1
|
Gouezo M, Langlais C, Beardsley J, Roff G, Harrison PL, Thomson DP, Doropoulos C. Going with the flow: Leveraging reef-scale hydrodynamics for upscaling larval-based restoration. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e70020. [PMID: 40190264 PMCID: PMC11973625 DOI: 10.1002/eap.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 04/09/2025]
Abstract
Anthropogenic pressures are impacting coastal marine ecosystems, necessitating large-scale interventions to accelerate recovery. Propagule-based restoration holds the potential for restoring shallow coastal systems at hectare scales by harnessing natural dispersal. However, predicting propagule dispersal remains challenging due to the complex hydrodynamic nature of coastal marine ecosystems and the complex behaviors of marine propagules. To improve predictions of fine-scale larval dispersal patterns, we developed a 3D reef-scale (~30-m resolution) dispersal model for Lizard Island, Australia, with the aim to predict the effect of island-scale hydrodynamics on the distribution of coral spawn slicks and larvae. Using in situ field observations and dispersal simulations, we assessed the model's capability to (1) forecast hydrodynamic conditions, (2) predict coral spawn slick convergence zones for collection efforts, and (3) identify optimal locations and timeframes where high particle residence time may enhance local settlement following larval delivery to damaged reefs. Predictions of convergence zones in the upper water column aligned well with field observations of coral spawn slicks. At the reef benthos, the model captured variability in current speed and direction at ~58% of studied locations. At other locations, the model did not resolve hydrodynamic conditions due to sheltering effects and associated hydrodynamic processes occurring at a scale below 50 m. At locations where the model performed well, propagules could remain within a 1-ha area around the delivery site for 5-15 h depending on locations and the timing of larval release. These high retention conditions were infrequent but occurred at least once at 15 of the 25 studied sites. Observations of local currents a posteriori confirmed model predictions, showing periods of little water movement lasting from 6.5 to 15 h. Overall, our study highlights fine-scale dispersal modeling as a key tool for scaling up larval-based reef restoration, while also acknowledging the need for better predictions of local conditions in complex, shallow environments. Applications of fine-scale modeling, coupled with local knowledge of reproductive timing and larval behavioral ecology, assist with the mass collection of propagules upon release and in identifying areas and times of optimal larval deployment to achieve the greatest impact.
Collapse
Affiliation(s)
- Marine Gouezo
- Faculty of Science and EngineeringSouthern Cross UniversityEast LismoreNew South WalesAustralia
- CSIRO EnvironmentSt LuciaQueenslandAustralia
| | | | | | - George Roff
- CSIRO EnvironmentSt LuciaQueenslandAustralia
| | - Peter L. Harrison
- Faculty of Science and EngineeringSouthern Cross UniversityEast LismoreNew South WalesAustralia
| | | | | |
Collapse
|
2
|
Segura J, Franco D. One way or another: Combined effect of dispersal and asymmetry on total realized asymptotic population abundance. Math Biosci 2024; 373:109206. [PMID: 38729519 DOI: 10.1016/j.mbs.2024.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 03/26/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Understanding the consequences on population dynamics of the variability in dispersal over a fragmented habitat remains a major focus of ecological and environmental inquiry. Dispersal is often asymmetric: wind, marine currents, rivers, or human activities produce a preferential direction of dispersal between connected patches. Here, we study how this asymmetry affects population dynamics by considering a discrete-time two-patch model with asymmetric dispersal. We conduct a rigorous analysis of the model and describe all the possible response scenarios of the total realized asymptotic population abundance to a change in the dispersal rate for a fixed symmetry level. In addition, we discuss which of these scenarios can be achieved just by restricting mobility in one specific direction. Moreover, we also report that changing the order of events does not alter the population dynamics in our model, contrary to other situations discussed in the literature.
Collapse
Affiliation(s)
- Juan Segura
- Department of Finance & Management Control, EADA Business School, c/ Aragó 204, 08011, Barcelona, Spain.
| | - Daniel Franco
- Department of Applied Mathematics I, E.T.S.I. Industriales, Universidad Nacional de Educación a Distancia (UNED), c/ Juan del Rosal 12, 28040, Madrid, Spain
| |
Collapse
|
3
|
Laso-Jadart R, O'Malley M, Sykulski AM, Ambroise C, Madoui MA. Holistic view of the seascape dynamics and environment impact on macro-scale genetic connectivity of marine plankton populations. BMC Ecol Evol 2023; 23:46. [PMID: 37658324 PMCID: PMC10472650 DOI: 10.1186/s12862-023-02160-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Plankton seascape genomics studies have revealed different trends from large-scale weak differentiation to microscale structures. Previous studies have underlined the influence of the environment and seascape on species differentiation and adaptation. However, these studies have generally focused on a few single species, sparse molecular markers, or local scales. Here, we investigated the genomic differentiation of plankton at the macro-scale in a holistic approach using Tara Oceans metagenomic data together with a reference-free computational method. RESULTS We reconstructed the FST-based genomic differentiation of 113 marine planktonic taxa occurring in the North and South Atlantic Oceans, Southern Ocean, and Mediterranean Sea. These taxa belong to various taxonomic clades spanning Metazoa, Chromista, Chlorophyta, Bacteria, and viruses. Globally, population genetic connectivity was significantly higher within oceanic basins and lower in bacteria and unicellular eukaryotes than in zooplankton. Using mixed linear models, we tested six abiotic factors influencing connectivity, including Lagrangian travel time, as proxies of oceanic current effects. We found that oceanic currents were the main population genetic connectivity drivers, together with temperature and salinity. Finally, we classified the 113 taxa into parameter-driven groups and showed that plankton taxa belonging to the same taxonomic rank such as phylum, class or order presented genomic differentiation driven by different environmental factors. CONCLUSION Our results validate the isolation-by-current hypothesis for a non-negligible proportion of taxa and highlight the role of other physicochemical parameters in large-scale plankton genetic connectivity. The reference-free approach used in this study offers a new systematic framework to analyse the population genomics of non-model and undocumented marine organisms from a large-scale and holistic point of view.
Collapse
Affiliation(s)
- Romuald Laso-Jadart
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, Paris, France
| | - Michael O'Malley
- STOR-i Centre for Doctoral Training/Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - Adam M Sykulski
- STOR-i Centre for Doctoral Training/Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | | | - Mohammed-Amin Madoui
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, Paris, France.
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-Aux-Roses, France.
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, 21000, Dijon, France.
| |
Collapse
|
4
|
Sinclair EA, Hovey RK, Krauss SL, Anthony JM, Waycott M, Kendrick GA. Historic and contemporary biogeographic perspectives on range-wide spatial genetic structure in a widespread seagrass. Ecol Evol 2023; 13:e9900. [PMID: 36950371 PMCID: PMC10025079 DOI: 10.1002/ece3.9900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/26/2023] [Indexed: 03/22/2023] Open
Abstract
Historical and contemporary processes drive spatial patterns of genetic diversity. These include climate-driven range shifts and gene flow mediated by biogeographical influences on dispersal. Assessments that integrate these drivers are uncommon, but critical for testing biogeographic hypotheses. Here, we characterize intraspecific genetic diversity and spatial structure across the entire distribution of a temperate seagrass to test marine biogeographic concepts for southern Australia. Predictive modeling was used to contrast the current Posidonia australis distribution to its historical distribution during the Last Glacial Maximum (LGM). Spatial genetic structure was estimated for 44 sampled meadows from across the geographical range of the species using nine microsatellite loci. Historical and contemporary distributions were similar, with the exception of the Bass Strait. Genetic clustering was consistent with the three currently recognized biogeographic provinces and largely consistent with the finer-scale IMCRA bioregions. Discrepancies were found within the Flindersian province and southwest IMCRA bioregion, while two regions of admixture coincided with transitional IMCRA bioregions. Clonal diversity was highly variable but positively associated with latitude. Genetic differentiation among meadows was significantly associated with oceanographic distance. Our approach suggests how shared seascape drivers have influenced the capacity of P. australis to effectively track sea level changes associated with natural climate cycles over millennia, and in particular, the recolonization of meadows across the Continental Shelf following the LGM. Genetic structure associated with IMCRA bioregions reflects the presence of stable biogeographic barriers, such as oceanic upwellings. This study highlights the importance of biogeography to infer the role of historical drivers in shaping extant diversity and structure.
Collapse
Affiliation(s)
- Elizabeth A. Sinclair
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute, University of Western AustraliaCrawleyWestern AustraliaAustralia
- Kings Park Science, Department of Biodiversity Conservation and AttractionsKings ParkWestern AustraliaAustralia
| | - Renae K. Hovey
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute, University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Siegfried L. Krauss
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- Kings Park Science, Department of Biodiversity Conservation and AttractionsKings ParkWestern AustraliaAustralia
| | - Janet M. Anthony
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- Kings Park Science, Department of Biodiversity Conservation and AttractionsKings ParkWestern AustraliaAustralia
| | - Michelle Waycott
- School of Biological SciencesUniversity of Adelaide and State Herbarium of South AustraliaAdelaideSouth AustraliaAustralia
| | - Gary A. Kendrick
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute, University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
5
|
Matias AMA, Popovic I, Thia JA, Cooke IR, Torda G, Lukoschek V, Bay LK, Kim SW, Riginos C. Cryptic diversity and spatial genetic variation in the coral Acropora tenuis and its endosymbionts across the Great Barrier Reef. Evol Appl 2023; 16:293-310. [PMID: 36793689 PMCID: PMC9923489 DOI: 10.1111/eva.13435] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022] Open
Abstract
Genomic studies are uncovering extensive cryptic diversity within reef-building corals, suggesting that evolutionarily and ecologically relevant diversity is highly underestimated in the very organisms that structure coral reefs. Furthermore, endosymbiotic algae within coral host species can confer adaptive responses to environmental stress and may represent additional axes of coral genetic variation that are not constrained by taxonomic divergence of the cnidarian host. Here, we examine genetic variation in a common and widespread, reef-building coral, Acropora tenuis, and its associated endosymbiotic algae along the entire expanse of the Great Barrier Reef (GBR). We use SNPs derived from genome-wide sequencing to characterize the cnidarian coral host and organelles from zooxanthellate endosymbionts (genus Cladocopium). We discover three distinct and sympatric genetic clusters of coral hosts, whose distributions appear associated with latitude and inshore-offshore reef position. Demographic modelling suggests that the divergence history of the three distinct host taxa ranges from 0.5 to 1.5 million years ago, preceding the GBR's formation, and has been characterized by low-to-moderate ongoing inter-taxon gene flow, consistent with occasional hybridization and introgression typifying coral evolution. Despite this differentiation in the cnidarian host, A. tenuis taxa share a common symbiont pool, dominated by the genus Cladocopium (Clade C). Cladocopium plastid diversity is not strongly associated with host identity but varies with reef location relative to shore: inshore colonies contain lower symbiont diversity on average but have greater differences between colonies as compared with symbiont communities from offshore colonies. Spatial genetic patterns of symbiont communities could reflect local selective pressures maintaining coral holobiont differentiation across an inshore-offshore environmental gradient. The strong influence of environment (but not host identity) on symbiont community composition supports the notion that symbiont community composition responds to habitat and may assist in the adaptation of corals to future environmental change.
Collapse
Affiliation(s)
- Ambrocio Melvin A. Matias
- Institute of BiologyUniversity of the Philippines DilimanQuezon CityPhilippines
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Iva Popovic
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Joshua A. Thia
- Bio21 Institute, School of BioSciencesThe University of MelbourneParkevilleVictoriaAustralia
| | - Ira R. Cooke
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Gergely Torda
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Vimoksalehi Lukoschek
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Gold Coast University HospitalQLD HealthSouthportQueenslandAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Sun W. Kim
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Cynthia Riginos
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
6
|
The El Niño Southern Oscillation drives multidirectional inter-reef larval connectivity in the Great Barrier Reef. Sci Rep 2022; 12:21290. [PMID: 36494507 PMCID: PMC9734173 DOI: 10.1038/s41598-022-25629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The El Niño Southern Oscillation (ENSO) is the strongest source of interannual global climate variability, and extreme ENSO events are projected to increase in frequency under climate change. Interannual variability in the Coral Sea circulation has been associated with ENSO, although uncertainty remains regarding ENSO's influence on hydrodynamics and larval dispersal in the adjacent Great Barrier Reef (GBR). We investigated larval connectivity during ENSO events from 2010 to 2017 throughout the GBR, based on biophysical modelling of a widespread predatory reef fish, Lutjanus carponotatus. Our results indicate a well-connected system over the study period with high interannual variability in inter-reef connectivity associated with ENSO. Larval connectivity patterns were highly correlated to variations in the Southern Oscillation Index (SOI). During El Niño conditions and periods of weak SOI, larval dispersal patterns were predominantly poleward in the central and southern regions, reversing to a predominant equatorward flow during very strong SOI and extreme La Niña conditions. These ENSO-linked connectivity patterns were associated with positive connectivity anomalies among reefs. Our findings identify ENSO as an important source of variation in larval dispersal and connectivity patterns in the GBR, which can influence the stability of population dynamics and patterns of biodiversity in the region.
Collapse
|
7
|
Jahnke M, Jonsson PR. Biophysical models of dispersal contribute to seascape genetic analyses. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210024. [PMID: 35067094 PMCID: PMC8784932 DOI: 10.1098/rstb.2021.0024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 12/20/2022] Open
Abstract
Dispersal is generally difficult to directly observe. Instead, dispersal is often inferred from genetic markers and biophysical modelling where a correspondence indicates that dispersal routes and barriers explain a significant part of population genetic differentiation. Biophysical models are used for wind-driven dispersal in terrestrial environments and for propagules drifting with ocean currents in the sea. In the ocean, such seascape genetic or seascape genomic studies provide promising tools in applied sciences, as actions within management and conservation rely on an understanding of population structure, genetic diversity and presence of local adaptations, all dependent on dispersal within the metapopulation. Here, we surveyed 87 studies that combine population genetics and biophysical models of dispersal. Our aim was to understand if biophysical dispersal models can generally explain genetic differentiation. Our analysis shows that genetic differentiation and lack of genetic differentiation can often be explained by dispersal, but the realism of the biophysical model, as well as local geomorphology and species biology also play a role. The review supports the use of a combination of both methods, and we discuss our findings in terms of recommendations for future studies and pinpoint areas where further development is necessary, particularly on how to compare both approaches. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.
Collapse
Affiliation(s)
- Marlene Jahnke
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad 45296, Sweden
| | - Per R. Jonsson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad 45296, Sweden
| |
Collapse
|
8
|
Veliz D, Rojas-Hernández N, Fibla P, Dewitte B, Cornejo-Guzmán S, Parada C. High levels of connectivity over large distances in the diadematid sea urchin Centrostephanus sylviae. PLoS One 2021; 16:e0259595. [PMID: 34735545 PMCID: PMC8568165 DOI: 10.1371/journal.pone.0259595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Most benthic marine invertebrates with sedentary benthic adult phases have planktonic larvae that permit connectivity between geographically isolated populations. Planktonic larval duration and oceanographic processes are vital to connecting populations of species inhabiting remote and distant islands. In the present study, we analyzed the population genetic structure of the sea urchin Centrostephanus sylviae, which inhabits only the Juan Fernández Archipelago and the Desventuradas islands, separated by more than 800 km. For 92 individuals collected from Robinson Crusoe and Selkirk Islands (Juan Fernández Archipelago) and San Ambrosio Island (Desventuradas Islands), 7,067 single nucleotide polymorphisms (SNPs) were obtained. The results did not show a spatial genetic structure for C. sylviae; relative high migration rates were revealed between the islands. An analysis of the water circulation pattern in the area described a predominant northward water flow with periods of inverted flow, suggesting that larvae could move in both directions. Overall, this evidence suggests that C. sylviae comprises a single large population composed of individuals separated by more than 800 km.
Collapse
Affiliation(s)
- David Veliz
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Núcleo Milenio de Ecología y Manejo Sustentable (ESMOI), Coquimbo, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
- * E-mail:
| | - Noemi Rojas-Hernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Fibla
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Boris Dewitte
- Núcleo Milenio de Ecología y Manejo Sustentable (ESMOI), Coquimbo, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Université de Toulouse, CERFACS/CNRS, Toulouse, France
| | - Sebastián Cornejo-Guzmán
- Núcleo Milenio de Ecología y Manejo Sustentable (ESMOI), Coquimbo, Chile
- Departamento de Geofísica, Universidad de Concepción, Concepción, Chile
| | - Carolina Parada
- Núcleo Milenio de Ecología y Manejo Sustentable (ESMOI), Coquimbo, Chile
- Departamento de Geofísica, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
9
|
Ledoux J, Ghanem R, Horaud M, López‐Sendino P, Romero‐Soriano V, Antunes A, Bensoussan N, Gómez‐Gras D, Linares C, Machordom A, Ocaña O, Templado J, Leblois R, Ben Souissi J, Garrabou J. Gradients of genetic diversity and differentiation across the distribution range of a Mediterranean coral: Patterns, processes and conservation implications. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jean‐Baptiste Ledoux
- CIIMAR/CIMAR Centro Interdisciplinar de Investigação Marinha e Ambiental Universidade do Porto Porto Portugal
- Institut de Ciències del Mar CSIC Barcelona Spain
| | - Raouia Ghanem
- Institut National Agronomique de Tunisie Université de Carthage Tunis Tunisie
- Laboratoire de Biodiversité, Biotechnologies et Changements Climatiques (LR11ES09) Université Tunis El Manar Tunis Tunisie
| | | | | | | | - Agostinho Antunes
- CIIMAR/CIMAR Centro Interdisciplinar de Investigação Marinha e Ambiental Universidade do Porto Porto Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | | | | | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Institut de Recerca de la Biodiversitat (IRBIO) Universitat de Barcelona Barcelona Spain
| | - Annie Machordom
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| | - Oscar Ocaña
- Departamento de Oceanografía Biológica y Biodiversidad Fundación Museo del Mar de Ceuta Ceuta Spain
| | - José Templado
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| | - Raphaêl Leblois
- CBGP INRAE CIRAD IRD Montpellier SupAgro University of Montpellier Montpellier France
- Institut de Biologie Computationnelle University of Montpellier Montpellier France
| | - Jamila Ben Souissi
- Institut National Agronomique de Tunisie Université de Carthage Tunis Tunisie
- Laboratoire de Biodiversité, Biotechnologies et Changements Climatiques (LR11ES09) Université Tunis El Manar Tunis Tunisie
| | | |
Collapse
|
10
|
Cheung MWM, Hock K, Skirving W, Mumby PJ. Cumulative bleaching undermines systemic resilience of the Great Barrier Reef. Curr Biol 2021; 31:5385-5392.e4. [PMID: 34739820 DOI: 10.1016/j.cub.2021.09.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
Climate change and ENSO have triggered five mass coral bleaching events on Australia's Great Barrier Reef (GBR), three of which occurred in the last 5 years.1-5 Here, we explore the cumulative nature of recent impacts and how they fragment the reef's connectivity. The coverage and intensity of thermal stress have increased steadily over time. Cumulative bleaching in 2016, 2017, and 2020 is predicted to have reduced systemic larval supply by 26%, 50%, and 71%, respectively. Larval disruption is patchy and can guide interventions. The majority of severely bleached reefs (75%) are predicted to have experienced an 80%-100% loss of larval supply. Yet restoration would not be cost-effective in the 2% of such reefs (∼30) that still experience high larval supply. Managing such climate change impacts will benefit from emerging theory on the facilitation of genetic adaptation,6,7 which requires the existence of regions with predictably high or low thermal stress. We find that a third of reefs constitute warm spots that have consistently experienced bleaching stress. Moreover, 13% of the GBR are potential refugia that avoid significant warming more than expected by chance, with a modest proportion (14%) within highly protected areas. Coral connectivity is likely to become increasingly disrupted given the predicted escalation of climate-driven disturbances,8 but the existence of thermal refugia, potentially capable of delivering larvae to 58% of the GBR, may provide pockets of systemic resilience in the near-term. Theories of conservation planning for climate change will need to consider a shifting portfolio of thermal environments over time.
Collapse
Affiliation(s)
- Mandy W M Cheung
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Karlo Hock
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, QLD 4072, Australia
| | - William Skirving
- Coral Reef Watch, U.S. National Oceanic and Atmospheric Administration, College Park, MD 20740, USA; ReefSense Pty Ltd, Cranbrook, QLD 4814, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Mendiola MJR, Ravago‐Gotanco R. Genetic differentiation and signatures of local adaptation revealed by RADseq for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Ecol Evol 2021; 11:7951-7969. [PMID: 34188864 PMCID: PMC8216953 DOI: 10.1002/ece3.7625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation ( R adj 2 = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea ( R adj 2 = 0.692-0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource.
Collapse
Affiliation(s)
| | - Rachel Ravago‐Gotanco
- The Marine Science InstituteUniversity of the Philippines DilimanQuezon CityPhilippines
| |
Collapse
|
12
|
Cooke I, Ying H, Forêt S, Bongaerts P, Strugnell JM, Simakov O, Zhang J, Field MA, Rodriguez-Lanetty M, Bell SC, Bourne DG, van Oppen MJ, Ragan MA, Miller DJ. Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. SCIENCE ADVANCES 2020; 6:6/48/eabc6318. [PMID: 33246955 PMCID: PMC7695477 DOI: 10.1126/sciadv.abc6318] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/15/2020] [Indexed: 05/24/2023]
Abstract
Genetic signatures caused by demographic and adaptive processes during past climatic shifts can inform predictions of species' responses to anthropogenic climate change. To identify these signatures in Acropora tenuis, a reef-building coral threatened by global warming, we first assembled the genome from long reads and then used shallow whole-genome resequencing of 150 colonies from the central inshore Great Barrier Reef to inform population genomic analyses. We identify population structure in the host that reflects a Pleistocene split, whereas photosymbiont differences between reefs most likely reflect contemporary (Holocene) conditions. Signatures of selection in the host were associated with genes linked to diverse processes including osmotic regulation, skeletal development, and the establishment and maintenance of symbiosis. Our results suggest that adaptation to post-glacial climate change in A. tenuis has involved selection on many genes, while differences in symbiont specificity between reefs appear to be unrelated to host population structure.
Collapse
Affiliation(s)
- Ira Cooke
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Hua Ying
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, Australia
| | - Pim Bongaerts
- California Academy of Sciences, Golden Gate Park, San Francisco, CA, USA
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Melbourne, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, Austria
| | - Jia Zhang
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Mauricio Rodriguez-Lanetty
- Institute of Environment and Department of Biological Sciences, Florida International University, Miami, Fl 33199, USA
| | - Sara C Bell
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David G Bourne
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Madeleine Jh van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Miller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
13
|
Anthony KRN, Helmstedt KJ, Bay LK, Fidelman P, Hussey KE, Lundgren P, Mead D, McLeod IM, Mumby PJ, Newlands M, Schaffelke B, Wilson KA, Hardisty PE. Interventions to help coral reefs under global change-A complex decision challenge. PLoS One 2020; 15:e0236399. [PMID: 32845878 PMCID: PMC7449401 DOI: 10.1371/journal.pone.0236399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Climate change is impacting coral reefs now. Recent pan-tropical bleaching events driven by unprecedented global heat waves have shifted the playing field for coral reef management and policy. While best-practice conventional management remains essential, it may no longer be enough to sustain coral reefs under continued climate change. Nor will climate change mitigation be sufficient on its own. Committed warming and projected reef decline means solutions must involve a portfolio of mitigation, best-practice conventional management and coordinated restoration and adaptation measures involving new and perhaps radical interventions, including local and regional cooling and shading, assisted coral evolution, assisted gene flow, and measures to support and enhance coral recruitment. We propose that proactive research and development to expand the reef management toolbox fast but safely, combined with expedient trialling of promising interventions is now urgently needed, whatever emissions trajectory the world follows. We discuss the challenges and opportunities of embracing new interventions in a race against time, including their risks and uncertainties. Ultimately, solutions to the climate challenge for coral reefs will require consideration of what society wants, what can be achieved technically and economically, and what opportunities we have for action in a rapidly closing window. Finding solutions that work for coral reefs and people will require exceptional levels of coordination of science, management and policy, and open engagement with society. It will also require compromise, because reefs will change under climate change despite our best interventions. We argue that being clear about society's priorities, and understanding both the opportunities and risks that come with an expanded toolset, can help us make the most of a challenging situation. We offer a conceptual model to help reef managers frame decision problems and objectives, and to guide effective strategy choices in the face of complexity and uncertainty.
Collapse
Affiliation(s)
- Kenneth R. N. Anthony
- Australian Institute of Marine Science, QLD, Australia
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Kate J. Helmstedt
- ARC Centre of Excellence in Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, QLD, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, QLD, Australia
| | - Pedro Fidelman
- Centre for Policy Futures, The University of Queensland, QLD, Australia
| | - Karen E. Hussey
- Centre for Policy Futures, The University of Queensland, QLD, Australia
| | | | - David Mead
- Australian Institute of Marine Science, QLD, Australia
| | | | - Peter J. Mumby
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | | | | | - Kerrie A. Wilson
- ARC Centre of Excellence for Environmental Decisions, The University of Queensland, QLD, Australia
| | | |
Collapse
|
14
|
Francisco SM, Robalo JI. Time matters: genetic composition and evaluation of effective population size in temperate coastal fish species. PeerJ 2020; 8:e9098. [PMID: 32391212 PMCID: PMC7197400 DOI: 10.7717/peerj.9098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Extensive knowledge on the genetic characterization of marine organisms has been assembled, mainly concerning the spatial distribution and structuring of populations. Temporal monitoring assesses not only the stability in genetic composition but also its trajectory over time, providing critical information for the accurate forecast of changes in genetic diversity of marine populations, particularly important for both fisheries and endangered species management. We assessed fluctuations in genetic composition among different sampling periods in the western Portuguese shore in three fish species. Methods White seabream Diplodus sargus, sand smelt Atherina presbyter and shanny Lipophrys pholis were chosen, because of their genetic patterns in distinct ecological environments, insight into historical and contemporary factors influencing population effective size (Ne), and degree of commercial exploitation. Samples were obtained near Lisbon between 2003 and 2014 and screened for genetic variation with mitochondrial and nuclear markers. Analyses included genealogies, genetic diversities, temporal structures and contemporary Ne. Results For mtDNA no temporal structure was detected, while for nDNA significant differences were recorded between some sampling periods for the shanny and the sand smelt. Haplotype networks revealed deep genealogies, with various levels of diversification. The shanny revealed a smaller Ne/generation when compared to the other species, which, in turn, revealed no evidence of genetic drift for most study periods. These results highlight the fact that temporal variations in genetic pool composition should be considered when evaluating the population structure of fish species with long distance dispersal, which are more vulnerable to recruitment fluctuations.
Collapse
Affiliation(s)
- Sara M Francisco
- MARE-Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Lisbon, Portugal
| | - Joana I Robalo
- MARE-Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Lisbon, Portugal
| |
Collapse
|
15
|
D'Aloia CC, Andrés JA, Bogdanowicz SM, McCune AR, Harrison RG, Buston PM. Unraveling hierarchical genetic structure in a marine metapopulation: A comparison of three high-throughput genotyping approaches. Mol Ecol 2020; 29:2189-2203. [PMID: 32147850 DOI: 10.1111/mec.15405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/05/2020] [Accepted: 03/03/2020] [Indexed: 01/04/2023]
Abstract
Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high-throughput sequencing, an emerging question is whether various genotyping approaches, in concert with improved sampling designs, will substantially improve our understanding of genetic structure in the sea. To address this question, we explored hierarchical patterns of structure in the coral reef fish Elacatinus lori using a high-resolution approach with respect to both genetic and geographic sampling. Previously, we identified three putative E. lori populations within Belize using traditional genetic markers and sparse geographic sampling: barrier reef and Turneffe Atoll; Glover's Atoll; and Lighthouse Atoll. Here, we systematically sampled individuals at ~10 km intervals throughout these reefs (1,129 individuals from 35 sites) and sequenced all individuals at three sets of markers: 2,418 SNPs; 89 microsatellites; and 57 nonrepetitive nuclear loci. At broad spatial scales, the markers were consistent with each other and with previous findings. At finer spatial scales, there was new evidence of genetic substructure, but our three marker sets differed slightly in their ability to detect these patterns. Specifically, we found subtle structure between the barrier reef and Turneffe Atoll, with SNPs resolving this pattern most effectively. We also documented isolation by distance within the barrier reef. Sensitivity analyses revealed that the number of loci (and alleles) had a strong effect on the detection of structure for all three marker sets, particularly at small spatial scales. Taken together, these results illustrate empirically that high-throughput genotyping data can elucidate subtle genetic structure at previously-undetected scales in a dispersive marine fish.
Collapse
Affiliation(s)
- Cassidy C D'Aloia
- Department of Biological Sciences, University of New Brunswick, Saint John, NB, Canada
| | - Jose A Andrés
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Steven M Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Richard G Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Peter M Buston
- Department of Biology and Marine Program, Boston University, Boston, MA, USA
| |
Collapse
|