1
|
Martínez-Leiva L, Landeira JM, Fernández de Puelles ML, Hernández-León S, Tuset VM, Fatira E. Modelling the alpha and beta diversity of copepods across tropical and subtropical Atlantic ecoregions. NPJ BIODIVERSITY 2025; 4:3. [PMID: 39890979 PMCID: PMC11785948 DOI: 10.1038/s44185-025-00073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Copepods, the most abundant individuals of the mesozooplankton, play a pivotal role in marine food webs and carbon cycling. However, few studies have focused on their diversity and the environmental factors influencing it. The objective of the present study is to model the alpha and beta diversity of copepods across the tropical and subtropical ecoregions of Atlantic Ocean using both taxonomic and functional approaches. The study used a dataset of 226 copepod species collected by stratified plankton hauls (0-800 m depth) across the tropical and equatorial Atlantic, from oligotrophic waters close to the Brazilian coast to more productive waters close to the Mauritanian Upwelling. To perform the functional analysis, six traits related to the behaviour, growth, and reproduction of copepods were selected. Several alpha diversities were estimated using taxonomic metrics (SR, Δ+, and Λ+) and functional metrics (FDis, FEve, FDiv, FOri, FSpe), and modelized with GAM model across spatial and environmental gradients, and day/night. The overall and two components of β-diversity (turnover and nestedness) were shared between depth and stations. The surface layers of stations from oligotrophic, equatorial, and Cape Verde ecoregions displayed higher values of taxonomic α-diversity. More unpredictable were the facets of functional α-diversity, although they showed a tendency to be positive with depth during the daytime. The GAM analysis revealed spatial gradients as the key factors modelling the taxonomic α-diversity, whereas depth was the most relevant for functional α-diversity. The turnover component drove taxonomic β-diversity in depth and station, whereas the nestedness component acquired relevance for the functional β-diversity. The taxonomic structure of the copepod community varied spatially across depths and ecoregions, but this was not linked to functional changes of the same magnitude.
Collapse
Affiliation(s)
- Lorena Martínez-Leiva
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Campus de Taliarte, 35214 Telde, Gran Canaria, Canary Islands, Spain
| | - José M Landeira
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Campus de Taliarte, 35214 Telde, Gran Canaria, Canary Islands, Spain.
- Department of Biology, Norwegian University of Science and Technology, Trondhjem Biological Station NO-7491 Trondheim, Trondheim, Norway.
| | - Maria Luz Fernández de Puelles
- Instituto Español de Oceanografía (IEO/CSIC). Centro Oceanográfico de Baleares (COB), Muelle de Poniente s/n, 07015, Palma, Spain
| | - Santiago Hernández-León
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Campus de Taliarte, 35214 Telde, Gran Canaria, Canary Islands, Spain
| | - Víctor M Tuset
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Campus de Taliarte, 35214 Telde, Gran Canaria, Canary Islands, Spain
| | - Effrosyni Fatira
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Campus de Taliarte, 35214 Telde, Gran Canaria, Canary Islands, Spain
| |
Collapse
|
2
|
Liu Y, Zhu Y, Wu S, Wang Y, Xie J, Zhang K, Xu Y. Determinants of taxonomic, functional, and phylogenetic beta diversity in breeding birds within urban remnant woodlots: Implications for conservation. Ecol Evol 2024; 14:e11426. [PMID: 38746544 PMCID: PMC11091548 DOI: 10.1002/ece3.11426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 01/06/2025] Open
Abstract
Examining beta diversity of animal assemblages in fragmented habitats, which measures variation in species composition among different fragments, is important for understanding the impact of habitat fragmentation on biodiversity. However, relying solely on taxonomic composition may not provide a comprehensive understanding. Incorporating measures of functional and phylogenetic diversities is essential for elucidating the ecological mechanisms underlying changes in community composition. In addition, prevailing studies often prioritize the evaluation of landscape characteristics within fragments as determinants of beta diversity, neglecting differences in habitat type and plant community composition. In this study, we surveyed birds in 26 remnant woodlot patches (ranging from 0.3 to 290.4 ha) in an urban landscape, southwest China, during the breeding season from 2017 to 2022. We recorded 70 bird species (excluding those recorded only once and high-flying birds, including raptors, swallows, and swifts), with the number of species per patch varying from 14 to 56. The overall bird taxonomic and phylogenetic beta diversities were primarily contributed by the turnover component, while functional beta diversity was dominated by the nestedness-resultant component. Patch area and perimeter area ratio significantly influenced the taxonomic, functional, and phylogenetic beta diversities, primarily mediated through the nestedness-resultant component, while inter-patch distance had a significant effect via the turnover component. In addition, there was a considerable correlation of bird taxonomic, functional, and phylogenetic beta diversities with habitat type and woody plant beta diversities, including their respective partitioned turnover and nestedness-resultant components. Our results suggest that bird assemblages in these patches may be regulated by selective extinction, interspecific competition, and environmental filtering. The findings have significant implications for sustainable landscape planning and habitat restoration. Conserving habitat patches of different sizes and maintaining or enhancing habitat heterogeneity between patches can facilitate the persistence of metacommunities.
Collapse
Affiliation(s)
- Yu Liu
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Yun Zhu
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Su Wu
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Yan Wang
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Jie Xie
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Kai Zhang
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Yu Xu
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| |
Collapse
|
3
|
Jin H, Xu J, Peng Y, Xin J, Peng N, Li Y, Huang J, Zhang R, Li C, Wu Y, Gong B, Wang R. Impacts of landscape patterns on plant species diversity at a global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165193. [PMID: 37406683 DOI: 10.1016/j.scitotenv.2023.165193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Landscape patterns are important drivers of biodiversity. Owing to differences in vegetation types, sampling methods, diversity measures, spatial scales, and landscape levels, the impact of landscape patterns on biodiversity remains widely debated. Using a global standardized plant community database and land use and land cover maps at 30-m resolution, for the period 1990-2017, we calculated plant species α- and β-diversity, and landscape metrics at patch- and landscape-levels, and discerned the direct and indirect impacts of landscape patterns on plant species diversity based on environmental factors, namely climate, spatial features, and human disturbance. We found that landscape patterns exhibited the main indirect effects, whereas climate factors exhibited dominant direct effects on plant α-diversity via the direct effects of patch patterns and functional traits. With respect to β-diversity, landscape-level patterns exerted more direct than indirect effects. These effects are strongly dependent on scale. Landscape- and patch-level patterns had opposite effects on plant diversity, depending on their composition and spatial structure, demonstrating that their effects could be mediated by one another. The adaptation of plants to landscape patterns is mainly through variations in leaf area, plant height, specific leaf area, stem density, seed biomass, and other seed-dispersal traits, which vary across vegetation types. Our findings highlight the importance of functional traits and diversity in understanding the mechanism by which landscape patterns influence plant species diversity; accordingly, we recommend balancing the spatial structure of patch- and landscape-level patterns to enhance variation in functional traits, and, ultimately, to maintain global plant diversity.
Collapse
Affiliation(s)
- Hanni Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jing Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yu Peng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jiaxun Xin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Nanyi Peng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanyi Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jijiao Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ruiqiang Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Chen Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yimeng Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Bingzhang Gong
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ronghui Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
4
|
Rolls RJ, Deane DC, Johnson SE, Heino J, Anderson MJ, Ellingsen KE. Biotic homogenisation and differentiation as directional change in beta diversity: synthesising driver-response relationships to develop conceptual models across ecosystems. Biol Rev Camb Philos Soc 2023; 98:1388-1423. [PMID: 37072381 DOI: 10.1111/brv.12958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023]
Abstract
Biotic homogenisation is defined as decreasing dissimilarity among ecological assemblages sampled within a given spatial area over time. Biotic differentiation, in turn, is defined as increasing dissimilarity over time. Overall, changes in the spatial dissimilarities among assemblages (termed 'beta diversity') is an increasingly recognised feature of broader biodiversity change in the Anthropocene. Empirical evidence of biotic homogenisation and biotic differentiation remains scattered across different ecosystems. Most meta-analyses quantify the prevalence and direction of change in beta diversity, rather than attempting to identify underlying ecological drivers of such changes. By conceptualising the mechanisms that contribute to decreasing or increasing dissimilarity in the composition of ecological assemblages across space, environmental managers and conservation practitioners can make informed decisions about what interventions may be required to sustain biodiversity and can predict potential biodiversity outcomes of future disturbances. We systematically reviewed and synthesised published empirical evidence for ecological drivers of biotic homogenisation and differentiation across terrestrial, marine, and freshwater realms to derive conceptual models that explain changes in spatial beta diversity. We pursued five key themes in our review: (i) temporal environmental change; (ii) disturbance regime; (iii) connectivity alteration and species redistribution; (iv) habitat change; and (v) biotic and trophic interactions. Our first conceptual model highlights how biotic homogenisation and differentiation can occur as a function of changes in local (alpha) diversity or regional (gamma) diversity, independently of species invasions and losses due to changes in species occurrence among assemblages. Second, the direction and magnitude of change in beta diversity depends on the interaction between spatial variation (patchiness) and temporal variation (synchronicity) of disturbance events. Third, in the context of connectivity and species redistribution, divergent beta diversity outcomes occur as different species have different dispersal characteristics, and the magnitude of beta diversity change associated with species invasions also depends strongly on alpha and gamma diversity prior to species invasion. Fourth, beta diversity is positively linked with spatial environmental variability, such that biotic homogenisation and differentiation occur when environmental heterogeneity decreases or increases, respectively. Fifth, species interactions can influence beta diversity via habitat modification, disease, consumption (trophic dynamics), competition, and by altering ecosystem productivity. Our synthesis highlights the multitude of mechanisms that cause assemblages to be more or less spatially similar in composition (taxonomically, functionally, phylogenetically) through time. We consider that future studies should aim to enhance our collective understanding of ecological systems by clarifying the underlying mechanisms driving homogenisation or differentiation, rather than focusing only on reporting the prevalence and direction of change in beta diversity, per se.
Collapse
Affiliation(s)
- Robert J Rolls
- School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, 2351, Australia
| | - David C Deane
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Sarah E Johnson
- Natural Resources Department, Northland College, Ashland, WI, 54891, USA
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, Oulu, FI-90014, Finland
| | - Marti J Anderson
- New Zealand Institute for Advanced Study (NZIAS), Massey University, Albany Campus, Auckland, New Zealand
| | - Kari E Ellingsen
- Norwegian Institute for Nature Research (NINA), Fram Centre, P.O. Box 6606 Langnes, Tromsø, 9296, Norway
| |
Collapse
|
5
|
Lin Y, Wu H, Liu D, Li Y, Kang Y, Zhang Z, Wang W. Patterns and drivers of soil surface-dwelling Oribatida diversity along an altitudinal gradient on the Changbai Mountain, China. Ecol Evol 2023; 13:e10105. [PMID: 37214606 PMCID: PMC10196937 DOI: 10.1002/ece3.10105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Distribution patterns of biodiversity and environmental interactions are dominant themes in ecology. In montane ecosystems, biodiversity is closely associated with altitudinal gradients. However, studies of biodiversity in montane ecosystems are focused on plants and vertebrates, with relatively less on invertebrates. Here, the present study used a Vortis arthropod suction sampler to explore the biodiversity patterns of soil surface-dwelling Oribatida and their drivers along an altitudinal gradient (600, 800, 1600, 2000, and 2300 m) from typical temperate forests, evergreen coniferous forests, subalpine birch forests to alpine tundra on the north slope of Changbai Mountain, Northeast China. Trichoribates berlesei, Platynothrus peltifer, and Oribatula tibialis were the dominant soil surface-dwelling species on Changbai Mountain. Generally, alpha diversity and beta diversity of soil surface-dwelling Oribatida decreased with the rising altitude, with a peaking density value at 2000 m. The result of beta diversity showed that the structures of community were more influenced by the species turnover component than the nestedness component. Nonmetric multidimensional scaling (NMDS) ordination showed that the community structure of soil surface-dwelling Oribatida varied significantly along the altitudinal gradient. The variance partitioning showed that the elevation and climatic conditions determined the soil surface-dwelling Oribatida community. Spatial filtering represented by geographic and elevation distances was particularly associated with soil surface-dwelling Oribatida community variation between altitudes on Changbai Mountain. However, the variation of the Oribatida community between adjacent altitudes was only associated with geographic distance. Our study provides supportive evidence for the biodiversity analyzing of soil surface-dwelling Oribatida in montane ecosystems along an altitudinal gradient.
Collapse
Affiliation(s)
- Yiling Lin
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Dong Liu
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Yaxiao Li
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Yujuan Kang
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhongsheng Zhang
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Wenfeng Wang
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| |
Collapse
|
6
|
Ferrari G, Scaravelli D, Mustoni A, Armanini M, Zibordi F, Devineau O, Cagnacci F, Grasso DA, Ossi F. A Comparison of Small Rodent Assemblages after a 20 Year Interval in the Alps. Animals (Basel) 2023; 13:ani13081407. [PMID: 37106970 PMCID: PMC10135415 DOI: 10.3390/ani13081407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Human-induced environmental alterations in the Alps may importantly affect small mammal species, but evidence in this sense is limited. We live-trapped small rodents in the Central-Eastern Italian Alps in three close-by habitat types (rocky scree, alpine grassland, and heath) at 2100 m a.s.l. during summer-fall, in 1997 and 2016. We compared small rodent assemblages through a Redundancy Detrended Analysis (RDA). In both surveys, we detected two specialist species, i.e., the common vole (Microtus arvalis) and the snow vole (Chionomys nivalis), and, unexpectedly, the forest generalist bank vole (Myodes glareolus). In 1997, grassland was mainly occupied by the common vole, while the bank vole and the snow vole were sympatric in the other habitats. In 2016, the snow vole was detected only in the scree, while other species did not show distribution changes. We discuss a series of hypotheses that might have driven the differences observed across decades, among which is a species-specific response to abiotic and biotic environmental alterations, with the alpine habitat specialist moving out of sub-optimal habitats. We encourage further research on this topic, e.g., via long-term longitudinal studies.
Collapse
Affiliation(s)
- Giulia Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
- Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
- Research and Innovation Centre, Edmund Mach Foundation, Via Mach 1, 38098 San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Dino Scaravelli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Andrea Mustoni
- Research and Environmental Education, Adamello Brenta Nature Park, Via Nazionale 24, 38080 Strembo, Italy
| | - Marco Armanini
- Research and Environmental Education, Adamello Brenta Nature Park, Via Nazionale 24, 38080 Strembo, Italy
| | | | - Olivier Devineau
- Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| | - Francesca Cagnacci
- Research and Innovation Centre, Edmund Mach Foundation, Via Mach 1, 38098 San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Donato A Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Federico Ossi
- Research and Innovation Centre, Edmund Mach Foundation, Via Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
7
|
Asuk SA, Matthews TJ, Sadler JP, Pugh TAM, Ebu VT, Ifebueme NM, Kettridge N. Impact of human foraging on tree diversity, composition, and abundance in a tropical rainforest. Biotropica 2022. [DOI: 10.1111/btp.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sijeh A. Asuk
- School of Geography Earth and Environmental Sciences University of Birmingham Birmingham UK
- Birmingham Institute of Forest Research University of Birmingham Birmingham UK
- Department of Forestry and Wildlife Resources Management University of Calabar Calabar Nigeria
| | - Thomas J. Matthews
- School of Geography Earth and Environmental Sciences University of Birmingham Birmingham UK
- Birmingham Institute of Forest Research University of Birmingham Birmingham UK
- CE3C – Centre for Ecology Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores – Depto de Ciências Agráriase Engenharia do Ambiente Angra do Heroísmo Portugal
| | - Jonathan P. Sadler
- School of Geography Earth and Environmental Sciences University of Birmingham Birmingham UK
- Birmingham Institute of Forest Research University of Birmingham Birmingham UK
| | - Thomas A. M. Pugh
- School of Geography Earth and Environmental Sciences University of Birmingham Birmingham UK
- Birmingham Institute of Forest Research University of Birmingham Birmingham UK
- Department of Physical Geography and Ecosystem Science Lund University Lund Sweden
| | - Vincent T. Ebu
- Department of Forestry and Wildlife Resources Management University of Calabar Calabar Nigeria
| | - Nzube M. Ifebueme
- Department of Forestry and Wildlife Resources Management University of Calabar Calabar Nigeria
| | - Nicholas Kettridge
- School of Geography Earth and Environmental Sciences University of Birmingham Birmingham UK
- Birmingham Institute of Forest Research University of Birmingham Birmingham UK
| |
Collapse
|
8
|
Timoner P, Marle P, Castella E, Lehmann A. Assessment of the stream invertebrate β -diversity along an elevation gradient using a bidimensional null model analysis. Ecol Evol 2022; 12:e9135. [PMID: 35949529 PMCID: PMC9350985 DOI: 10.1002/ece3.9135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
β -Diversity, commonly defined as the compositional variation among localities that links local diversity (α-diversity) and regional diversity (γ-diversity), can arise from two different ecological phenomena, namely the spatial species turnover (i.e., species replacement) and the nestedness of assemblages (i.e., species loss). However, any assessment that does not account for stochasticity in community assembly could be biased and misinform conservation management. In this study, we aimed to provide a better understanding of the overall ecological phenomena underlying streamβ -diversity along elevation gradients and to contribute to the rich debate on null model approaches to identify nonrandom patterns in the distribution of taxa. Based on presence-absence data of 78 stream invertebrate families from 309 sites located in the Swiss Alpine region, we analyzed the effect size of nonrandom spatial distribution of stream invertebrates on theβ -diversity and its two components (i.e., turnover and nestedness). We used a modeling framework that allows exploring the complete range of existing algorithms used in null model analysis and assessing how distribution patterns vary according to an array of possible ecological assumptions. Overall, the turnover of stream invertebrates and the nestedness of assemblages were significantly lower and higher, respectively, than the ones expected by chance. This pattern increased with elevation, and the consistent trend observed along the altitudinal gradient, even in the most conservative analysis, strengthened our findings. Our study suggests that deterministic distribution of stream invertebrates in the Swiss Alpine region is significantly driven by differential dispersal capacity and environmental stress gradients. As long as the ecological assumptions for constructing the null models and their implications are acknowledged, we believe that they still represent useful tools to measure the effect size of nonrandom spatial distribution of taxa onβ -diversity.
Collapse
Affiliation(s)
- Pablo Timoner
- enviroSPACE Group, Department F.‐A. Forel for Environmental and Aquatic SciencesInstitute for Environmental Sciences, University of GenevaGenevaSwitzerland
| | - Pierre Marle
- Aquatic Ecology Group, Department F.‐A. Forel for Environmental and Aquatic SciencesInstitute for Environmental Sciences, University of GenevaGenevaSwitzerland
| | - Emmanuel Castella
- Aquatic Ecology Group, Department F.‐A. Forel for Environmental and Aquatic SciencesInstitute for Environmental Sciences, University of GenevaGenevaSwitzerland
| | - Anthony Lehmann
- enviroSPACE Group, Department F.‐A. Forel for Environmental and Aquatic SciencesInstitute for Environmental Sciences, University of GenevaGenevaSwitzerland
| |
Collapse
|
9
|
Lisón F, Matus-Olivares C, Troncoso E, Catalán G, Jiménez-Franco MV. Effect of forest landscapes composition and configuration on bird community and its functional traits in a hotspot of biodiversity of Chile. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Hallman TA, Guélat J, Antoniazza S, Kéry M, Sattler T. Rapid elevational shifts of Switzerland's avifauna and associated species traits. Ecosphere 2022. [DOI: 10.1002/ecs2.4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | | | | | - Marc Kéry
- Swiss Ornithological Institute Sempach Switzerland
| | | |
Collapse
|
11
|
Brambilla M, Rubolini D, Appukuttan O, Calvi G, Karger DN, Kmecl P, Mihelič T, Sattler T, Seaman B, Teufelbauer N, Wahl J, Celada C. Identifying climate refugia for high-elevation Alpine birds under current climate warming predictions. GLOBAL CHANGE BIOLOGY 2022; 28:4276-4291. [PMID: 35441422 PMCID: PMC9546033 DOI: 10.1111/gcb.16187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 05/22/2023]
Abstract
Identifying climate refugia is key to effective biodiversity conservation under a changing climate, especially for mountain-specialist species adapted to cold conditions and highly threatened by climate warming. We combined species distribution models (SDMs) with climate forecasts to identify climate refugia for high-elevation bird species (Lagopus muta, Anthus spinoletta, Prunella collaris, Montifringilla nivalis) in the European Alps, where the ecological effects of climate changes are particularly evident and predicted to intensify. We considered future (2041-2070) conditions (SSP585 scenario, four climate models) and identified three types of refugia: (1) in-situ refugia potentially suitable under both current and future climate conditions, ex-situ refugia suitable (2) only in the future according to all future conditions, or (3) under at least three out of four future conditions. SDMs were based on a very large, high-resolution occurrence dataset (2901-12,601 independent records for each species) collected by citizen scientists. SDMs were fitted using different algorithms, balancing statistical accuracy, ecological realism and predictive/extrapolation ability. We selected the most reliable ones based on consistency between training and testing data and extrapolation over distant areas. Future predictions revealed that all species (with the partial exception of A. spinoletta) will undergo a range contraction towards higher elevations, losing 17%-59% of their current range (larger losses in L. muta). We identified ~15,000 km2 of the Alpine region as in-situ refugia for at least three species, of which 44% are currently designated as protected areas (PAs; 18%-66% among countries). Our findings highlight the usefulness of spatially accurate data collected by citizen scientists, and the importance of model testing by extrapolating over independent areas. Climate refugia, which are only partly included within the current PAs system, should be priority sites for the conservation of Alpine high-elevation species and habitats, where habitat degradation/alteration by human activities should be prevented to ensure future suitability for alpine species.
Collapse
Affiliation(s)
- Mattia Brambilla
- Lipu/BirdLife ItaliaParmaItaly
- MUSE–Museo delle Scienze, Sezione Zoologia dei VertebratiTrentoItaly
- Fondazione Lombardia per l’Ambiente, Settore Biodiversità e aree protetteMilanoItaly
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
- Istituto di Ricerca sulle Acque, IRSA‐CNRBrugherioItaly
| | - Ojan Appukuttan
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
| | | | - Dirk Nikolaus Karger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | | | | | | | | | | | - Johannes Wahl
- Dachverband Deutscher Avifaunisten (DDA)MünsterGermany
| | | |
Collapse
|
12
|
Liang D, Pan X, Luo X, Wenda C, Zhao Y, Hu Y, Robinson SK, Liu Y. Seasonal variation in community composition and distributional ranges of birds along a subtropical elevation gradient in China. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Dan Liang
- State Key Laboratory of Biocontrol School of Life Sciences & School of Ecology Sun Yat‐sen University Guangzhou Guangdong China
- Faculty of Biodiversity and Conservation Southwest Forestry University Kunming China
- Princeton School of Public and International Affairs Princeton University Princeton NJ USA
| | - Xinyuan Pan
- State Key Laboratory of Biocontrol School of Life Sciences & School of Ecology Sun Yat‐sen University Guangzhou Guangdong China
| | - Xu Luo
- Faculty of Biodiversity and Conservation Southwest Forestry University Kunming China
| | - Cheng Wenda
- Division for Ecology & Biodiversity School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Yanyan Zhao
- State Key Laboratory of Biocontrol School of Life Sciences & School of Ecology Sun Yat‐sen University Guangzhou Guangdong China
| | - Yiming Hu
- School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen China
| | - Scott K. Robinson
- Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Yang Liu
- State Key Laboratory of Biocontrol School of Life Sciences & School of Ecology Sun Yat‐sen University Guangzhou Guangdong China
| |
Collapse
|
13
|
García‐Navas V, Sattler T, Schmid H, Ozgul A. Bird species co‐occurrence patterns in an alpine environment supports the stress‐gradient hypothesis. OIKOS 2021. [DOI: 10.1111/oik.08588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vicente García‐Navas
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zurich Switzerland
- Dept of Integrative Ecology, Doñana Biological Station CSIC Seville Spain
| | | | - Hans Schmid
- Swiss Ornithological Inst. Sempach Switzerland
| | - Arpat Ozgul
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zurich Switzerland
| |
Collapse
|
14
|
Avian ecology and community structure across elevation gradients: The importance of high latitude temperate mountain habitats for conserving biodiversity in the Americas. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Marcacci G, Westphal C, Wenzel A, Raj V, Nölke N, Tscharntke T, Grass I. Taxonomic and functional homogenization of farmland birds along an urbanization gradient in a tropical megacity. GLOBAL CHANGE BIOLOGY 2021; 27:4980-4994. [PMID: 34157186 DOI: 10.1111/gcb.15755] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Urbanization is a major driver of land use change and biodiversity decline. While most of the ongoing and future urbanization hotspots are located in the Global South, the impact of urban expansion on agricultural biodiversity and associated functions and services in these regions has widely been neglected. Additionally, most studies assess biodiversity responses at local scale (α-diversity), however, ecosystem functioning is strongly determined by compositional and functional turnover of communities (β-diversity) at regional scales. We investigated taxonomic and functional β-diversity of farmland birds across three seasons on 36 vegetable farms spread along a continuous urbanization gradient in Bangalore, a South Indian megacity. Increasing amount of grey area in the farm surroundings was the dominant driver affecting β-diversity and resulting in taxonomic and functional homogenization of farmland bird communities. Functional diversity losses were higher than expected from species declines (i.e., urbanization acts as an environmental filter), with particular losses of functionally important groups such as insectivores of crop pests. Moreover, urbanization reduced functional redundancy of bird communities, which may further weaken ecosystems resilience to future perturbations. Our study underscores urbanization as a major driver of taxonomic and functional homogenization of species communities in agricultural systems, potentially threatening crucial ecosystem services for food production.
Collapse
Affiliation(s)
- Gabriel Marcacci
- Functional Agrobiodiversity, University of Göttingen, Göttingen, Germany
| | - Catrin Westphal
- Functional Agrobiodiversity, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| | - Arne Wenzel
- Functional Agrobiodiversity, University of Göttingen, Göttingen, Germany
| | - Varsha Raj
- Agricultural Entomology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Nils Nölke
- Forest Inventory and Remote Sensing, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
| | - Teja Tscharntke
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
- Agroecology, University of Göttingen, Göttingen, Germany
| | - Ingo Grass
- Institute of Agricultural Sciences in the Tropics, Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
16
|
Lin L, Deng W, Huang X, Liu Y, Huang L, Kang B. How fish traits and functional diversity respond to environmental changes and species invasion in the largest river in Southeastern China. PeerJ 2021; 9:e11824. [PMID: 34386304 PMCID: PMC8312501 DOI: 10.7717/peerj.11824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
Background Freshwater fish populations are facing multiple stressors, including climate change, species invasion, and anthropogenic interference. Temporal studies of fish functional diversity and community assembly rules based on trait-environment relationships provide insights into fish community structure in riverine ecosystems. Methods Fish samples were collected in 2015 in the Min River, the largest freshwater riverine system in Southeastern China. Fish functional diversity was compared with the background investigation in 1979. Changes in functional richness, functional evenness, functional divergence, and functional beta diversity were analyzed. Relationships between functional diversity and environmental factors were modeled by random forest regression. Correlations between fish functional traits and environmental factors were detected by fourth-corner combined with RLQ analysis. Results Functional richness was significantly reduced in 2015 compared with 1979. Functional beta diversity in 2015 was significantly higher than that in 1979, with functional nestedness being the driving component. Reduction of functional richness and domination of functional nestedness is associated with species loss. Trait convergence was the dominant mechanism driving the temporal changes of functional diversity. Precipitation, temperature, species invasion, and human population were the most significant factors driving fish functional diversity. Higher precipitation, higher temperature, and presence of invasive species were significantly associated with higher swimming factor and higher relative eye diameter, while the opposite environmental conditions were significantly associated with higher pectoral fin length and eurytopic water flow preference. Conclusions Environmental filtering is the dominant temporal assembly mechanism shaping fish community structure. This work contributes to the understanding of temporal freshwater fish community assembly and the associations between fish functional structure and local environmental conditions, which will be informative for future freshwater fish conservation.
Collapse
Affiliation(s)
- Li Lin
- College of Fisheries, Ocean University of China, Qingdao, Shandong, China
| | - Weide Deng
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China.,Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan, China
| | - Xiaoxia Huang
- Key Laboratory of Atmospheric Environment and Processes in the Boundary Layer Over the Low-Latitude Plateau Region, School of Earth Science, Yunnan University, Kunming, Yunnan, China
| | - Yang Liu
- College of Fisheries, Ocean University of China, Qingdao, Shandong, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Bin Kang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, China
| |
Collapse
|
17
|
Barras AG, Braunisch V, Arlettaz R. Predictive models of distribution and abundance of a threatened mountain species show that impacts of climate change overrule those of land use change. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Arnaud G. Barras
- Division of Conservation Biology Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Veronika Braunisch
- Division of Conservation Biology Institute of Ecology and Evolution University of Bern Bern Switzerland
- Forest Research Institute of Baden‐Wuerttemberg Freiburg Germany
| | - Raphaël Arlettaz
- Division of Conservation Biology Institute of Ecology and Evolution University of Bern Bern Switzerland
| |
Collapse
|