1
|
Morozumi R, Okamoto K, Enomoto E, Tsukamoto Y, Kyakuno M, Suzuki N, Tazawa I, Furuno N, Ogino H, Kamei Y, Matsunami M, Shigenobu S, Suzuki K, Uemasu H, Namba N, Hayashi T. Urodele amphibian newt bridges the missing link in evo-devo of the pancreas. Dev Dyn 2025. [PMID: 39777819 DOI: 10.1002/dvdy.763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The pancreas exhibits diverse structures and roles across vertebrates. The pancreas has evolved to include both endocrine and exocrine cells, a change that occurred during the transition from fish to amphibian. This event emphasizes the evolutionary significance of amphibians. However, research has focused predominantly on anuran amphibians, with urodeles, such as newts, remaining underexplored. In this study, we investigated the development of the pancreas using Pleurodeles waltl as a model species of urodele. RESULTS The newt pancreas consists of a single organ with exocrine tissue characterized by acinar structures and endocrine tissue forming islets. Notably, the newt possesses unique pancreas-like tissues on their intestines. We found that disruption of the newt Pancreatic and Duodenal Homeobox (Pdx) 1 gene resulted in an underdeveloped pancreas. Conversely, disruption of the Pdx2 paralog in newt had no significant impact on pancreatic development. CONCLUSION The newt pancreas shows a morphology similar to that of the mammalian pancreas, which includes both exocrine and endocrine tissues. These results highlight the intermediate evolutionary position of the newt in the context of the evolution of pancreatic development. Our findings indicate that characterization of the newt pancreas will be crucial for understanding the evolutionary progression of pancreatic function in vertebrates.
Collapse
Affiliation(s)
- Ryosuke Morozumi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Kazuko Okamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Eriko Enomoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Yuta Tsukamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Mitsuki Kyakuno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane, Japan
| | - Nanoka Suzuki
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Ichiro Tazawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Nobuaki Furuno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Hajime Ogino
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Kamei
- Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | | | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kenichi Suzuki
- Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hitoshi Uemasu
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Noriyuki Namba
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Toshinori Hayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Zhao J, Liang S, Cen HH, Li Y, Baker RK, Ruprai B, Gao G, Zhang C, Ren H, Tang C, Chen L, Liu Y, Lynn FC, Johnson JD, Kieffer TJ. PDX1+ cell budding morphogenesis in a stem cell-derived islet spheroid system. Nat Commun 2024; 15:5894. [PMID: 39003281 PMCID: PMC11246529 DOI: 10.1038/s41467-024-50109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Remarkable advances in protocol development have been achieved to manufacture insulin-secreting islets from human pluripotent stem cells (hPSCs). Distinct from current approaches, we devised a tunable strategy to generate islet spheroids enriched for major islet cell types by incorporating PDX1+ cell budding morphogenesis into staged differentiation. In this process that appears to mimic normal islet morphogenesis, the differentiating islet spheroids organize with endocrine cells that are intermingled or arranged in a core-mantle architecture, accompanied with functional heterogeneity. Through in vitro modelling of human pancreas development, we illustrate the importance of PDX1 and the requirement for EphB3/4 signaling in eliciting cell budding morphogenesis. Using this new approach, we model Mitchell-Riley syndrome with RFX6 knockout hPSCs illustrating unexpected morphogenesis defects in the differentiation towards islet cells. The tunable differentiation system and stem cell-derived islet models described in this work may facilitate addressing fundamental questions in islet biology and probing human pancreas diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
| | - Shenghui Liang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Yanjun Li
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
| | - Robert K Baker
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Balwinder Ruprai
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Guang Gao
- Imaging Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Chloe Zhang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Huixia Ren
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Liangyi Chen
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Dasmahapatra AK, Tchounwou PB. Evaluation of pancreatic δ- cells as a potential target site of graphene oxide toxicity in Japanese medaka (Oryzias latipes) fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114649. [PMID: 36806823 PMCID: PMC10032203 DOI: 10.1016/j.ecoenv.2023.114649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
In continuation to our previous investigations on graphene oxide (GO) as an endocrine disrupting chemical (EDC), in the present experiment, we have investigated endocrine pancreas of Japanese medaka adults focusing on δ-cells in the islet organs as an endpoint. Breeding pairs of adult male and female fish were exposed to 0 mg/L (control) or 20 mg/L GO by continuous immersion (IMR) for 96 h, or to 0 µg/g or 100 µg/g GO by a single intraperitoneal (IP) administration and depurated 21 days in a GO-free environment. Histological investigations indicated that the endocrine cells are concentrated in one large principal islet, and several small secondary islets scattered within the mesentery near the liver and intestine. The cells of the islet organ are in various shapes with basophilic nuclei and eosinophilic cytoplasm. Immunohistochemical evaluation using rabbit polyclonal antisomatostatin antibody indicated that immunoreactivity is localized either at the periphery or at the central region in principal islets, and throughout the secondary islets, and found to be enhanced in fish exposed to GO than controls. The soma of δ-cells exhibits neuron-like morphology and have filopodia like processes. Cell sorting as non-communicating δ-cells (NCDC), communicating cells (CC), and non- δ-cells (NDC) indicated that within an islet organ, the population of NDCC is found to be the least and NDC is the highest. Our data further indicated that GO-induced impairments in the islet organs of medaka pancreas are inconsistent and could be affected by the exposure roots as well as the sex of the fish.
Collapse
Affiliation(s)
- Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS 39217, USA; Department of BioMolecular Sciences, Environmental Toxicology Division, University of Mississippi, University, MS 38677, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
4
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
5
|
Abstract
Generally, animals extract nutrients from food by degradation using digestive enzymes. Trypsin and chymotrypsin, one of the major digestive enzymes in vertebrates, are pancreatic proenzymes secreted into the intestines. In this investigation, we report the identification of a digestive teleost enzyme, a pancreatic astacin that we termed pactacin. Pactacin, which belongs to the astacin metalloprotease family, emerged during the evolution of teleosts through gene duplication of astacin family enzymes containing six cysteine residues (C6astacin, or C6AST). In this study, we first cloned C6AST genes from pot-bellied seahorse (Hippocampus abdominalis) and analyzed their phylogenetic relationships using over 100 C6AST genes. Nearly all these genes belong to one of three clades: pactacin, nephrosin, and patristacin. Genes of the pactacin clade were further divided into three subclades. To compare the localization and functions of the three pactacin subclades, we studied pactacin enzymes in pot-bellied seahorse and medaka (Oryzias latipes). In situ hybridization revealed that genes of all three subclades were commonly expressed in the pancreas. Western blot analysis indicated storage of pactacin pro-enzyme form in the pancreas, and conversion to the active forms in the intestine. Finally, we partially purified the pactacin from digestive fluid, and found that pactacin is novel digestive enzyme that is specific in teleosts.
Collapse
|
6
|
Ghoneim FM, Alrefai H, Elsamanoudy AZ, Abo El-khair SM, Khalaf HA. The Protective Role of Prenatal Alpha Lipoic Acid Supplementation against Pancreatic Oxidative Damage in Offspring of Valproic Acid-Treated Rats: Histological and Molecular Study. BIOLOGY 2020; 9:biology9090239. [PMID: 32825436 PMCID: PMC7564314 DOI: 10.3390/biology9090239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/21/2023]
Abstract
Background: Sodium valproate (VPA) is an antiepileptic drug (AED) licensed for epilepsy and used during pregnancy in various indications. Alpha-lipoic acid (ALA) is a natural compound inducing endogenous antioxidant production. Our study aimed to investigate the effect of prenatal administration of VPA on the pancreas of rat offspring and assess the potential protective role of ALA co-administration during pregnancy. Methods: Twenty-eight pregnant female albino rats were divided into four groups: group I (negative control), group II (positive control, ALA treated), group III (VPA-treated), and group IV (VPA-ALA-treated). The pancreases of the rat offspring were removed at the fourth week postpartum and prepared for histological, immune-histochemical, morphometric, molecular, and oxidative stress marker studies. Results: In group III, there were pyknotic nuclei, vacuolated cytoplasm with ballooning of acinar, α, and β cells of the pancreas. Ultrastructural degeneration of cytoplasmic organelles was detected. Additionally, there was a significant increase in oxidative stress, a decrease in insulin-positive cell percentage, and an increase in glucagon positive cells in comparison to control groups. Moreover, VPA increased the gene expression of an apoptotic marker, caspase-3, with a decrease in anti-apoptotic Bcl2 and nuclear factor erythroid 2-related factor 2 (Nrf2) transcriptional factor. Conversely, ALA improved oxidative stress and apoptosis in group VI, and a consequent improvement of the histological and ultrastructure picture was detected. Conclusion: ALA co-administration with VPA significantly improved the oxidative stress condition, histological and morphometric picture of the pancreas, and restored normal expression of related genes, including Nrf2, caspase-3, and Bcl-2. Administration of α-lipoic acid has a protective effect against VPA-induced pancreatic oxidative damage via its cytoprotective antioxidant effect.
Collapse
Affiliation(s)
- Fatma M. Ghoneim
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (F.M.G.); (H.A.K.)
| | - Hani Alrefai
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (A.Z.E.); (S.M.A.E.-k.)
- Department of Internal Medicine, Infectious Diseases Div., College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-513-975-9195
| | - Ayman Z. Elsamanoudy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (A.Z.E.); (S.M.A.E.-k.)
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Salwa M. Abo El-khair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (A.Z.E.); (S.M.A.E.-k.)
| | - Hanaa A. Khalaf
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (F.M.G.); (H.A.K.)
| |
Collapse
|
7
|
Abstract
The pancreas plays important roles in the regulation of blood glucose, and is a well-studied organ in mammals because its dysfunction causes serious disorders, such as diabetes mellitus. However, mammals have the limited capacity for tissue regeneration in their organs, including pancreas. Fish may be an attractive model for regeneration studies, as fish exhibit a greater capacity for regeneration than do mammals. To elucidate the regenerative capacity of pancreatic β cells in medaka, we generated transgenic lines, in which β cells can be specifically ablated using the nitroreductase (NTR)/metronidazole (Mtz) system. We examined β-cell regeneration at embryonic-larval stages after specific ablation of β cells, and found that medaka rapidly regenerate β cells. Furthermore, we found that teleost-specific secondary islet have a unique feature in that their size increases in response to β-cell ablation in principal islets.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,2 CREST, Japan Science and Technology Agency
| |
Collapse
|
8
|
Komariah K, Manalu W, Kiranadi B, Winarto A, Handharyani E, Roeslan MO. Valproic Acid Exposure of Pregnant Rats During Organogenesis Disturbs Pancreas Development in Insulin Synthesis and Secretion of the Offspring. Toxicol Res 2018; 34:173-182. [PMID: 29686779 PMCID: PMC5903136 DOI: 10.5487/tr.2018.34.2.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/26/2017] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
Valproic acid (VPA) plays a role in histone modifications that eventually inhibit the activity of histone deacetylase (HDAC), and will affect the expressions of genes Pdx1, Nkx6.1, and Ngn3 during pancreatic organogenesis. This experiment was designed to study the effect of VPA exposure in pregnant rats on the activity of HDAC that controls the expression of genes regulating the development of beta cells in the pancreas to synthesize and secrete insulin. This study used 30 pregnant Sprague-Dawley rats, divided into 4 groups, as follows: (1) a control group of pregnant rats without VPA administration, (2) pregnant rats administered with 250 mg VPA on day 10 of pregnancy, (3) pregnant rats administered with 250 mg VPA on day 13 of pregnancy, and (4) pregnant rats administered with 250 mg VPA on day 16 of pregnancy. Eighty-four newborn rats born to control rats and rats administered with VPA on days 10, 13, and 16 of pregnancy were used to measure serum glucose, insulin, DNA, RNA, and ratio of RNA/DNA concentrations in the pancreas and to observe the microscopical condition of the pancreas at the ages of 4 to 32 weeks postpartum with 4-week intervals. The results showed that at the age of 32 weeks, the offspring of pregnant rats administered with 250 mg VPA on days 10, 13, and 16 of pregnancy had higher serum glucose concentrations and lower serum insulin concentrations, followed by decreased concentrations of RNA, and the ratio of RNA/DNA in the pancreas. Microscopical observations showed that the pancreas of the rats born to pregnant rats administered with VPA during pregnancy had low immunoreaction to insulin. The exposure of pregnant rats to VPA during pregnancy disturbs organogenesis of the pancreas of the embryos that eventually disturb the insulin production in the beta cells indicated by the decreased insulin secretion during postnatal life.
Collapse
Affiliation(s)
- Komariah Komariah
- Department of Histology, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| | - Wasmen Manalu
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, West Java, Indonesia
| | - Bambang Kiranadi
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, West Java, Indonesia
| | - Adi Winarto
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, West Java, Indonesia
| | - Ekowati Handharyani
- Department of Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, West Java, Indonesia
| | - M Orliando Roeslan
- Department of Biology Oral, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| |
Collapse
|