, and length at maturity. We show that biomass increased with a log-linear trend over the time-series, but abundance only increased after 20 years of closure, and with more variation among reserves. This difference is attributed to recovery rates being dependent on body sizes. Abundance-weighted traits and the associated multivariate space of the community change is driven by increased proportions over time of the trait categories: 7-15 cm body size; planktivorous; species low in the water column; medium-large schools; and species with high levels of reef association. These findings suggest that the trait compositions emerging after the cessation of fishing are novel and dynamic.
Collapse
Affiliation(s)
- Jeneen Hadj-Hammou
- Lancaster University Environment Centre, Lancaster University, Lancaster, UK.
| | - Tim R McClanahan
- Wildlife Conservation Society, Global Marine Programs, Bronx, NY, 10460, USA
| | - Nicholas A J Graham
- Lancaster University Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
16
|
Grorud-Colvert K, Sullivan-Stack J, Roberts C, Constant V, Horta E Costa B, Pike EP, Kingston N, Laffoley D, Sala E, Claudet J, Friedlander AM, Gill DA, Lester SE, Day JC, Gonçalves EJ, Ahmadia GN, Rand M, Villagomez A, Ban NC, Gurney GG, Spalding AK, Bennett NJ, Briggs J, Morgan LE, Moffitt R, Deguignet M, Pikitch EK, Darling ES, Jessen S, Hameed SO, Di Carlo G, Guidetti P, Harris JM, Torre J, Kizilkaya Z, Agardy T, Cury P, Shah NJ, Sack K, Cao L, Fernandez M, Lubchenco J. The MPA Guide: A framework to achieve global goals for the ocean. Science 2021; 373:eabf0861. [PMID: 34516798 DOI: 10.1126/science.abf0861] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kirsten Grorud-Colvert
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA.,Marine Conservation Institute, Seattle, WA 98103, USA
| | - Jenna Sullivan-Stack
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA
| | - Callum Roberts
- Department of Environment and Geography, University of York, York YO10 5DD, UK
| | - Vanessa Constant
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA
| | - Barbara Horta E Costa
- Center of Marine Sciences, CCMAR, University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.,School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Elizabeth P Pike
- Marine Protection Atlas, Marine Conservation Institute, Seattle, WA, 98103-9090, USA.,Pew Bertarelli Ocean Legacy Project, The Pew Charitable Trusts, Washington, DC 20004-2008, USA
| | - Naomi Kingston
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA.,UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Dan Laffoley
- IUCN World Commission on Protected Areas, International Union for Conservation of Nature (IUCN), CH-1196 Gland, Switzerland.,School of Public Policy, Oregon State University, Corvallis, OR 97330, USA
| | - Enric Sala
- National Geographic Society, Washington, DC, USA.,Department of Geography, Florida State University, Tallahassee, FL 32306-2190, USA
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, USR 3278 CNRS-EPHE-UPVD, Maison des Océans, 75005 Paris, France.,Wildlife Conservation Society, 2300 Southern Blvd, Bronx, NY 10460, USA
| | - Alan M Friedlander
- Hawai'i Institute of Marine Biology, University of Hawaii, Kāne'ohe, HI 96744, USA.,Pristine Seas, National Geography Society, Washington, DC 20036, USA
| | - David A Gill
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | - Sarah E Lester
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA.,Department of Geography, Florida State University, Tallahassee, FL 32306-2190, USA
| | - Jon C Day
- ARC Centre of Excellence in Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
| | - Emanuel J Gonçalves
- Pristine Seas, National Geography Society, Washington, DC 20036, USA.,Duke University Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA.,Marine and Environmental Sciences Centre (MARE), ISPA-Instituto Universitário, 1149-041 Lisbon, Portugal.,Oceano Azul Foundation, Oceanário de Lisboa, Esplanada D. Carlos I,1990-005 Lisbon, Portugal
| | - Gabby N Ahmadia
- Ocean Conservation, World Wildlife Fund, Washington, DC 20037, USA.,School of Environmental Studies, University of Victoria, Victoria, BC V8W 2Y2, Canada.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Matt Rand
- IUCN World Commission on Protected Areas, International Union for Conservation of Nature (IUCN), CH-1196 Gland, Switzerland.,Pew Bertarelli Ocean Legacy Project, The Pew Charitable Trusts, Washington, DC 20004-2008, USA
| | - Angelo Villagomez
- IUCN World Commission on Protected Areas, International Union for Conservation of Nature (IUCN), CH-1196 Gland, Switzerland.,Pew Bertarelli Ocean Legacy Project, The Pew Charitable Trusts, Washington, DC 20004-2008, USA
| | - Natalie C Ban
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK.,School of Environmental Studies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Georgina G Gurney
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Ana K Spalding
- ARC Centre of Excellence in Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia.,Marine and Environmental Sciences Centre (MARE), ISPA-Instituto Universitário, 1149-041 Lisbon, Portugal.,School of Public Policy, Oregon State University, Corvallis, OR 97330, USA.,Smithsonian Tropical Research Institute, Panama City, Panama; Coiba Scientific Station (Coiba AIP), Panama City, Panama.,Marine Conservation Institute, Seattle, WA 98103, USA
| | - Nathan J Bennett
- National Center for Scientific Research, PSL Université Paris, CRIOBE, USR 3278 CNRS-EPHE-UPVD, Maison des Océans, 75005 Paris, France.,The Peopled Seas Initiative, Vancouver, BC, Canada
| | - Johnny Briggs
- Pew Bertarelli Ocean Legacy Project, The Pew Charitable Trusts, Washington, DC 20004-2008, USA
| | | | - Russell Moffitt
- Marine Protection Atlas, Marine Conservation Institute, Seattle, WA, 98103-9090, USA.,Pew Bertarelli Ocean Legacy Project, The Pew Charitable Trusts, Washington, DC 20004-2008, USA
| | - Marine Deguignet
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Ellen K Pikitch
- National Geographic Society, Washington, DC, USA.,School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Emily S Darling
- School of Environmental Studies, University of Victoria, Victoria, BC V8W 2Y2, Canada.,Wildlife Conservation Society, 2300 Southern Blvd, Bronx, NY 10460, USA
| | - Sabine Jessen
- Marine Protection Atlas, Marine Conservation Institute, Seattle, WA, 98103-9090, USA.,National Ocean Program, Canadian Parks and Wilderness Society, Ottawa, ON K2P 0A4, Canada
| | - Sarah O Hameed
- The Peopled Seas Initiative, Vancouver, BC, Canada.,Blue Parks Program, Marine Conservation Institute, Seattle, WA 98103, USA
| | | | - Paolo Guidetti
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica A. Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Villa Comunale, 80121 Naples, Italy.,National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), V16149 Genoa, Italy
| | - Jean M Harris
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Gomeroy Avenue, Summerstrand, Port Elizabeth 6031, South Africa
| | - Jorge Torre
- Comunidad y Biodiversidad, A.C. Isla del Peruano 215, Col. Lomas de Miramar, Guaymas, Sonora, 85454, Mexico
| | - Zafer Kizilkaya
- Mediterranean Conservation Society, Bornova, Izmir 35100 Turkey
| | - Tundi Agardy
- Oceano Azul Foundation, Oceanário de Lisboa, Esplanada D. Carlos I,1990-005 Lisbon, Portugal.,Sound Seas, Colrain, MA 01340, USA
| | - Philippe Cury
- Center of Marine Sciences, CCMAR, University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.,MARBEC, Montpellier University, CNRS, IRD, IFREMER, Sète, France
| | - Nirmal J Shah
- School of Public Policy, Oregon State University, Corvallis, OR 97330, USA.,Nature Seychelles, Centre for Environment and Education, Sanctuary at Roche Caiman, Mahe, Seychelles
| | - Karen Sack
- Ocean Conservation, World Wildlife Fund, Washington, DC 20037, USA.,Ocean Unite, Washington, DC 20007, USA
| | - Ling Cao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 230000, China
| | - Miriam Fernandez
- Smithsonian Tropical Research Institute, Panama City, Panama; Coiba Scientific Station (Coiba AIP), Panama City, Panama.,Estación Costera de Investigaciones Marinas de Las Cruces and Departmento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jane Lubchenco
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA.,Marine Conservation Institute, Seattle, WA 98103, USA
| |
Collapse
|
17
|
Tebbett SB, Goatley CHR, Streit RP, Bellwood DR. Algal turf sediments limit the spatial extent of function delivery on coral reefs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139422. [PMID: 32460082 DOI: 10.1016/j.scitotenv.2020.139422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The presence of key organisms is frequently associated with the delivery of specific ecosystem functions. Areas with such organisms are therefore often considered to have greater levels of these functions. While this assumption has been the backbone of coral reef ecosystem-based management approaches for decades, we currently have only a limited understanding of how fish presence equates to function on coral reefs and whether this relationship is susceptible to stressors. To assess the capacity of a stressor to shape function delivery we used a multi-scale approach ranging from tens of kilometres across the continental shelf of Australia's Great Barrier Reef, down to centimetres within a reef habitat. At each scale, we quantified the spatial extent of a model function (detritivory) by a coral reef surgeonfish (Ctenochaetus striatus) and its potential to be shaped by sediments. At broad spatial scales, C. striatus presence was correlated strongly with algal turf sediment loads, while at smaller spatial scales, function delivery appears to be constrained by algal turf sediment distributions. In all cases, sediment loads above ~250-500 g m-2 were associated with a marked decrease in fish abundance or feeding activity, suggesting that a common ecological threshold lies within this range. Our results reveal a complex functional dynamic between proximate agents of function delivery (fish) and the ultimate drivers of function delivery (sediments), which emphasizes: a) weaknesses in the assumed links between fish presence and function, and b) the multi-scale capacity of algal turf sediments to shape reef processes. Unless direct extractive activities (e.g. fishing) are the main driver of function loss on coral reefs, managing to conserve fish abundance is unlikely to yield the desired outcomes. It only addresses one potential driver. Instead, management of both the agents that deliver functions (e.g. fishes), and the drivers that modify functions (e.g. sediments), is needed.
Collapse
Affiliation(s)
- Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Christopher H R Goatley
- Function, Evolution and Anatomy Research Lab and Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; Australian Museum Research Institute, Australian Museum, Sydney, New South Wales 2010, Australia
| | - Robert P Streit
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
18
|
Anderson AB, Joyeux JC, Floeter SR. Spatiotemporal variations in density and biomass of rocky reef fish in a biogeographic climatic transition zone: trends over 9 years, inside and outside the only nearshore no-take marine-protected area on the southern Brazilian coast. JOURNAL OF FISH BIOLOGY 2020; 97:845-859. [PMID: 32564373 DOI: 10.1111/jfb.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Biogeographical transition zones are important areas to investigate evolutionary ecological questions, but long-term population monitoring is needed to better understand ecological processes that govern population variations in such edge environments. The southernmost Brazilian rocky reefs are the southern limit of distribution for 96% of the tropical ichthyofauna of the western Atlantic. The Arvoredo Marine Biological Reserve is the only nearshore no-take marine-protected area (MPA) located in this transition zone. The main aim was to investigate how the populations of rocky reef fish species vary in density and biomass in space and over time, inside and outside the Arvoredo MPA. This study presents results based on a 9 year (2008-2017) underwater visual census monitoring study to evaluate the density and biomass of key fish species. Variations in density and biomass were detected for most species. Factors and mechanisms that may have influenced spatial variation are habitat structural complexity and protection from fisheries. Temporal variations, otherwise, may have been influenced by species proximity to their distributional limit, in synergy with density-dependent mechanisms and stochastic winter temperature oscillations. The MPAs harbour higher density and biomass for most species. Nonetheless, a prominent temporal decline in the recruitment of Epinephelus marginatus calls into question the continuous effectiveness of the MPA.
Collapse
Affiliation(s)
- Antônio B Anderson
- Marine Macroecology and Biogeography Laboratory, Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Ichthyology, Department of Oceanography, Federal University of Espírito Santo, Vitória, Brazil
| | - Jean-Christophe Joyeux
- Laboratory of Ichthyology, Department of Oceanography, Federal University of Espírito Santo, Vitória, Brazil
| | - Sergio R Floeter
- Marine Macroecology and Biogeography Laboratory, Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
19
|
Perkins NR, Hosack GR, Foster SD, Monk J, Barrett NS. Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery. PLoS One 2020; 15:e0237257. [PMID: 32785267 PMCID: PMC7423107 DOI: 10.1371/journal.pone.0237257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
Global climate change is driving the redistribution of marine species and thereby potentially restructuring endemic communities. Understanding how localised conservation measures such as protection from additional human pressures can confer resilience to ecosystems is therefore an important area of research. Here, we examine the resilience of a no-take marine reserve (NTR) to the establishment of urchin barrens habitat. The barrens habitat is created through overgrazing of kelp by an invading urchin species that is expanding its range within a hotspot of rapid climate change. In our study region, a multi-year monitoring program provides a unique time-series of benthic imagery collected by an Autonomous Underwater Vehicle (AUV) within an NTR and nearby reference areas. We use a Bayesian hierarchical spatio-temporal modelling approach to estimate whether the NTR is associated with reduced formation of urchin barrens, and thereby enhances local resilience. Our approach controls for the important environmental covariates of depth and habitat complexity (quantified as rugosity derived from multibeam sonar mapping), as well as spatial and temporal dependence. We find evidence for the NTR conferring resilience with a strong reserve effect that suggests improved resistance to the establishment of barrens. However, we find a concerning and consistent trajectory of increasing barrens cover in both the reference areas and the NTR, with the odds of barrens increasing by approximately 32% per year. Thus, whereas the reserve is demonstrating resilience to the initial establishment of barrens, there is currently no evidence of recovery once barrens are established. We also find that depth and rugosity covariates derived from multibeam mapping provide useful predictors for barrens occurrence. These results have important management implications as they demonstrate: (i) the importance of monitoring programs to inform adaptive management; (ii) that NTRs provide a potential local conservation management tool under climate change impacts, and (iii) that technologies such as AUVs and multibeam mapping can be harnessed to inform regional decision-making. Continuation of the current monitoring program is required to assess whether the NTR can provide long term protection from a phase shift that replaces kelp with urchin barrens.
Collapse
Affiliation(s)
- Nicholas R. Perkins
- Institute of Marine and Antarctic Studies, Hobart, Tasmania, Australia
- * E-mail:
| | | | | | - Jacquomo Monk
- Institute of Marine and Antarctic Studies, Hobart, Tasmania, Australia
| | | |
Collapse
|
20
|
Medrano A, Hereu B, Cleminson M, Pagès‐Escolà M, Rovira G, Solà J, Linares C. From marine deserts to algal beds:
Treptacantha elegans
revegetation to reverse stable degraded ecosystems inside and outside a No‐Take marine reserve. Restor Ecol 2020. [DOI: 10.1111/rec.13123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alba Medrano
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de la Biodiversitat (IRBIO)University of Barcelona Avinguda Diagonal 643 08028 Barcelona Spain
| | - Bernat Hereu
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de la Biodiversitat (IRBIO)University of Barcelona Avinguda Diagonal 643 08028 Barcelona Spain
| | - Maria Cleminson
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de la Biodiversitat (IRBIO)University of Barcelona Avinguda Diagonal 643 08028 Barcelona Spain
| | - Marta Pagès‐Escolà
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de la Biodiversitat (IRBIO)University of Barcelona Avinguda Diagonal 643 08028 Barcelona Spain
| | - Graciel·la Rovira
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de la Biodiversitat (IRBIO)University of Barcelona Avinguda Diagonal 643 08028 Barcelona Spain
| | - Jordi Solà
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de la Biodiversitat (IRBIO)University of Barcelona Avinguda Diagonal 643 08028 Barcelona Spain
- Red Sea Research Center (RSRC) and Computational Biosciences Research Center (CBRC)King Abdullah University of Science and Technology (KAUST) Thuwal Kingdom of Saudi Arabia
| | - Cristina Linares
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de la Biodiversitat (IRBIO)University of Barcelona Avinguda Diagonal 643 08028 Barcelona Spain
| |
Collapse
|
21
|
Vieira EA, Souza LRD, Longo GO. Diving into science and conservation: recreational divers can monitor reef assemblages. Perspect Ecol Conserv 2020. [DOI: 10.1016/j.pecon.2019.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
|
23
|
Hosack GR, Trenkel VM. Functional group based marine ecosystem assessment for the Bay of Biscay via elasticity analysis. PeerJ 2019; 7:e7422. [PMID: 31413929 PMCID: PMC6690336 DOI: 10.7717/peerj.7422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/06/2019] [Indexed: 11/26/2022] Open
Abstract
The transitory and long-term elasticities of the Bay of Biscay ecosystem to density-independent and density-dependent influences were estimated within a state space model that accounted for both process and observation uncertainties. A functional group based model for the Bay of Biscay fish ecosystem was fit to time series obtained from scientific survey and commercial catch and effort data. The observation model parameters correspond to the unknown catchabilities and observation error variances that vary across the commercial fisheries and fishery-independent scientific surveys. The process model used a Gompertz form of density dependence, which is commonly used for the analysis of multivariate ecological time series, with unknown time-varying fishing mortalities. Elasticity analysis showed that the process model parameters are directly interpretable in terms of one-year look-ahead prediction elasticities, which measure the proportional response of a functional group in the next year given a proportional change to a variable or parameter in the current year. The density dependent parameters were also shown to define the elasticities of the long term means or quantiles of the functional groups to changes in fishing pressure. Evidence for the importance of indirect effects, mediated by density dependence, in determining the ecosystem response of the Bay of Biscay to changes in fishing pressure is presented. The state space model performed favourably in an assessment of model adequacy that compared observations of catch per unit effort against cross-validation predictive densities blocked by year.
Collapse
Affiliation(s)
- Geoffrey R Hosack
- Commonwealth Scientific and Industrial Research Organisation, Data61, Hobart, Tasmania, Australia
| | | |
Collapse
|
24
|
Darling ES, McClanahan TR, Maina J, Gurney GG, Graham NAJ, Januchowski-Hartley F, Cinner JE, Mora C, Hicks CC, Maire E, Puotinen M, Skirving WJ, Adjeroud M, Ahmadia G, Arthur R, Bauman AG, Beger M, Berumen ML, Bigot L, Bouwmeester J, Brenier A, Bridge TCL, Brown E, Campbell SJ, Cannon S, Cauvin B, Chen CA, Claudet J, Denis V, Donner S, Estradivari, Fadli N, Feary DA, Fenner D, Fox H, Franklin EC, Friedlander A, Gilmour J, Goiran C, Guest J, Hobbs JPA, Hoey AS, Houk P, Johnson S, Jupiter SD, Kayal M, Kuo CY, Lamb J, Lee MAC, Low J, Muthiga N, Muttaqin E, Nand Y, Nash KL, Nedlic O, Pandolfi JM, Pardede S, Patankar V, Penin L, Ribas-Deulofeu L, Richards Z, Roberts TE, Rodgers KS, Safuan CDM, Sala E, Shedrawi G, Sin TM, Smallhorn-West P, Smith JE, Sommer B, Steinberg PD, Sutthacheep M, Tan CHJ, Williams GJ, Wilson S, Yeemin T, Bruno JF, Fortin MJ, Krkosek M, Mouillot D. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat Ecol Evol 2019; 3:1341-1350. [DOI: 10.1038/s41559-019-0953-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/24/2019] [Indexed: 01/23/2023]
|