1
|
Duricy E, Durisko C, Fiez JA. The role of the intraparietal sulcus in numeracy: A review of parietal lesion cases. Behav Brain Res 2025; 482:115453. [PMID: 39892656 DOI: 10.1016/j.bbr.2025.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Prominent theories of numeracy link the intraparietal sulcus (IPS) to approximate representations of quantity that undergird basic math abilities. The goal of this review is to better understand the neural basis of mathematical cognition through the lens of acalculia, by identifying numeracy-focused single case studies of patients with parietal lesions and testing for causal relationships between numeracy impairments and the locus of parietal damage. A systematic literature review identified 27 single case studies with left parietal lesions and categorized administered tasks across four numeracy domains: Approximation, Calculation, Ordinality/Cardinality, and Transcoding. We compared published lesion images by drawing a sphere at the inferred center-of-mass and assigning each case to an anatomical group (IPS or Other Parietal damage) based on overlap with left IPS and original anatomical description. We performed Fisher's Exact Test to compare behavioral performance on each numeracy domain between the two groups. As an exploratory follow-up, we used Activation Likelihood Estimation (ALE) to identify sites of damage within parietal cortex preferentially associated with impairments in each domain. We found that Approximation impairments were significantly more frequent in the IPS group (p = .003). The exploratory ALE analysis revealed that only Approximation impairment cases significantly overlapped with the IPS, while impairments in other domains were localized to different regions of the parietal lobe. Based on the pattern of impairments shown across these cases, we conclude that damage to the left IPS is linked to impairments in approximation ability specifically. Our findings support theoretical claims linking IPS to magnitude representation, but do not provide evidence that IPS critically underpins performance across all numeracy tasks. Instead, our findings are more compatible with models of dissociable circuits of numerical processing within the parietal lobe.
Collapse
Affiliation(s)
- Erin Duricy
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Corrine Durisko
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Julie A Fiez
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychology, and, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Skagenholt M, Skagerlund K, Träff U. Numerical cognition across the lifespan: A selective review of key developmental stages and neural, cognitive, and affective underpinnings. Cortex 2025; 184:263-286. [PMID: 39919570 DOI: 10.1016/j.cortex.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/29/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Numerical cognition constitutes a set of hierarchically related skills and abilities that develop-and may subsequently begin to decline-over developmental time. An innate "number sense" has long been argued to provide a foundation for the development of increasingly complex and applied numerical cognition, such as symbolic numerical reference, arithmetic, and financial literacy. However, evidence for a direct link between basic perceptual mechanisms that allow us to determine numerical magnitude (e.g., "how many" objects are in front of us and whether some of these are of a "greater" or "lesser" quantity), and later symbolic applications for counting and mathematics, has recently been challenged. Understanding how one develops an increasingly precise sense of number and which neurocognitive mechanisms support arithmetic development and achievement is crucial for developing successful mathematics curricula, supporting individual financial literacy and decision-making, and designing appropriate intervention and remediation programs for mathematical learning disabilities as well as mathematics anxiety. The purpose of this review is to provide a broad overview of the cognitive, neural, and affective underpinnings of numerical cognition-spanning the earliest hours of infancy to senior adulthood-and highlight gaps in our knowledge that remain to be addressed.
Collapse
Affiliation(s)
- Mikael Skagenholt
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden; Department of Management and Engineering, JEDI-Lab, Linköping University, Linköping, Sweden.
| | - Kenny Skagerlund
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden; Department of Management and Engineering, JEDI-Lab, Linköping University, Linköping, Sweden; Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Ulf Träff
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Li X, Li J, Zhao S, Liao Y, Zhu L, Mou Y. Magnitude representation of preschool children with autism spectrum condition. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:866-880. [PMID: 37522624 DOI: 10.1177/13623613231185408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
LAY ABSTRACT The mathematical abilities of children with autism spectrum condition have been understudied. Magnitude representation (e.g. presenting the number of a collection of objects) is a fundamental numerical ability presented since early infancy and is correlated with children's later learning of formal mathematics. It remains unclear about whether children with autism spectrum condition differ from their peers without autism spectrum condition in precision of magnitude representations. This study compared preschool children with and without autism spectrum condition in their precision of magnitude representation with an approximate number comparison task, in which children compared two sets of dots without counting and chose the set with more dots. Children with autism spectrum condition exhibited the lower numerical comparison accuracy (i.e. the weaker magnitude representation) than their peers without autism spectrum condition. This difference existed even when multiple general cognitive abilities (working memory, inhibitory control, and nonverbal intelligence) and language abilities were statistically controlled. Moreover, the individual difference of the numerical comparison accuracy was larger in children with autism spectrum condition than without autism spectrum condition. These findings suggest that children with autism spectrum condition are at risk of weaker magnitude representation from an early age, emphasizing the need for specialized mathematics education or interventions to support their learning. In addition, the large variance in the precision of their magnitude representation suggests that individualized mathematics interventions are needed for children with autism spectrum condition.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Jiaxi Li
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Sijia Zhao
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Yini Liao
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Liqi Zhu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Mou
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Liu K, Qu H, Yang Y, Yang X. The longitudinal contribution of mapping to arithmetic: Do numeral knowledge, inhibition or analogical reasoning matter? BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2024; 94:58-73. [PMID: 37722852 DOI: 10.1111/bjep.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Recent studies have revealed the association between mapping and arithmetic (Ferres-Forga et al., J. Numer. Cogn., 8, 2022, 123; LeFevre et al., J. Numer. Cogn., 8, 2022, 1). AIM The underlying mechanism remains unclear. MATERIALS & METHODS The current study recruited 118 kindergarten children and followed up on them three times at 6-month intervals. They completed measures to assess mapping skills (T1), non-verbal IQ (T1), numeral knowledge (T2), inhibitory control (T2), analogical reasoning (T2) and arithmetic (T3). RESULTS The results showed that mapping accounted for significant variance in arithmetic ability over and above age, gender and non-verbal IQ. Furthermore, analogical reasoning played an important role in the relationship between mapping and mathematics ability. DISCUSSION The findings suggest the association between mapping and mathematics ability prior to formal schooling. CONCLUSION Analogical reasoning, rather than numeral knowledge or inhibitory control, may drive that association in young children.
Collapse
Affiliation(s)
- Kaichun Liu
- Department of Sports and Heath Education, Wuxi Vocational Institute of Commerce, Wuxi, China
| | - Haoping Qu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yawei Yang
- Faculty of Education, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xiujie Yang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Gerbrand A, Gredebäck G, Lindskog M. Recognition of small numbers in subset knowers Cardinal knowledge in early childhood. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230474. [PMID: 37885983 PMCID: PMC10598441 DOI: 10.1098/rsos.230474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Previous research suggests that subset-knowers have an approximate understanding of small numbers. However, it is still unclear exactly what subset-knowers understand about small numbers. To investigate this further, we tested 133 participants, ages 2.6-4 years, on a newly developed eye-tracking task targeting cardinal recognition. Participants were presented with two sets differing in cardinality (1-4 items) and asked to find a specific cardinality. Our main finding showed that on a group level, subset-knowers could identify all presented targets at rates above chance, further supporting that subset-knowers understand several of the basic principles of small numbers. Exploratory analyses tentatively suggest that 1-knowers could identify the targets 1 and 2, but struggled when the target was 3 and 4, whereas 2-knowers and above could identify all targets at rates above chance. This might tentatively suggest that subset-knowers have an approximate understanding of numbers that is just (i.e. +1) above their current knower level. We discuss the implications of these results at length.
Collapse
Affiliation(s)
- Anton Gerbrand
- Uppsala Child and Babylab, Uppsala Universitet, Department of psychology, Sweden
| | - Gustaf Gredebäck
- Uppsala Child and Babylab, Uppsala Universitet, Department of psychology, Sweden
| | - Marcus Lindskog
- Uppsala Child and Babylab, Uppsala Universitet, Department of psychology, Sweden
| |
Collapse
|
6
|
Chen CC, Jang S, Piazza M, Hyde DC. Characterizing exact arithmetic abilities before formal schooling. Cognition 2023; 238:105481. [PMID: 37182405 DOI: 10.1016/j.cognition.2023.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Children appear to have some arithmetic abilities before formal instruction in school, but the extent of these abilities as well as the mechanisms underlying them are poorly understood. Over two studies, an initial exploratory study of preschool children in the U.S. (N = 207; Age = 2.89-4.30 years) and a pre-registered replication of preschool children in Italy (N = 130; Age = 3-6.33 years), we documented some basic behavioral signatures of exact arithmetic using a non-symbolic subtraction task. Furthermore, we investigated the underlying mechanisms by analyzing the relationship between individual differences in exact subtraction and assessments of other numerical and non-numerical abilities. Across both studies, children performed above chance on the exact non-symbolic arithmetic task, generally showing better performance on problems involving smaller quantities compared to those involving larger quantities. Furthermore, individual differences in non-verbal approximate numerical abilities and exact cardinal number knowledge were related to different aspects of subtraction performance. Specifically, non-verbal approximate numerical abilities were related to subtraction performance in older but not younger children. Across both studies we found evidence that cardinal number knowledge was related to performance on subtraction problems where the answer was zero (i.e., subtractive negation problems). Moreover, subtractive negation problems were only solved above chance by children who had a basic understanding of cardinality. Together these finding suggest that core non-verbal numerical abilities, as well as emerging knowledge of symbolic numbers provide a basis for some, albeit limited, exact arithmetic abilities before formal schooling.
Collapse
Affiliation(s)
- Chi-Chuan Chen
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Selim Jang
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Manuela Piazza
- Center for Mind/Brain Sciences (CiMEC), University of Trento, Italy
| | - Daniel C Hyde
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
7
|
Lv J, Mao H, Zeng L, Wang X, Zhou X, Mou Y. The developmental relationship between nonsymbolic and symbolic fraction abilities. J Exp Child Psychol 2023; 232:105666. [PMID: 37043876 DOI: 10.1016/j.jecp.2023.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 04/14/2023]
Abstract
A fundamental research question in quantitative cognition concerns the developmental relationship between nonsymbolic and symbolic quantitative abilities. This study examined this developmental relationship in abilities to process nonsymbolic and symbolic fractions. There were 99 6th graders (Mage = 11.86 years), 101 10th graders (Mage = 15.71 years), and 102 undergraduate and graduate students (Mage = 21.97 years) participating in this study, and their nonsymbolic and symbolic fraction abilities were measured with nonsymbolic and symbolic fraction comparison tasks, respectively. Nonsymbolic and symbolic fraction abilities were significantly correlated in all age groups even after controlling for the ability to process nonsymbolic absolute quantity and general cognitive abilities, including working memory and inhibitory control. Moreover, the strength of nonsymbolic-symbolic correlations was higher in 6th graders than in 10th graders and adults. These findings suggest a weakened association between nonsymbolic and symbolic fraction abilities during development, and this developmental pattern may be related with participants' increasing proficiency in symbolic fractions.
Collapse
Affiliation(s)
- Jianxiang Lv
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Huomin Mao
- Affiliated Primary School of Sun Yat-sen University, Zhuhai Campus, Zhuhai 519000, China
| | - Liping Zeng
- Yangchun No. 1 Middle School, Guangdong 529600, China
| | - Xuqing Wang
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Yi Mou
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Ribner A, Silver AM, Elliott L, Libertus ME. Exploring effects of an early math intervention: The importance of parent-child interaction. Child Dev 2023; 94:395-410. [PMID: 36321367 PMCID: PMC9991950 DOI: 10.1111/cdev.13867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We explore whether training parents' math skills or playing number games improves children's mathematical skills. Participants were 162 parent-child dyads; 88.3% were white and children (79 female) were 4 years (M = 46.88 months). Dyads were assigned to a number game, shape game, parent-only approximate number system training, parent-only general trivia, or a no-training control condition and asked to play twice weekly for 8 weeks. Children in the number game condition gained over 15% SD on an assessment of mathematical skill than did those in the no-training control. After 8 additional weeks without training, effects diminished; however, children of parents in the ANS condition underperformed those in the no-treatment control, which was partially explained by changes in the home numeracy environment.
Collapse
Affiliation(s)
- Andrew Ribner
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex M Silver
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
9
|
Mou Y, Zhang B, Hyde DC. Directionality in the interrelations between approximate number, verbal number, and mathematics in preschool-aged children. Child Dev 2023; 94:e67-e84. [PMID: 36528845 DOI: 10.1111/cdev.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A fundamental question in numerical development concerns the directional relation between an early-emerging non-verbal approximate number system (ANS) and culturally acquired verbal number and mathematics knowledge. Using path models on longitudinal data collected in preschool children (Mage = 3.86 years; N = 216; 99 males; 80.8% White; 10.8% Multiracial, 3.8% Latino; 1.9% Black; collected 2013-2017) over 1 year, this study showed that earlier verbal number knowledge was associated with later ANS precision (average β = .32), even after controlling for baseline differences in numerical, general cognitive, and language abilities. In contrast, earlier ANS precision was not associated with later verbal number knowledge (β = -.07) or mathematics abilities (average β = .10). These results suggest that learning about verbal numbers is associated with a sharpening of pre-existing non-verbal numerical abilities.
Collapse
Affiliation(s)
- Yi Mou
- Department of Psychology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bo Zhang
- School of Labor and Employment Relations, University of Illinois Urbana-Champaign, Champaign, Illinois, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Daniel C Hyde
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
10
|
Baer C, Kidd C. Learning with certainty in childhood. Trends Cogn Sci 2022; 26:887-896. [PMID: 36085134 DOI: 10.1016/j.tics.2022.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
Learners use certainty to guide learning. They maintain existing beliefs when certain, but seek further information when they feel uninformed. Here, we review developmental evidence that this metacognitive strategy does not require reportable processing. Uncertainty prompts nonverbal human infants and nonhuman animals to engage in strategies like seeking help, searching for additional information, or opting out. Certainty directs children's attention and active learning strategies and provides a common metric for comparing and integrating conflicting beliefs across people. We conclude that certainty is a continuous, domain-general signal of belief quality even early in life.
Collapse
Affiliation(s)
- Carolyn Baer
- Department of Psychology, University of California, Berkeley, CA, USA.
| | - Celeste Kidd
- Department of Psychology, University of California, Berkeley, CA, USA
| |
Collapse
|
11
|
Demetriou A, Spanoudis GC, Greiff S, Makris N, Panaoura R, Kazi S. Changing priorities in the development of cognitive competence and school learning: A general theory. Front Psychol 2022; 13:954971. [PMID: 36248549 PMCID: PMC9557948 DOI: 10.3389/fpsyg.2022.954971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
This paper summarizes a theory of cognitive development and elaborates on its educational implications. The theory postulates that development occurs in cycles along multiple fronts. Cognitive competence in each cycle comprises a different profile of executive, inferential, and awareness processes, reflecting changes in developmental priorities in each cycle. Changes reflect varying needs in representing, understanding, and interacting with the world. Interaction control dominates episodic representation in infancy; attention control and perceptual awareness dominate in realistic representations in preschool; inferential control and awareness dominate rule-based representation in primary school; truth and validity control and precise self-evaluation dominate in principle-based thought in adolescence. We demonstrate that the best predictors of school learning in each cycle are the cycle's cognitive priorities. Also learning in different domains, e.g., language and mathematics, depends on an interaction between the general cognitive processes dominating in each cycle and the state of the representational systems associated with each domain. When a representational system is deficient, specific learning difficulties may emerge, e.g., dyslexia and dyscalculia. We also discuss the educational implications for evaluation and learning at school.
Collapse
|
12
|
Wongupparaj P, Kadosh RC. Relating mathematical abilities to numerical skills and executive functions in informal and formal schooling. BMC Psychol 2022; 10:27. [PMID: 35148787 PMCID: PMC8832645 DOI: 10.1186/s40359-022-00740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/04/2022] [Indexed: 11/22/2022] Open
Abstract
Background The current evidence on an integrative role of the domain-specific early mathematical skills and number-specific executive functions (EFs) from informal to formal schooling and their effect on mathematical abilities is so far unclear. The main objectives of this study were to (i) compare the domain-specific early mathematics, the number-specific EFs, and the mathematical abilities between preschool and primary school children, and (ii) examine the relationship among the domain-specific early mathematics, the number-specific EFs, and the mathematical abilities among preschool and primary school children.
Methods The current study recruited 6- and 7-year-old children (Ntotal = 505, n6yrs = 238, and n7yrs = 267). The domain-specific early mathematics as measured by symbolic and nonsymbolic tasks, number-specific EFs tasks, and mathematics tasks between these preschool and primary school children were compared. The relationship among domain-specific early mathematics, number-specific EFs, and mathematical abilities among preschool and primary school children was examined. MANOVA and structural equation modeling (SEM) were used to test research hypotheses.
Results The current results showed using MANOVA that primary school children were superior to preschool children over more complex tests of the domain-specific early mathematics; number-specific EFs; mathematical abilities, particularly for more sophisticated numerical knowledge; and number-specific EF components. The SEM revealed that both the domain-specific early numerical and the number-specific EFs significantly related to the mathematical abilities across age groups. Nevertheless, the number comparison test and mental number line of the domain-specific early mathematics significantly correlated with the mathematical abilities of formal school children. These results show the benefits of both the domain-specific early mathematics and the number-specific EFs in mathematical development, especially at the key stages of formal schooling. Understanding the relationship between EFs and early mathematics in improving mathematical achievements could allow a more powerful approach in improving mathematical education at this developmental stage.
Collapse
Affiliation(s)
- Peera Wongupparaj
- Cognitive Science and Innovation Research Unit, College of Research Methodology and Cognitive Science, Burapha University, Saen Suk, Thailand.
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Fu W, Dolfi S, Decarli G, Spironelli C, Zorzi M. Electrophysiological Signatures of Numerosity Encoding in a Delayed Match-to-Sample Task. Front Hum Neurosci 2022; 15:750582. [PMID: 35058763 PMCID: PMC8764258 DOI: 10.3389/fnhum.2021.750582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The number of elements in a small set of items is appraised in a fast and exact manner, a phenomenon called subitizing. In contrast, humans provide imprecise responses when comparing larger numerosities, with decreasing precision as the number of elements increases. Estimation is thought to rely on a dedicated system for the approximate representation of numerosity. While previous behavioral and neuroimaging studies associate subitizing to a domain-general system related to object tracking and identification, the nature of small numerosity processing is still debated. We investigated the neural processing of numerosity across subitizing and estimation ranges by examining electrophysiological activity during the memory retention period in a delayed numerical match-to-sample task. We also assessed potential differences in the neural signature of numerical magnitude in a fully non-symbolic or cross-format comparison. In line with behavioral performance, we observed modulation of parietal-occipital neural activity as a function of numerosity that differed in two ranges, with distinctive neural signatures of small numerosities showing clear similarities with those observed in visuospatial working memory tasks. We also found differences in neural activity related to numerical information in anticipation of single vs. cross-format comparison, suggesting a top-down modulation of numerical processing. Finally, behavioral results revealed enhanced performance in the mixed-format conditions and a significant correlation between task performance and symbolic mathematical skills. Overall, we provide evidence for distinct mechanisms related to small and large numerosity and differences in numerical encoding based on task demands.
Collapse
Affiliation(s)
- Wanlu Fu
- Department of General Psychology, University of Padova, Padua, Italy
| | - Serena Dolfi
- Department of Developmental Psychology and Socialisation, University of Padova, Padua, Italy
| | - Gisella Decarli
- Department of General Psychology, University of Padova, Padua, Italy
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Marco Zorzi
- Department of General Psychology, University of Padova, Padua, Italy
- IRCCS San Camillo Hospital, Venice, Italy
- *Correspondence: Marco Zorzi,
| |
Collapse
|
14
|
Schröder E, Gredebäck G, Forssman L, Lindskog M. Predicting children's emerging understanding of numbers. Dev Sci 2021; 25:e13207. [PMID: 34870876 DOI: 10.1111/desc.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
How do children construct a concept of natural numbers? Past research addressing this question has mainly focused on understanding how children come to acquire the cardinality principle. However, at that point children already understand the first number words and have a rudimentary natural number concept in place. The question therefore remains; what gets children's number learning off the ground? We therefore, based on previous empirical and theoretical work, tested which factors predict the first stages of children's natural number understanding. We assessed if children's expressive vocabulary, visuospatial working memory, and ANS (Approximate number system) acuity at 18 months of age could predict their natural number knowledge at 2.5 years of age. We found that early expressive vocabulary and visuospatial working memory were important for later number knowledge. The results of the current study add to a growing body of literature showing the importance of language in children's learning about numbers.
Collapse
Affiliation(s)
- Elin Schröder
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | | | - Linda Forssman
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Marcus Lindskog
- Department of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Silver AM, Elliott L, Braham EJ, Bachman HJ, Votruba-Drzal E, Tamis-LeMonda CS, Cabrera N, Libertus ME. Measuring Emerging Number Knowledge in Toddlers. Front Psychol 2021; 12:703598. [PMID: 34354646 PMCID: PMC8329077 DOI: 10.3389/fpsyg.2021.703598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
Recent evidence suggests that infants and toddlers may recognize counting as numerically relevant long before they are able to count or understand the cardinal meaning of number words. The Give-N task, which asks children to produce sets of objects in different quantities, is commonly used to test children’s cardinal number knowledge and understanding of exact number words but does not capture children’s preliminary understanding of number words and is difficult to administer remotely. Here, we asked whether toddlers correctly map number words to the referred quantities in a two-alternative forced choice Point-to-X task (e.g., “Which has three?”). Two- to three-year-old toddlers (N = 100) completed a Give-N task and a Point-to-X task through in-person testing or online via videoconferencing software. Across number-word trials in Point-to-X, toddlers pointed to the correct image more often than predicted by chance, indicating that they had some understanding of the prompted number word that allowed them to rule out incorrect responses, despite limited understanding of exact cardinal values. No differences in Point-to-X performance were seen for children tested in-person versus remotely. Children with better understanding of exact number words as indicated on the Give-N task also answered more trials correctly in Point-to-X. Critically, in-depth analyses of Point-to-X performance for children who were identified as 1- or 2-knowers on Give-N showed that 1-knowers do not show a preliminary understanding of numbers above their knower-level, whereas 2-knowers do. As researchers move to administering assessments remotely, the Point-to-X task promises to be an easy-to-administer alternative to Give-N for measuring children’s emerging number knowledge and capturing nuances in children’s number-word knowledge that Give-N may miss.
Collapse
Affiliation(s)
- Alex M Silver
- Department of Psychology, Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Leanne Elliott
- Department of Psychology, Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily J Braham
- Department of Psychology, Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heather J Bachman
- Department of Health and Human Development, School of Education, University of Pittsburgh, Pittsburgh, PA, United States
| | - Elizabeth Votruba-Drzal
- Department of Psychology, Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Catherine S Tamis-LeMonda
- Department of Applied Psychology, Steinhardt School of Culture, Education and Human Development, New York University, New York, NY, United States
| | - Natasha Cabrera
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, United States
| | - Melissa E Libertus
- Department of Psychology, Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
When one size does not fit all: A latent profile analysis of low-income preschoolers' math skills. J Exp Child Psychol 2021; 209:105156. [PMID: 34089919 DOI: 10.1016/j.jecp.2021.105156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
On average, preschoolers from lower-income households perform worse on symbolic numerical tasks than preschoolers from middle- and upper-income households. Although many recent studies have developed and tested mathematics interventions for low-income preschoolers, the variability within this population has received less attention. The goal of the current study was to describe the variability in low-income children's math skills using a person-centered analysis. We conducted a latent profile analysis on six measures of preschoolers' (N = 115, mean age = 4.6 years) numerical abilities (nonsymbolic magnitude comparison, verbal counting, object counting, cardinality, numeral identification, and symbolic magnitude comparison). The results showed different patterns of strengths and weaknesses and revealed four profiles of numerical skills: (a) poor math abilities on all numerical measures (n = 13), (b) strong math abilities on all numerical measures (n = 41), (c) moderate abilities on all numerical measures (n = 35), and (d) strong counting and numeral skills but poor magnitude skills (n = 26). Children's age, working memory, and inhibitory control significantly predicted their profile membership. We found evidence of quantitative and qualitative differences between profiles, such that some profiles were higher performing across tasks than others, but the overall patterns of performance varied across the different numerical skills assessed.
Collapse
|
17
|
Bernabini L, Bonifacci P, de Jong PF. The Relationship of Reading Abilities With the Underlying Cognitive Skills of Math: A Dimensional Approach. Front Psychol 2021; 12:577488. [PMID: 33716850 PMCID: PMC7946841 DOI: 10.3389/fpsyg.2021.577488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/21/2021] [Indexed: 01/29/2023] Open
Abstract
Math and reading are related, and math problems are often accompanied by problems in reading. In the present study, we used a dimensional approach and we aimed to assess the relationship of reading and math with the cognitive skills assumed to underlie the development of math. The sample included 97 children from 4th and 5th grades of a primary school. Children were administered measures of reading and math, non-verbal IQ, and various underlying cognitive abilities of math (counting, number sense, and number system knowledge). We also included measures of phonological awareness and working memory (WM). Two approaches were undertaken to elucidate the relations of the cognitive skills with math and reading. In the first approach, we examined the unique contributions of math and reading ability, as well as their interaction, to each cognitive ability. In the second approach, the cognitive abilities were taken to predict math and reading. Results from the first set of analyses showed specific effects of math on number sense and number system knowledge, whereas counting was affected by both math and reading. No math-by-reading interactions were observed. In contrast, for phonological awareness, an interaction of math and reading was found. Lower performing children on both math and reading performed disproportionately lower. Results with respect to the second approach confirmed the specific relation of counting, number sense, and number system knowledge to math and the relation of counting to reading but added that each math-related marker contributed independently to math. Following this approach, no unique effects of phonological awareness on math and reading were found. In all, the results show that math is specifically related to counting, number sense, and number system knowledge. The results also highlight what each approach can contribute to an understanding of the relations of the various cognitive correlates with reading and math.
Collapse
Affiliation(s)
- Luca Bernabini
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Paola Bonifacci
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Peter F de Jong
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Scalise NR, Ramani GB. Symbolic Magnitude Understanding Predicts Preschoolers’ Later Addition Skills. JOURNAL OF COGNITION AND DEVELOPMENT 2021. [DOI: 10.1080/15248372.2021.1888732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nicole R. Scalise
- University of California, Irvine
- University of Maryland, College Park
| | | |
Collapse
|
19
|
Braeuning D, Ribner A, Moeller K, Blair C. The Multifactorial Nature of Early Numeracy and Its Stability. Front Psychol 2020; 11:518981. [PMID: 33250799 PMCID: PMC7672121 DOI: 10.3389/fpsyg.2020.518981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Early numeracy is a robust predictor of later mathematical abilities. So far, early numeracy has typically been presented as a unitary or two-factorial construct. Nevertheless, there is recent evidence suggesting that it may also be reflected by more basic numerical competences. However, the structure and stability of such a multifactorial model of early numeracy over time has not been investigated yet. In the present study, we used data from a large, longitudinal sample (N = 1292) in the United States with assessments of math ability in prekindergarten and kindergarten to evaluate both the factorial structure of early numeracy and its stability over time. Confirmatory factor analysis identified four distinct basic numerical competences making up early numeracy in prekindergarten: patterning/geometry, number sense, arithmetic, and data analysis/statistics. Stability as tested by means of measurement invariance indicated configural invariance of these four factors from prekindergarten to kindergarten. This reflected that early numeracy in kindergarten was made up by the same four basic numerical competences as in prekindergarten and thus seemed rather stable over the course of preschool. These findings may not only have implications for research on numerical cognition but particularly for diagnostic processes or the development of interventions in educational practice.
Collapse
Affiliation(s)
- David Braeuning
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany.,Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany.,Leibniz-Institut für Wissensmedien, Tübingen, Germany
| | - Andrew Ribner
- Department of Applied Psychology, New York University, New York, NY, United States
| | - Korbinian Moeller
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany.,Leibniz-Institut für Wissensmedien, Tübingen, Germany.,Department of Psychology, University of Tübingen, Tübingen, Germany.,Centre For Mathematical Cognition, School of Science, Loughborough University, Loughborough, United Kingdom
| | - Clancy Blair
- Department of Applied Psychology, New York University, New York, NY, United States
| |
Collapse
|
20
|
Bernabini L, Tobia V, Bonifacci P. Intergenerational Features of Math Skills: Symbolic and Non-Symbolic Magnitude Comparison and Written Calculation in Mothers and Children. JOURNAL OF COGNITION AND DEVELOPMENT 2020. [DOI: 10.1080/15248372.2020.1844711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Gibson DJ, Gunderson EA, Levine SC. Causal Effects of Parent Number Talk on Preschoolers' Number Knowledge. Child Dev 2020; 91:e1162-e1177. [PMID: 33164211 PMCID: PMC10683715 DOI: 10.1111/cdev.13423] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Individual differences in children's number knowledge arise early and are associated with variation in parents' number talk. However, there exists little experimental evidence of a causal link between parent number talk and children's number knowledge. Parent number talk was manipulated by creating picture books which parents were asked to read with their children every day for 4 weeks. N = 100 two- to four-year olds and their parents were randomly assigned to read either Small Number (1-3), Large Number (4-6), or Control (non-numerical) books. Small Number books were particularly effective in promoting number knowledge relative to the Control books. However, children who began the study further along in their number development also benefited from reading the Large Number Books with their parents.
Collapse
|
22
|
Wang JJ, Halberda J, Feigenson L. Emergence of the Link Between the Approximate Number System and Symbolic Math Ability. Child Dev 2020; 92:e186-e200. [PMID: 32816346 DOI: 10.1111/cdev.13454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Experimentally manipulating Approximate Number System (ANS) precision has been found to influence children's subsequent symbolic math performance. Here in three experiments (N = 160; 81 girls; 3-5 year old) we replicated this effect and examined its duration and developmental trajectory. We found that modulation of 5-year-olds' ANS precision continued to affect their symbolic math performance after a 30-min delay. Furthermore, our cross-sectional investigation revealed that children 4.5 years and older experienced a significant transfer effect of ANS manipulation on math performance, whereas younger children showed no such transfer, despite experiencing significant changes in ANS precision. These findings support the existence of a causal link between nonverbal numerical approximation and symbolic math performance that first emerges during the preschool years.
Collapse
|
23
|
Zhou X, Hu Y, Yuan L, Gu T, Li D. Visual form perception predicts 3-year longitudinal development of mathematical achievement. Cogn Process 2020; 21:521-532. [PMID: 32556792 DOI: 10.1007/s10339-020-00980-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/03/2020] [Indexed: 11/30/2022]
Abstract
Numerous studies have demonstrated an association between approximate number system (ANS) acuity and mathematical performance. Studies have also shown that ANS acuity can predict the longitudinal development of mathematical achievement. Visual form perception in the current investigation was proposed to account for the predictive role of ANS acuity in the development of mathematical achievement. One hundred and eighty-eight school children (100 males, 88 females; mean age = 12.2 ± 0.3 years) participated in the study by completing five tests: numerosity comparison, figure matching, mental rotation, nonverbal matrix reasoning, and choice reaction time. Three years later, they took a mathematical achievement test. We assessed whether the early tests predicted mathematical achievement at the later date. Analysis showed that the ANS acuity measured via numerosity comparison significantly predicted mathematical achievement 3 years later, even when controlling for individual differences in mental rotation, nonverbal matrix reasoning, and choice reaction time, as well as age and gender differences. Hierarchical regression and mediation analyses further showed that the longitudinal predictive role of ANS acuity in mathematical achievement was interpreted by visual form perception measured with a figure-matching test. Together, these results indicate that visual form perception may be the underlying cognitive mechanism that links ANS acuity to mathematical achievement in terms of longitudinal development.
Collapse
Affiliation(s)
- Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China. .,Advanced Innovation Center for Future Education and Siegler Center for Innovative Learning, Beijing Normal University, Beijing, 100875, China.
| | - Yuwei Hu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.,Advanced Innovation Center for Future Education and Siegler Center for Innovative Learning, Beijing Normal University, Beijing, 100875, China
| | - Li Yuan
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.,Advanced Innovation Center for Future Education and Siegler Center for Innovative Learning, Beijing Normal University, Beijing, 100875, China
| | - Tianan Gu
- Institute of Public Administration and Human Resources, Development Research Center of the State Council, Beijing, 100010, China
| | - Dawei Li
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
24
|
Finke S, Freudenthaler HH, Landerl K. Symbolic Processing Mediates the Relation Between Non-symbolic Processing and Later Arithmetic Performance. Front Psychol 2020; 11:549. [PMID: 32273864 PMCID: PMC7113405 DOI: 10.3389/fpsyg.2020.00549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
The nature of the relation between non-symbolic and symbolic magnitude processing in the prediction of arithmetic remains a hotly debated subject. This longitudinal study examined whether the influence of non-symbolic magnitude processing on arithmetic is mediated by symbolic processing skills. A sample of 130 children with age-adequate (N = 73) or below-average (N = 57) achievement in early arithmetic was followed from the end of Grade 1 (mean age: 86.9 months) through the beginning of Grade 4. Symbolic comparison of one- and two-digit numbers serially mediated the effect of non-symbolic comparison on later arithmetic. These results support a developmental model in which non-symbolic processing provides a scaffold for single-digit processing, which in turn influences multi-digit processing and arithmetic. In conclusion, both non-symbolic and symbolic processing play an important role in the development of arithmetic during primary school and might be valuable long-term indicators for the early identification of children at risk for low achievement in arithmetic.
Collapse
Affiliation(s)
- Sabrina Finke
- Institute of Psychology, University of Graz, Graz, Austria
| | | | - Karin Landerl
- Institute of Psychology, University of Graz, Graz, Austria.,Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
25
|
O'Rear CD, McNeil NM, Kirkland PK. Partial knowledge in the development of number word understanding. Dev Sci 2020; 23:e12944. [PMID: 32026558 DOI: 10.1111/desc.12944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/25/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022]
Abstract
A common measure of number word understanding is the give-N task. Traditionally, to receive credit for understanding a number, N, children must understand that N does not apply to other set sizes (e.g. a child who gives three when asked for 'three' but also when asked for 'four' would not be credited with knowing 'three'). However, it is possible that children who correctly provide the set size directly above their knower level but also provide that number for other number words ('N + 1 givers') may be in a partial, transitional knowledge state. In an integrative analysis including 191 preschoolers, subset knowers who correctly gave N + 1 at pretest performed better at posttest than did those who did not correctly give N + 1. This performance was not reflective of 'full' knowledge of N + 1, as N + 1 givers performed worse than traditionally coded knowers of that set size on separate measures of number word understanding within a given timepoint. Results support the idea of graded representations (Munakata, Trends in Cognitive Sciences, 5, 309-315, 2001.) in number word development and suggest traditional approaches to coding the give-N task may not completely capture children's knowledge.
Collapse
|
26
|
Are the acuities of magnitude representations of different types and ranges of numbers related? Testing the core assumption of the integrated theory of numerical development. COGNITIVE DEVELOPMENT 2020. [DOI: 10.1016/j.cogdev.2020.100888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Caviola S, Colling LJ, Mammarella IC, Szűcs D. Predictors of mathematics in primary school: Magnitude comparison, verbal and spatial working memory measures. Dev Sci 2020; 23:e12957. [DOI: 10.1111/desc.12957] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/15/2019] [Accepted: 02/10/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Sara Caviola
- School of Psychology University of Leeds Leeds UK
- Department of Psychology Centre for Neuroscience in Education University of Cambridge Cambridge UK
| | - Lincoln J. Colling
- Department of Psychology Centre for Neuroscience in Education University of Cambridge Cambridge UK
- School of Psychology University of Sussex Brighton UK
| | | | - Dénes Szűcs
- Department of Psychology Centre for Neuroscience in Education University of Cambridge Cambridge UK
| |
Collapse
|
28
|
Early Understanding of Cardinal Number Value: Semiotic, Social, and Pragmatic Dimensions in a Case Study with a Child from 2 to 3 Years Old. Integr Psychol Behav Sci 2020; 53:397-417. [PMID: 30370436 DOI: 10.1007/s12124-018-9464-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Studies on cardinality date back many years, and it remains a current research issue today. Indeed, despite the many findings on the topic, there is still controversy surrounding when and how children understand cardinality. The main studies on this understanding employs the "how many" question in situations involving the quantification of objects, analyzing the relationship between counting and cardinality. In the present study, we argue that it is essential to consider how cardinality is used in the context in which it arises, including the in- depth consideration of semiotic, social, and pragmatic dimensions, in order to fully comprehend the topic. We analyze in microgenesis the interaction between a two-year-old girl and her mother when they are playing a game requiring the understanding and use of cardinality through five sessions conducted over the course of a year. Our findings suggest that, in the proposed situation, cardinal understanding develops slowly and gradually requires an integrated body of resources (such as gestures and the use of objects). In highlighting the role of semiotics and social interactions in the development of cardinal understanding, this research underscores the fundamental role that early education should play in its development.
Collapse
|
29
|
Chu FW, vanMarle K, Hoard MK, Nugent L, Scofield JE, Geary DC. Preschool deficits in cardinal knowledge and executive function contribute to longer-term mathematical learning disability. J Exp Child Psychol 2019; 188:104668. [PMID: 31430570 DOI: 10.1016/j.jecp.2019.104668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 11/26/2022]
Abstract
In a preschool through first grade longitudinal study, we identified groups of children with persistently low mathematics achievement (n = 14) and children with low achievement in preschool but average achievement in first grade (n = 23). The preschool quantitative developments of these respective groups of children with mathematical learning disability (MLD) and recovered children and a group of typically achieving peers (n = 35) were contrasted, as were their intelligence, executive function, and parental education levels. The core characteristics of the children with MLD were poor executive function and delayed understanding of the cardinal value of number words throughout preschool. These compounded into even more substantive deficits in number and arithmetic at the beginning of first grade. The recovered group had poor executive function and cardinal knowledge during the first year of preschool but showed significant gains during the second year. Despite these gains and average mathematics achievement, the recovered children had subtle deficits with accessing magnitudes associated with numerals and addition combinations (e.g., 5 + 6 = ?) in first grade. The study provides unique insight into domain-general and quantitative deficits in preschool that increase risk for long-term mathematical difficulties.
Collapse
Affiliation(s)
- Felicia W Chu
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Kristy vanMarle
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mary K Hoard
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lara Nugent
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - John E Scofield
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - David C Geary
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
30
|
Gaete J, Sánchez M, Nejaz L, Otegui M. Mental Health Prevention in Preschool Children: study protocol for a feasibility and acceptability randomised controlled trial of a culturally adapted version of the I Can Problem Solve (ICPS) Programme in Chile. Trials 2019; 20:158. [PMID: 30832708 PMCID: PMC6399921 DOI: 10.1186/s13063-019-3245-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 02/12/2019] [Indexed: 11/10/2022] Open
Abstract
Background Difficulties with delaying gratification, coping with frustration, and regulating emotions are significant predictors of aggression and behavioural and interpersonal problems early in life and mental health disorders during childhood, adolescence, and adulthood. Mental health problems generate a high burden of disease in society in general, and there is a significant treatment gap, especially among economically vulnerable populations. Prevention strategies appear to be the more recommendable options, mainly if these interventions can be implemented early in life and at low cost. Few preventive interventions aiming to increase resilience in the face of adversity have been rigorously evaluated among Chilean preschoolers. Substantial international evidence indicates that strengthening basic psychological skills, such as emotion regulation and social problem-solving, can reduce the incidence of mental pathology and improve various academic indicators. The curriculum of the Interpersonal Cognitive Problem-Solving Programme, also known as I Can Problem Solve (ICPS), is focussed on the development of the cognitive process and children’s social problem-solving skills. ICPS is effective at increasing prosocial behaviours and reducing aggressive behaviour among preschoolers. ICPS provides children with the skills to think about how to solve problems using sequenced games, discussion, and group-interaction techniques focussed on listening to, and observing, others, promoting empathy and alternative and consequential thinking. The aims of this study are (1) to develop a culturally appropriate version of the ICPS programme and (2) to evaluate the acceptability and feasibility of the adapted version of ICPS among vulnerable schools in Santiago, Chile, conducting a pilot randomised controlled trial with three arms: (1) the ICPS programme delivered by an internal early teacher, (2) the ICPS programme delivered by an external early teacher, and (3) a control group. Methods and design This is a pilot, three-armed randomised controlled trial of the adapted version of ICPS with an enrolment target of 80 preschoolers attending four schools per arm. Children in both intervention groups will receive the ICPS programme: 59 sessions of 20 min each delivered three times a week by trained internal or external early teachers over 5–6 months. Internal teachers are part of the school staff, and external teachers are facilitators hired by the research team to go to schools and deliver the intervention during a normal school day, working together with the early teacher present in the classroom. The intervention consists of games using pictures, puppets, and simple role-playing techniques to facilitate the learning process. Cognitive regulation, emotion recognition, social-problem-solving skills, and psychological functioning will be measured at baseline and after the intervention. Discussion No previous studies in Spanish-speaking Latin American countries have been conducted to explore the acceptability and feasibility of ICPS to provide information to evaluate the effectiveness of this intervention on a larger scale. Trial registration ClinicalTrials.gov, ID: NCT03383172. Registered on 26 December 2017. Electronic supplementary material The online version of this article (10.1186/s13063-019-3245-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge Gaete
- Department of Public Health and Epidemiology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| | | | | | | |
Collapse
|
31
|
Gimbert F, Camos V, Gentaz E, Mazens K. What predicts mathematics achievement? Developmental change in 5- and 7-year-old children. J Exp Child Psychol 2019; 178:104-120. [DOI: 10.1016/j.jecp.2018.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/06/2018] [Accepted: 09/20/2018] [Indexed: 01/29/2023]
|
32
|
Starr A, Tomlinson RC, Brannon EM. The Acuity and Manipulability of the ANS Have Separable Influences on Preschoolers' Symbolic Math Achievement. Front Psychol 2019; 9:2554. [PMID: 30618975 PMCID: PMC6297384 DOI: 10.3389/fpsyg.2018.02554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Abstract
The approximate number system (ANS) is widely considered to be a foundation for the acquisition of uniquely human symbolic numerical capabilities. However, the mechanism by which the ANS may support symbolic number representations and mathematical thought remains poorly understood. In the present study, we investigated two pathways by which the ANS may influence early math abilities: variability in the acuity of the ANS representations, and children's' ability to manipulate ANS representations. We assessed the relation between 4-year-old children's performance on a non-symbolic numerical comparison task, a non-symbolic approximate addition task, and a standardized symbolic math assessment. Our results indicate that ANS acuity and ANS manipulability each contribute unique variance to preschooler's early math achievement, and this result holds after controlling for both IQ and executive functions. These findings suggest that there are multiple routes by which the ANS influences math achievement. Therefore, interventions that target both the precision and manipulability of the ANS may prove to be more beneficial for improving symbolic math skills compared to interventions that target only one of these factors.
Collapse
Affiliation(s)
- Ariel Starr
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Rachel C Tomlinson
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth M Brannon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Slusser E, Ribner A, Shusterman A. Language
counts
: Early language mediates the relationship between parent education and children's math ability. Dev Sci 2018; 22:e12773. [DOI: 10.1111/desc.12773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 10/19/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Emily Slusser
- Department of Child & Adolescent Development San Jose State University San Jose California USA
| | - Andrew Ribner
- Department of Applied Psychology New York University New York New York USA
| | - Anna Shusterman
- Department of Psychology Wesleyan University Middletown Connecticut USA
| |
Collapse
|
34
|
Braham EJ, Elliott L, Libertus ME. Using Hierarchical Linear Models to Examine Approximate Number System Acuity: The Role of Trial-Level and Participant-Level Characteristics. Front Psychol 2018; 9:2081. [PMID: 30483169 PMCID: PMC6240605 DOI: 10.3389/fpsyg.2018.02081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
The ability to intuitively and quickly compare the number of items in collections without counting is thought to rely on the Approximate Number System (ANS). To assess individual differences in the precision of peoples' ANS representations, researchers often use non-symbolic number comparison tasks in which participants quickly choose the numerically larger of two arrays of dots. However, some researchers debate whether this task actually measures the ability to discriminate approximate numbers or instead measures the ability to discriminate other continuous magnitude dimensions that are often confounded with number (e.g., the total surface area of the dots or the convex hull of the dot arrays). In this study, we used hierarchical linear models (HLMs) to predict 132 adults' accuracy on each trial of a non-symbolic number comparison task from a comprehensive set of trial-level characteristics (including numerosity ratio, surface area, convex hull, and temporal and spatial variations in presentation format) and participant-level controls (including cognitive abilities such as visual-short term memory, working memory, and math ability) in order to gain a more nuanced understanding of how individuals complete this task. Our results indicate that certain trial-level characteristics of the dot arrays contribute to our ability to compare numerosities, yet numerosity ratio, the critical marker of the ANS, remains a highly significant predictor of accuracy above and beyond trial-level characteristics and across individuals with varying levels of math ability and domain-general cognitive abilities.
Collapse
Affiliation(s)
- Emily J. Braham
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Leanne Elliott
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Melissa E. Libertus
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
35
|
Cai D, Zhang L, Li Y, Wei W, Georgiou GK. The Role of Approximate Number System in Different Mathematics Skills Across Grades. Front Psychol 2018; 9:1733. [PMID: 30279672 PMCID: PMC6153330 DOI: 10.3389/fpsyg.2018.01733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/27/2018] [Indexed: 11/13/2022] Open
Abstract
Although approximate number system (ANS) has been found to predict mathematics ability, it remains unclear if both aspects of ANS (symbolic and non-symbolic estimation) contribute equally well to mathematics performance and if their contribution varies as a function of the mathematics outcome and grade level. Thus, in this study, we examined the effects of both aspects of ANS on different mathematics skills across three grade levels. Three hundred eleven children (100 children from kindergarten, 107 children from Grade 2, and 104 children from Grade 4) from two kindergartens and three elementary schools in Shanghai, China, were assessed on measures of ANS (dot estimation and number line estimation), general cognitive ability (nonverbal intelligence, inhibition, and working memory), and mathematics abilities (numerical operations and mathematical problem solving in all grades, early mathematical skills in kindergarten, and calculation fluency in Grades 2 and 4). Results of hierarchical regression analyses showed that, in kindergarten, non-symbolic estimation predicted all mathematics skills even after controlling for age, gender, and general cognitive ability. In Grades 2 and 4, symbolic estimation accounted for unique variance in mathematical problem solving, but not in calculation fluency. Symbolic estimation also predicted numerical operations in Grade 4. Taken together, these findings suggest that in the early phases of mathematics development different aspects of ANS contribute to different mathematics skills.
Collapse
Affiliation(s)
- Dan Cai
- College of Education, Shanghai Normal University, Shanghai, China
| | - Linni Zhang
- College of Education, Shanghai Normal University, Shanghai, China
| | - Yan Li
- College of Education, Shanghai Normal University, Shanghai, China
| | - Wei Wei
- College of Education, Shanghai Normal University, Shanghai, China
| | - George K Georgiou
- Department of Educational Psychology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
36
|
Understanding arithmetic concepts: The role of domain-specific and domain-general skills. PLoS One 2018; 13:e0201724. [PMID: 30252852 PMCID: PMC6155447 DOI: 10.1371/journal.pone.0201724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 07/20/2018] [Indexed: 11/19/2022] Open
Abstract
A large body of research has identified cognitive skills associated with overall mathematics achievement, focusing primarily on identifying associates of procedural skills. Conceptual understanding, however, has received less attention, despite its importance for the development of mathematics proficiency. Consequently, we know little about the quantitative and domain-general skills associated with conceptual understanding. Here we investigated 8–10-year-old children’s conceptual understanding of arithmetic, as well as a wide range of basic quantitative skills, numerical representations and domain-general skills. We found that conceptual understanding was most strongly associated with performance on a number line task. This relationship was not explained by the use of particular strategies on the number line task, and may instead reflect children’s knowledge of the structure of the number system. Understanding the skills involved in conceptual learning is important to support efforts by educators to improve children’s conceptual understanding of mathematics.
Collapse
|
37
|
Guillaume M, Van Rinsveld A. Comparing Numerical Comparison Tasks: A Meta-Analysis of the Variability of the Weber Fraction Relative to the Generation Algorithm. Front Psychol 2018; 9:1694. [PMID: 30271363 PMCID: PMC6142874 DOI: 10.3389/fpsyg.2018.01694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023] Open
Abstract
Since more than 15 years, researchers have been expressing their interest in evaluating the Approximate Number System (ANS) and its potential influence on cognitive skills involving number processing, such as arithmetic. Although many studies reported significant and predictive relations between ANS and arithmetic abilities, there has recently been an increasing amount of published data that failed to replicate such relationship. Inconsistencies lead many researchers to question the validity of the assessment of the ANS itself. In the current meta-analysis of over 68 experimental studies published between 2004 and 2017, we show that the mean value of the Weber fraction (w), the minimal amount of change in magnitude to detect a difference, is very heterogeneous across the literature. Within young adults, w might range from < 10 to more than 60, which is critical for its validity for research and diagnostic purposes. We illustrate here the concern that different methods controlling for non-numerical dimensions lead to substantially variable performance. Nevertheless, studies that referred to the exact same method (e.g., Panamath) showed high consistency among them, which is reassuring. We are thus encouraging researchers only to compare what is comparable and to avoid considering the Weber fraction as an abstract parameter independent from the context. Eventually, we observed that all reported correlation coefficients between the value of w and general accuracy were very high. Such result calls into question the relevance of computing and reporting at all the Weber fraction. We are thus in disfavor of the systematic use of the Weber fraction, to discourage any temptation to compare given data to some values of w reported from different tasks and generation algorithms.
Collapse
Affiliation(s)
- Mathieu Guillaume
- Cognitive Science and Assessment Institute (COSA), University of Luxembourg, Luxembourg, Luxembourg
| | - Amandine Van Rinsveld
- Centre for Research in Cognitive Neuroscience (CRCN), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
38
|
Growth of symbolic number knowledge accelerates after children understand cardinality. Cognition 2018; 177:69-78. [DOI: 10.1016/j.cognition.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 11/17/2022]
|
39
|
Li Y, Zhang M, Chen Y, Deng Z, Zhu X, Yan S. Children's Non-symbolic and Symbolic Numerical Representations and Their Associations With Mathematical Ability. Front Psychol 2018; 9:1035. [PMID: 29988580 PMCID: PMC6026675 DOI: 10.3389/fpsyg.2018.01035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/01/2018] [Indexed: 01/29/2023] Open
Abstract
Most empirical evidence supports the view that non-symbolic and symbolic representations are foundations for advanced mathematical ability. However, the detailed development trajectories of these two types of representations in childhood are not very clear, nor are the different effects of non-symbolic and symbolic representations on the development of mathematical ability. We assessed 253 4- to 8-year-old children's non-symbolic and symbolic numerical representations, mapping skills, and mathematical ability, aiming to investigate the developmental trajectories and associations between these skills. Our results showed non-symbolic numerical representation emerged earlier than the symbolic one. Four-year-olds were capable of non-symbolic comparisons but not symbolic comparisons; five-year-olds performed better at non-symbolic comparisons than symbolic comparisons. This performance difference disappeared at age 6. Children at age 6 or older were able to map between symbolic and non-symbolic quantities. However, as children learn more about the symbolic representation system, their advantage in non-symbolic representation disappeared. Path analyses revealed that a direct effect of children's symbolic numerical skills on their math performance, and an indirect effect of non-symbolic numerical skills on math performance via symbolic skills. These results suggest that symbolic numerical skills are a predominant factor affecting math performance in early childhood. However, the influences of symbolic and non-symbolic numerical skills on mathematical performance both declines with age.
Collapse
Affiliation(s)
- Yanjun Li
- School of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
- National Innovation Center for Assessment of Basic Education Quality, Beijing Normal University, Beijing, China
| | - Meng Zhang
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yinghe Chen
- School of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Zhijun Deng
- School of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xiaoshuang Zhu
- School of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Shijia Yan
- China Aerospace Academy of Systems Science and Engineering, Institute of Information Control, China Aerospace Science and Technology Corporation, Beijing, China
| |
Collapse
|
40
|
Li H, Zhang M, Wang X, Ding X, Si J. The Central Executive Mediates the Relationship Between Children's Approximate Number System Acuity and Arithmetic Strategy Utilization in Computational Estimation. Front Psychol 2018; 9:943. [PMID: 30013492 PMCID: PMC6036804 DOI: 10.3389/fpsyg.2018.00943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Studies investigating the relationship between working memory (WM) and approximate number system (ANS) acuity in the area of arithmetic strategy utilization are scarce. The choice/no choice method paradigm was used in the present study to determine whether and how ANS acuity and WM components affected strategy utilization. The results showed that the central executive (CE) mediated the relationship between ANS acuity and strategy utilization. Furthermore, quantile regression analyses revealed that the association between CE and strategy choice was robust from the first to highest quantile. Notably, the relationship between ANS acuity and strategy choice was significant at the median and higher quantiles (i.e., 0.5, 0.75, and 0.85 quantiles), but not significant at lower quantiles (i.e., 0.15 and 0.25 quantiles). These results suggest that domain-general skills play a crucial role in the relationship between children's ANS acuity and mathematical ability. The impact of ANS acuity and CE on strategy choice was dependent on the distribution of the strategy utilization level. These results provide a further understanding of the utilization of cognitive strategies.
Collapse
Affiliation(s)
- Hongxia Li
- School of Psychology, Shandong Normal University, Jinan, China
| | - Mingliang Zhang
- School of Psychology, Shandong Normal University, Jinan, China
- Shandong Academy of Governance, Jinan, China
| | - Xiangyan Wang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Xiao Ding
- School of Psychology, Shandong Normal University, Jinan, China
| | - Jiwei Si
- School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
41
|
The mediating role of number-to-magnitude mapping precision in the relationship between approximate number sense and math achievement depends on the domain of mathematics and age. LEARNING AND INDIVIDUAL DIFFERENCES 2018. [DOI: 10.1016/j.lindif.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Chu FW, vanMarle K, Rouder J, Geary DC. Children’s early understanding of number predicts their later problem-solving sophistication in addition. J Exp Child Psychol 2018; 169:73-92. [DOI: 10.1016/j.jecp.2017.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 12/13/2017] [Indexed: 11/26/2022]
|
43
|
Abstract
What are young children's first intuitions about numbers and what role do these play in their later understanding of mathematics? Traditionally, number has been viewed as a culturally derived breakthrough occurring relatively recently in human history that requires years of education to master. Contrary to this view, research in cognitive development indicates that our minds come equipped with a rich and flexible sense of number-the Approximate Number System (ANS). Recently, several major challenges have been mounted to the existence of the ANS and its value as a domain-specific system for representing number. In this article, we review five questions related to the ANS (what, who, why, where, and how) to argue that the ANS is defined by key behavioral and neural signatures, operates independently from nonnumeric dimensions such as time and space, and is used for a variety of functions (including formal mathematics) throughout life. We identify research questions that help elucidate the nature of the ANS and the role it plays in shaping children's earliest understanding of the world around them.
Collapse
|
44
|
Abstract
This brief report addresses preschoolers' selective sustained attention (SSA) and early numeracy skills and knowledge. Past research indicates that children's attention and early numeracy are positively associated, yet some concerns have emerged about the age appropriateness of tools used to measure preschoolers' SSA. This study used a new measure-the Track-It Task-that demonstrates strong psychometric properties. In total, 31 at-risk preschoolers (Mage = 46.6 months) participated and were assessed on SSA, nonsymbolic quantity discrimination, and symbolic quantitative skills and knowledge. The ability to sustain attention in the face of distractions was positively correlated with preschoolers' verbal counting and one-to-one correspondence, Arabic numeral recognition, and cardinal principle knowledge. SSA was not significantly associated with child age or performance on a memory task. This study provides preliminary evidence that SSA may facilitate the process whereby young children become reliable counters and learn that the symbol system of numbers represents specific quantities.
Collapse
Affiliation(s)
- Alicia Brueggemann
- Department of Nutrition and Exercise Physiology, College of Human Environmental Sciences, University of Missouri, Columbia, Columbia, MO 65211, USA
| | - Sara Gable
- Department of Nutrition and Exercise Physiology, College of Human Environmental Sciences, University of Missouri, Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
45
|
Träff U, Olsson L, Skagerlund K, Östergren R. Cognitive mechanisms underlying third graders’ arithmetic skills: Expanding the pathways to mathematics model. J Exp Child Psychol 2018; 167:369-387. [DOI: 10.1016/j.jecp.2017.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/19/2017] [Accepted: 11/20/2017] [Indexed: 11/28/2022]
|
46
|
Scalise NR, Daubert EN, Ramani GB. Narrowing the Early Mathematics Gap: A Play-Based Intervention to Promote Low-Income Preschoolers' Number Skills. JOURNAL OF NUMERICAL COGNITION 2018; 3:559-581. [PMID: 34553016 PMCID: PMC8455118 DOI: 10.5964/jnc.v3i3.72] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Preschoolers from low-income households lag behind preschoolers from middle-income households on numerical skills that underlie later mathematics achievement. However, it is unknown whether these gaps exist on parallel measures of symbolic and non-symbolic numerical skills. Experiment 1 indicated preschoolers from low-income backgrounds were less accurate than peers from middle-income backgrounds on a measure of symbolic magnitude comparison, but they performed equivalently on a measure of non-symbolic magnitude comparison. This suggests activities linking non-symbolic and symbolic number representations may be used to support children's numerical knowledge. Experiment 2 randomly assigned low-income preschoolers (M age = 4.7 years) to play either a numerical magnitude comparison or a numerical matching card game across four 15 min sessions over a 3-week period. The magnitude comparison card game led to significant improvements in participants' symbolic magnitude comparison skills in an immediate posttest assessment. Following the intervention, low-income participants performed equivalently to an age- and gender-matched sample of middle-income preschoolers in symbolic magnitude comparison. These results suggest a brief intervention that combines non-symbolic and symbolic magnitude representations can support low-income preschoolers' early numerical knowledge.
Collapse
Affiliation(s)
- Nicole R. Scalise
- Correspondence concerning this article should be addressed to Nicole R. Scalise, Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20742.
| | | | | |
Collapse
|
47
|
Geary DC, vanMarle K, Chu FW, Rouder J, Hoard MK, Nugent L. Early Conceptual Understanding of Cardinality Predicts Superior School-Entry Number-System Knowledge. Psychol Sci 2017; 29:191-205. [PMID: 29185879 DOI: 10.1177/0956797617729817] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We demonstrate a link between preschoolers' quantitative competencies and their school-entry knowledge of the relations among numbers (number-system knowledge). The quantitative competencies of 141 children (69 boys) were assessed at the beginning of preschool and throughout the next 2 years of preschool, as was their mathematics and reading achievement at the end of kindergarten and their number-system knowledge at the beginning of first grade. A combination of Bayes analyses and standard regressions revealed that the age at which the children had the conceptual insight that number words represent specific quantities (cardinal value) was strongly related to their later number-system knowledge and was more consistently related to broader mathematics than to reading achievement, controlling for intelligence, executive function, and parental education levels. The key implication is that it is not simply knowledge of cardinal value but the age of acquisition of this principle that is central to later mathematical development and school readiness.
Collapse
Affiliation(s)
- David C Geary
- 1 Department of Psychological Sciences, University of Missouri
| | - Kristy vanMarle
- 1 Department of Psychological Sciences, University of Missouri
| | - Felicia W Chu
- 1 Department of Psychological Sciences, University of Missouri
| | - Jeffrey Rouder
- 1 Department of Psychological Sciences, University of Missouri.,2 Department of Cognitive Sciences, University of California, Irvine
| | - Mary K Hoard
- 1 Department of Psychological Sciences, University of Missouri
| | - Lara Nugent
- 1 Department of Psychological Sciences, University of Missouri
| |
Collapse
|
48
|
Abstract
The types of cognitive and neural mechanisms available to children for making concepts depend on the problems their brains evolved to solve over the past millions of years. Comparative research on numerical cognition with humans and nonhuman primates has revealed a system for quantity representation that lays the foundation for quantitative development. Nonhuman primates in particular share many human abilities to compute quantities, and are likely to exhibit evolutionary continuity with humans. While humans conceive of quantity in ways that are similar to other primates, they are unique in their capacity for symbolic counting and logic. These uniquely human constructs interact with primitive systems of numerical reasoning. In this article, I discuss how evolution shapes human numerical concepts through evolutionary constraints on human object-based perception and cognition, neural homologies among primates, and interactions between uniquely human concepts and primitive logic.
Collapse
|
49
|
Tosto MG, Petrill SA, Malykh S, Malki K, Haworth CMA, Mazzocco MMM, Thompson L, Opfer J, Bogdanova OY, Kovas Y. Number sense and mathematics: Which, when and how? Dev Psychol 2017; 53:1924-1939. [PMID: 28758784 PMCID: PMC5611774 DOI: 10.1037/dev0000331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 01/16/2017] [Accepted: 03/07/2017] [Indexed: 01/29/2023]
Abstract
Individual differences in number sense correlate with mathematical ability and performance, although the presence and strength of this relationship differs across studies. Inconsistencies in the literature may stem from heterogeneity of number sense and mathematical ability constructs. Sample characteristics may also play a role as changes in the relationship between number sense and mathematics may differ across development and cultural contexts. In this study, 4,984 16-year-old students were assessed on estimation ability, one aspect of number sense. Estimation was measured using 2 different tasks: number line and dot-comparison. Using cognitive and achievement data previously collected from these students at ages 7, 9, 10, 12, and 14, the study explored for which of the measures and when in development these links are observed, and how strong these links are and how much these links are moderated by other cognitive abilities. The 2 number sense measures correlated modestly with each other (r = .22), but moderately with mathematics at age 16. Both measures were also associated with earlier mathematics; but this association was uneven across development and was moderated by other cognitive abilities. (PsycINFO Database Record
Collapse
Affiliation(s)
| | | | | | - Karim Malki
- King's College London at the Institute of Psychiatry, Psychology and Neuroscience (IOPPN)
| | | | | | - Lee Thompson
- Department of Psychology, The Ohio State University
| | - John Opfer
- Department of Psychology, The Ohio State University
| | | | - Yulia Kovas
- Department of Psychology, Tomsk State University
| |
Collapse
|
50
|
Chan WWL, Au TK, Lau NT, Tang J. Counting errors as a window onto children's place-value concept. CONTEMPORARY EDUCATIONAL PSYCHOLOGY 2017. [DOI: 10.1016/j.cedpsych.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|