1
|
Liu YH, Liang JS, Chang MY, Hung PL, Tsai MH, Chou IJ, Hou JY, Lee WT, Lin KL. Dravet-like syndrome with PCDH19 mutations in Taiwan - A multicenter study. Pediatr Neonatol 2025; 66:230-234. [PMID: 39187419 DOI: 10.1016/j.pedneo.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 08/28/2024] Open
Abstract
OBJECTIVE Protocadherin-19 (PCDH19) epilepsy is a rare female restricted epilepsy syndrome with early onset seizures and developmental delay caused by a change or mutation of the PCDH19 gene on the X chromosome. SCN1A-negative patients with a Dravet-like phenotype may have a gene mutation in PCDH19. The aim of this case series was to characterize the phenotype of epileptic patients according to PCDH19 mutations, antiseizure medications, brain images and mutation types in Taiwan. METHODS We retrospectively reviewed the medical records of patients with PCDH19 epilepsy from July 2017 to December 2021 from multiple centers in Taiwan. We analyzed the patients' clinical data and genetic reports. RESULTS Fifteen female patients (age 3-23 years) were enrolled. Seizure onset was at 4 months to 2 years 7 months of age with generalized tonic-clonic or focal seizures. Seizure frequency tended to be in clusters rather than single longer seizures. The patients had varying degrees of intellectual disability, however 3 had no impairment. Two patients had abnormal brain images including mesial temporal sclerosis, subcortical and periventricular white matter lesions. On average, the patients received 4 antiseizure medications (range 3-6), including 9 patients who were seizure free, and 3 who received sodium channel blockers without aggravation. Missense and truncating variants (frameshift and nonsense variants) accounted for 40% and 46.7% of all mutations. The mutations of 13 patients were located on EC1 to EC4, and EC5 to cytoplasmic domain in 2 patients. SIGNIFICANCE PCDH19 epilepsy has distinct phenotypes and an unusual X-linked pattern of expression in which females manifest core symptoms. Psychiatric and behavioral problems are frequently part of the clinical picture. Patients are usually treated with a wide array of standard antiseizure medications, with no preferred antiseizure medication class. No strong correlations between phenotype and location of variant mutations were found in our patients.
Collapse
Affiliation(s)
- Yi-Hsuan Liu
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jao-Shwann Liang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ming-Yuh Chang
- Department of Pediatric Neurology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Pi-Lien Hung
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - I-Jun Chou
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ju-Yin Hou
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wang-Tso Lee
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Zhang Y, Dong M, Deng J, Wu J, Zhao Q, Gao X, Xiong D. Graph masked self-distillation learning for prediction of mutation impact on protein-protein interactions. Commun Biol 2024; 7:1400. [PMID: 39462102 PMCID: PMC11513059 DOI: 10.1038/s42003-024-07066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Assessing mutation impact on the binding affinity change (ΔΔG) of protein-protein interactions (PPIs) plays a crucial role in unraveling structural-functional intricacies of proteins and developing innovative protein designs. In this study, we present a deep learning framework, PIANO, for improved prediction of ΔΔG in PPIs. The PIANO framework leverages a graph masked self-distillation scheme for protein structural geometric representation pre-training, which effectively captures the structural context representations surrounding mutation sites, and makes predictions using a multi-branch network consisting of multiple encoders for amino acids, atoms, and protein sequences. Extensive experiments demonstrated its superior prediction performance and the capability of pre-trained encoder in capturing meaningful representations. Compared to previous methods, PIANO can be widely applied on both holo complex structures and apo monomer structures. Moreover, we illustrated the practical applicability of PIANO in highlighting pathogenic mutations and crucial proteins, and distinguishing de novo mutations in disease cases and controls in PPI systems. Overall, PIANO offers a powerful deep learning tool, which may provide valuable insights into the study of drug design, therapeutic intervention, and protein engineering.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Mingyuan Dong
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Junsheng Deng
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Jiafeng Wu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Qiuye Zhao
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| | - Xieping Gao
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, 410081, China.
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Marques P, Moloney PB, Ji C, Zulfiqar Ali Q, Ramesh A, Goldstein DB, Barboza K, Chandran I, Rong M, Selvarajah A, Qaiser F, Lira VST, Valiante TA, Bazil CW, Choi H, Devinsky O, Depondt C, O'Brien T, Perucca P, Sen A, Dugan P, Sands TT, Delanty N, Andrade DM. Do germline genetic variants influence surgical outcomes in drug-resistant epilepsy? Epilepsy Res 2024; 206:107425. [PMID: 39168079 DOI: 10.1016/j.eplepsyres.2024.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE We retrospectively explored patients with drug-resistant epilepsy (DRE) who previously underwent presurgical evaluation to identify correlations between surgical outcomes and pathogenic variants in epilepsy genes. METHODS Through an international collaboration, we evaluated adult DRE patients who were screened for surgical candidacy. Patients with pathogenic (P) or likely pathogenic (LP) germline variants in genes relevant to their epilepsy were included, regardless of whether the genetic diagnosis was made before or after the presurgical evaluation. Patients were divided into two groups: resective surgery (RS) and non-resective surgery candidates (NRSC), with the latter group further divided into: palliative surgery (vagus nerve stimulation, deep brain stimulation, responsive neurostimulation or corpus callosotomy) and no surgery. We compared surgical candidacy evaluations and postsurgical outcomes in patients with different genetic abnormalities. RESULTS We identified 142 patients with P/LP variants. After presurgical evaluation, 36 patients underwent RS, while 106 patients were NRSC. Patients with variants in ion channel and synaptic transmission genes were more common in the NRSC group (48 %), compared with the RS group (14 %) (p<0.001). Most patients in the RS group had tuberous sclerosis complex. Almost half (17/36, 47 %) in the RS group had Engel class I or II outcomes. Patients with channelopathies were less likely to undergo a surgical procedure than patients with mTORopathies, but when deemed suitable for resection had better surgical outcomes (71 % versus 41 % with Engel I/II). Within the NRSC group, 40 underwent palliative surgery, with 26/40 (65 %) having ≥50 % seizure reduction after mean follow-up of 11 years. Favourable palliative surgery outcomes were observed across a diverse range of genetic epilepsies. SIGNIFICANCE Genomic findings, including a channelopathy diagnosis, should not preclude presurgical evaluation or epilepsy surgery, and appropriately selected cases may have good surgical outcomes. Prospective registries of patients with monogenic epilepsies who undergo epilepsy surgery can provide additional insights on outcomes.
Collapse
Affiliation(s)
- Paula Marques
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Caihong Ji
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Quratulain Zulfiqar Ali
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Archana Ramesh
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Karen Barboza
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ilakkiah Chandran
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marlene Rong
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Arunan Selvarajah
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Farah Qaiser
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Victor S T Lira
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Taufik A Valiante
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Carl W Bazil
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Hyunmi Choi
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Orrin Devinsky
- New York University Langone Health Comprehensive Epilepsy Center, New York, NY, USA
| | - Chantal Depondt
- Department of Neurology, CUB Erasme Hospital, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Terence O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Patricia Dugan
- New York University Langone Health Comprehensive Epilepsy Center, New York, NY, USA
| | - Tristan T Sands
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | - Norman Delanty
- Department of Neurology, Beaumont Hospital, Dublin, Ireland.
| | - Danielle M Andrade
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Szalai R, Hadzsiev K, Till A, Fogarasi A, Bodo T, Buki G, Banfai Z, Bene J. NGS-Based Identification of Two Novel PCDH19 Mutations in Female Patients with Early-Onset Epilepsy. Int J Mol Sci 2024; 25:5732. [PMID: 38891919 PMCID: PMC11171991 DOI: 10.3390/ijms25115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Developmental and epileptic encephalopathy-9 (DEE9) is characterized by seizure onset in infancy, mild to severe intellectual impairment, and psychiatric features and is caused by a mutation in the PCDH19 gene on chromosome Xq22. The rare, unusual X-linked type of disorder affects heterozygous females and mosaic males; transmitting males are unaffected. In our study, 165 patients with epilepsy were tested by Next Generation Sequencing (NGS)-based panel and exome sequencing using Illumina technology. PCDH19 screening identified three point mutations, one indel, and one 29 bp-long deletion in five unrelated female probands. Two novel mutations, c.1152_1180del (p.Gln385Serfs*6) and c.830_831delinsAA (p.Phe277*), were identified and found to be de novo pathogenic. Moreover, among the three inherited mutations, two originated from asymptomatic mothers and one from an affected father. The PCDH19 c.1682C>T and c.1711G>T mutations were present in the DNA samples of asymptomatic mothers. After targeted parental testing, X chromosome inactivation tests and Sanger sequencing were carried out for mosaicism examination on maternal saliva samples in the two asymptomatic PCDH19 mutation carrier subjects. Tissue mosaicism and X-inactivation tests were negative. Our results support the opportunity for reduced penetrance in DEE9 and contribute to expanding the genotype-phenotype spectrum of PCDH19-related epilepsy.
Collapse
Affiliation(s)
- Renata Szalai
- Department of Medical Genetics, University of Pecs Medical School, 7624 Pecs, Hungary; (R.S.); (K.H.); (A.T.); (G.B.); (Z.B.)
| | - Kinga Hadzsiev
- Department of Medical Genetics, University of Pecs Medical School, 7624 Pecs, Hungary; (R.S.); (K.H.); (A.T.); (G.B.); (Z.B.)
| | - Agnes Till
- Department of Medical Genetics, University of Pecs Medical School, 7624 Pecs, Hungary; (R.S.); (K.H.); (A.T.); (G.B.); (Z.B.)
| | - Andras Fogarasi
- Child Neurology Department, Bethesda Children’s Hospital, 1146 Budapest, Hungary; (A.F.); (T.B.)
- Andras Peto Faculty, Semmelweis University, 1125 Budapest, Hungary
| | - Timea Bodo
- Child Neurology Department, Bethesda Children’s Hospital, 1146 Budapest, Hungary; (A.F.); (T.B.)
| | - Gergely Buki
- Department of Medical Genetics, University of Pecs Medical School, 7624 Pecs, Hungary; (R.S.); (K.H.); (A.T.); (G.B.); (Z.B.)
| | - Zsolt Banfai
- Department of Medical Genetics, University of Pecs Medical School, 7624 Pecs, Hungary; (R.S.); (K.H.); (A.T.); (G.B.); (Z.B.)
| | - Judit Bene
- Department of Medical Genetics, University of Pecs Medical School, 7624 Pecs, Hungary; (R.S.); (K.H.); (A.T.); (G.B.); (Z.B.)
| |
Collapse
|
5
|
Kowkabi S, Yavarian M, Kaboodkhani R, Mohammadi M, Shervin Badv R. PCDH19-clustering epilepsy, pathophysiology and clinical significance. Epilepsy Behav 2024; 154:109730. [PMID: 38521028 DOI: 10.1016/j.yebeh.2024.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is an X-linked epilepsy disorder associated with intellectual disability (ID) and behavioral disturbances, which is caused by PCDH19 gene variants. PCDH19 pathogenic variant leads to epilepsy in heterozygous females, not in hemizygous males and the inheritance pattern is unusual. The hypothesis of cellular interference was described as a key pathogenic mechanism. According to that, males do not develop the disease because of the uniform expression of PCDH19 (variant or wild type) unless they have a somatic variation. We conducted a literature review on PCDH19-CE pathophysiology and concluded that other significant mechanisms could contribute to pathogenesis including: asymmetric cell division and heterochrony, female-related allopregnanolone deficiency, altered steroid gene expression, decreased Gamma-aminobutyric acid receptor A (GABAA) function, and blood-brain barrier (BBB) dysfunction. Being aware of these mechanisms helps us when we should decide which therapeutic option is more suitable for which patient.
Collapse
Affiliation(s)
- Safoura Kowkabi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran; Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Majid Yavarian
- Hematology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Mahmood Mohammadi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Bernardo P, Cuccurullo C, Rubino M, De Vita G, Terrone G, Bilo L, Coppola A. X-Linked Epilepsies: A Narrative Review. Int J Mol Sci 2024; 25:4110. [PMID: 38612920 PMCID: PMC11012983 DOI: 10.3390/ijms25074110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype-phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance.
Collapse
Affiliation(s)
- Pia Bernardo
- Pediatric Psychiatry and Neurology Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy
| | - Claudia Cuccurullo
- Neurology and Stroke Unit, Ospedale del Mare Hospital, ASL Napoli 1 Centro, 80147 Naples, Italy;
| | - Marica Rubino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Gaetano Terrone
- Child Neuropsychiatry Units, Department of Translational Medical Sciences, University Federico II of Naples, 80131 Naples, Italy;
| | - Leonilda Bilo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| | - Antonietta Coppola
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| |
Collapse
|
7
|
Kovačević M, Sokić D, Ristić A, Berisavac I, Ercegovac M, Milićević O, Vojvodić N. Familial occurrence of seizure disorders across MRI defined structural focal epilepsy etiology. J Clin Neurosci 2024; 123:15-22. [PMID: 38508018 DOI: 10.1016/j.jocn.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Previous studies have established familial occurrence of epilepsy and seizure disorders and early age of epilepsy onset as predictors of genetic epilepsy, but have not evaluated the rate of their occurrence in patients with different epilepsy etiology. Our study determines the distribution of familial occurrence and age of epilepsy onset across structural focal epilepsy (FE) etiology in a large FE cohort. METHODS Records of 1354 consecutive patients evaluated for epilepsy and seizure disorders in The Neurology Clinic, University Clinical Center of Serbia from 2008 to 2019 were screened for FE. Structural etiology, lobar diagnosis, familial occurrence, and age at epilepsy onset were determined. Patients with a. nonlesional focal epilepsy (NLFE), b. hippocampal sclerosis (HS) and c. congenital or perinatal etiology (CPE) were classified as NAFE, while patients with an identified acquired focal epilepsy (AFE) constituted the control group. RESULTS We identified 965 patients with FE, 329 (34.1 %) with NLFE, 213 (22.1 %) with HS, 174 (18.0 %) with CPE and 249 (25.8 %) with AFE. Familial occurrence was identified in 160 (16.6 %), 19.1 % of patients with NAFE and 9.2 % of AFE (p = 0.003). Patients with NAFE had a younger age of epilepsy onset (13 vs. 18 years, p < 0.001). The highest proportion of familial occurrence was found in patients with NLFE (23.7 %), while the youngest median age of epilepsy onset was identified in patients with HS (12 years) and CPE (11 years). CONCLUSION Patients with NAFE frequently have familial occurrence of epilepsy and have an earlier age of epilepsy onset than patients with AFE.
Collapse
Affiliation(s)
- Maša Kovačević
- Neurology Clinic, University Clinical Center of Serbia, University of Belgrade Faculty of Medicine, Serbia; Faculty of Medicine, University of Belgrade, Serbia.
| | - Dragoslav Sokić
- Neurology Clinic, University Clinical Center of Serbia, University of Belgrade Faculty of Medicine, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| | - Aleksandar Ristić
- Neurology Clinic, University Clinical Center of Serbia, University of Belgrade Faculty of Medicine, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| | - Ivana Berisavac
- Neurology Clinic, University Clinical Center of Serbia, University of Belgrade Faculty of Medicine, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| | - Marko Ercegovac
- Neurology Clinic, University Clinical Center of Serbia, University of Belgrade Faculty of Medicine, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| | | | - Nikola Vojvodić
- Neurology Clinic, University Clinical Center of Serbia, University of Belgrade Faculty of Medicine, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
8
|
Lenge M, Balestrini S, Napolitano A, Mei D, Conti V, Baldassarri G, Trivisano M, Pellacani S, Macconi L, Longo D, Rossi Espagnet MC, Cappelletti S, D'Incerti L, Barba C, Specchio N, Guerrini R. Morphometric network-based abnormalities correlate with psychiatric comorbidities and gene expression in PCDH19-related developmental and epileptic encephalopathy. Transl Psychiatry 2024; 14:35. [PMID: 38238304 PMCID: PMC10796344 DOI: 10.1038/s41398-024-02753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Protocadherin-19 (PCDH19) developmental and epileptic encephalopathy causes an early-onset epilepsy syndrome with limbic seizures, typically occurring in clusters and variably associated with intellectual disability and a range of psychiatric disorders including hyperactive, obsessive-compulsive and autistic features. Previous quantitative neuroimaging studies revealed abnormal cortical areas in the limbic formation (parahippocampal and fusiform gyri) and underlying white-matter fibers. In this study, we adopted morphometric, network-based and multivariate statistical methods to examine the cortex and substructure of the hippocampus and amygdala in a cohort of 20 PCDH19-mutated patients and evaluated the relation between structural patterns and clinical variables at individual level. We also correlated morphometric alterations with known patterns of PCDH19 expression levels. We found patients to exhibit high-significant reductions of cortical surface area at a whole-brain level (left/right pvalue = 0.045/0.084), and particularly in the regions of the limbic network (left/right parahippocampal gyri pvalue = 0.230/0.016; left/right entorhinal gyri pvalue = 0.002/0.327), and bilateral atrophy of several subunits of the amygdala and hippocampus, particularly in the CA regions (head of the left CA3 pvalue = 0.002; body of the right CA3 pvalue = 0.004), and differences in the shape of hippocampal structures. More severe psychiatric comorbidities correlated with more significant altered patterns, with the entorhinal gyrus (pvalue = 0.013) and body of hippocampus (pvalue = 0.048) being more severely affected. Morphometric alterations correlated significantly with the known expression patterns of PCDH19 (rvalue = -0.26, pspin = 0.092). PCDH19 encephalopathy represents a model of genetically determined neural network based neuropsychiatric disease in which quantitative MRI-based findings correlate with the severity of clinical manifestations and had have a potential predictive value if analyzed early.
Collapse
Affiliation(s)
- Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Simona Balestrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, 00100, Rome, Italy
| | - Davide Mei
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Valerio Conti
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Giulia Baldassarri
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, 00100, Rome, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165, Rome, Italy
| | - Simona Pellacani
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Letizia Macconi
- Pediatric Radiology Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Daniela Longo
- Functional and Interventional Neuroimaging Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | | | - Simona Cappelletti
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165, Rome, Italy
| | - Ludovico D'Incerti
- Pediatric Radiology Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Carmen Barba
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165, Rome, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy.
| |
Collapse
|
9
|
Zhu J, Liu Z, Geng F, Peng J, Li Z, Yang Q. Prenatal diagnosis of developmental and epileptic encephalopathy 9 with a 10.05-Mb microdeletion at Xq21.31q22.1 inherited from mother: A case report and literature review. Mol Genet Genomic Med 2024; 12:e2338. [PMID: 38083988 PMCID: PMC10767682 DOI: 10.1002/mgg3.2338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Developmental and epileptic encephalopathy 9 (DEE9) is characterized by early infantile seizures and mild-to-severe neuropsychiatric symptoms. Despite being an X-linked dominant disorder, DEE9 mainly affects heterozygous females or mosaic males, while hemizygous males are less affected. PCDH19 gene has been documented as the causative gene. METHODS Karyotyping analysis and copy number variation sequencing (CNV-seq) were performed on a pregnant woman with epilepsy, together with her husband, son, and fetus. RESULTS A disease-causing microdeletion, seq[GRCh37] del(X)(q21.31q22.1) (90310001-100360000), was identified in the pregnant woman and her female fetus. The microdeletion includes the entire PCDH19 gene and is classified as "pathogenic" according to the American College of Medical Genetics and Genomics guidelines. CONCLUSION In this case study, we have not only identified the epilepsy type of the woman as DEE9 but have also made an unfavorable prognosis for her fetus. Our findings from this prenatal case provide valuable clinical resources for prenatal diagnosis and genetic counseling, while also implying the potential of CNV-seq as a viable method for uncovering PCDH19-related epilepsy.
Collapse
Affiliation(s)
- Juan Zhu
- Suizhou Prenatal Diagnosis and Prenatal Screening Quality Control Center, Department of Perinatal HealthSuizhou Maternal and Child Health HospitalSuizhouHubeiChina
| | - Zhenzhen Liu
- Suizhou Prenatal Diagnosis and Prenatal Screening Quality Control Center, Department of Perinatal HealthSuizhou Maternal and Child Health HospitalSuizhouHubeiChina
| | - Feng Geng
- Suizhou Prenatal Diagnosis and Prenatal Screening Quality Control Center, Department of Perinatal HealthSuizhou Maternal and Child Health HospitalSuizhouHubeiChina
| | - Jing Peng
- Department of ObstetricsThe First People's Hospital of Jiangxia District Wuhan CityWuhanHubeiChina
| | - Zhimin Li
- Annoroad Gene Technology (Beijing) Co., Ltd.BeijingChina
| | - Qin Yang
- Suizhou Prenatal Diagnosis and Prenatal Screening Quality Control Center, Department of Perinatal HealthSuizhou Maternal and Child Health HospitalSuizhouHubeiChina
| |
Collapse
|
10
|
Coryell J, Singh R, Ostendorf AP, Eisner M, Alexander A, Eschbach K, Shrey DW, Olaya J, Ciliberto MA, Karakas C, Karia S, McNamara N, Romanowski EF, Kheder A, Pradeep J, Reddy SB, McCormack MJ, Bolton J, Wolf S, McGoldrick P, Hauptman JS, Samanta D, Tatachar P, Sullivan J, Auguste K, Gonzalez-Giraldo E, Marashly A, Depositario-Cabacar DF, Wong-Kisiel LC, Perry S. Epilepsy surgery in children with genetic etiologies: A prospective evaluation of current practices and outcomes. Seizure 2023; 113:6-12. [PMID: 38189708 DOI: 10.1016/j.seizure.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVE This study assesses current practices and outcomes of epilepsy surgery in children with a genetic etiology. It explores the pre-surgical workup, types of surgeries, and post-surgical outcomes in a broad array of disorders. METHODS Patients ≤18 years who completed epilepsy surgery and had a known genetic etiology prior to surgical intervention were extrapolated from the Pediatric Epilepsy Research Consortium (PERC) surgery database, across 18 US centers. Data were assessed univariably by neuroimaging and EEG results, genetic group (structural gene, other gene, chromosomal), and curative intent. Outcomes were based on a modified International League Against Epilepsy (ILAE) outcome score. RESULTS Of 81 children with genetic epilepsy, 72 % had daily seizures when referred for surgery evaluation, which occurred a median of 2.2 years (IQR 0.3, 5.2) after developing drug resistance. Following surgery, 68 % of subjects had >50 % seizure reduction, with 33 % achieving seizure freedom [median follow-up 11 months (IQR 6, 17). Seizure freedom was most common in the monogenic structural group, but significant palliation was present across all groups. Presence of a single EEG focus was associated with a greater likelihood of seizure freedom (p=0.02). SIGNIFICANCE There are meaningful seizure reductions following epilepsy surgery in the majority of children with a genetic etiology, even in the absence of a single structural lesion and across a broad spectrum of genetic causes. These findings highlight the need for expedited referral for epilepsy surgery and support of a broadened view of which children may benefit from epilepsy surgery, even when the intent is palliative.
Collapse
Affiliation(s)
- Jason Coryell
- Department of Pediatrics, Oregon Health & Sciences University, CDRC-P, 707 SW Gaines Rd, Portland, OR 97239, USA.
| | - Rani Singh
- Division of Neurology, Department of Pediatrics, Atrium Health/Levine Children's Hospital, Charlotte, NC, USA
| | - Adam P Ostendorf
- Department of Pediatrics, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Mariah Eisner
- Biostatistics Resource at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Allyson Alexander
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora, CO, USA
| | - Krista Eschbach
- Department of Neurology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Joffre Olaya
- Children's Hospital of Orange County, Orange, CA, USA
| | - Michael A Ciliberto
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Cemal Karakas
- Department of Neurology, Division of Child Neurology, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| | - Samir Karia
- Department of Neurology, Division of Child Neurology, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nancy McNamara
- Department of Pediatrics, Section of Pediatric Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Erin Fedak Romanowski
- Department of Pediatrics, Section of Pediatric Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ammar Kheder
- Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Javarayee Pradeep
- Department of Pediatric Neurology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shilpa B Reddy
- Department of Pediatrics, Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA
| | - Michael J McCormack
- Department of Pediatrics, Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA
| | - Jeffrey Bolton
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Steven Wolf
- Boston Children's Health Physicians of New York and Connecticut, Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY, USA
| | - Patricia McGoldrick
- Boston Children's Health Physicians of New York and Connecticut, Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY, USA
| | - Jason S Hauptman
- Division of Pediatric Neurosurgery, University of Washington/Seattle Children's Hospital, Seattle, WA, USA
| | - Debopam Samanta
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Priya Tatachar
- Department of Pediatrics, Ann and Robert H Lurie Children's Hospital, Chicago, IL, USA
| | - Joseph Sullivan
- University of California San Francisco Weill Institute for Neurosciences, Benioff Children's Hospital, San Francisco, CA, USA
| | - Kurtis Auguste
- University of California San Francisco Weill Institute for Neurosciences, Benioff Children's Hospital, San Francisco, CA, USA
| | - Ernesto Gonzalez-Giraldo
- University of California San Francisco Weill Institute for Neurosciences, Benioff Children's Hospital, San Francisco, CA, USA
| | - Ahmad Marashly
- Department of Neurology, Johns Hopkins, Baltimore, MD, USA
| | - Dewi F Depositario-Cabacar
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Lily C Wong-Kisiel
- Department of Neurology, Divisions of Child Neurology and Epilepsy, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Fort Worth, TX, USA
| |
Collapse
|
11
|
Simmons R, Singhal N, Sullivan J, Shih T, Tihan T, Poduri A, Smith L, Yang E. Epilepsy surgery as a treatment option for select patients with PCDH19-related epilepsy. Epilepsy Behav 2023; 149:109517. [PMID: 37956604 DOI: 10.1016/j.yebeh.2023.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
PCDH19 is a common epilepsy gene causing medication resistant epilepsy with fever-related seizures. Traditionally, patients with PCDH19-related epilepsy have not been considered surgical candidates. This retrospective review evaluated three patients with pathogenic variants in PCDH19 who presented with seizures in childhood, had one seizure semiology, became medication resistant, and had concordant imaging, seizure semiology and electrographic findings. All three patients ultimately underwent temporal lobectomy, resulting in seizure freedom. These findings suggest epilepsy surgery can be an effective treatment option for select patients with PCDH19-related epilepsy and a single seizure semiology.
Collapse
Affiliation(s)
- Roxanne Simmons
- Department of Neurology, Benioff Children's Hospital, University of California San Francisco, USA.
| | - Nilika Singhal
- Department of Neurology, Benioff Children's Hospital, University of California San Francisco, USA
| | - Joseph Sullivan
- Department of Neurology, Benioff Children's Hospital, University of California San Francisco, USA
| | - Tina Shih
- Department of Neurology, University of California San Francisco, USA
| | - Tarik Tihan
- Neuropathology Division, Department of Pathology, University of California San Francisco, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lacey Smith
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Cai L, Zhang K, Zhou W, Shao X, Guan Y, Yu T, Wu Y, Chen S, Zhao R, Liang S, Wu X, Luan G, Jiang Y, Zhang J, Liu X. Consensus on pediatric epilepsy surgery for young children: an investigation by the China Association Against Epilepsy task force on epilepsy surgery. ACTA EPILEPTOLOGICA 2023; 5:20. [PMID: 40217282 PMCID: PMC11960312 DOI: 10.1186/s42494-023-00130-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 04/15/2025] Open
Abstract
Researchers have widely acknowledged the therapeutic value of epilepsy surgery for drug-resistant epilepsy. Nonetheless, there is a substantial gap in the surgical treatment for appropriate candidates owing to several factors, particularly in the population of young children. To standardize the protocols of preoperative evaluation and surgery of young children for epilepsy surgery, the China Association Against Epilepsy has appointed an expert task force to standardize the protocols of preoperative evaluation and surgery in pediatric epilepsy patients. It adopted the modified Delphi method and performed two rounds of surveys through an anonymous inquiry among 75 experts from four subgroups including pediatric neurologists, epileptologists, pediatric epilepsy surgeons, and functional neurosurgeons. The survey contents contained: (1) the participants, comprising children aged ≤ 6 years; (2) adopted DRE definition proposed by the International League Against Epilepsy in 2010; and (3) investigated epilepsy surgery, principally referring to curative epilepsy surgeries. The neuromodulation therapies were excluded because of the differences in treatment mechanisms from the above-mentioned surgeries. According to the Delphi process, a consensus was achieved for most aspects by incorporating two rounds of surveys including preoperative assessment, surgical strategies and techniques, and perioperative and long-term postoperative management, despite controversial opinions on certain items. We hope the results of this consensus will improve the level of surgical treatment and management of intractable epilepsy in young children.
Collapse
Affiliation(s)
- Lixin Cai
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100000, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100000, China
| | - Wenjing Zhou
- Department of Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, 100000, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100000, China
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100000, China
| | - Tao Yu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100000, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100000, China
| | - Shuhua Chen
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, 100000, Beijing, China
| | - Rui Zhao
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, 200000, China
| | - Shuli Liang
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, 100000, China
| | - Xun Wu
- Department of Neurology, Peking University First Hospital, Beijing, 100000, China
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100000, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100000, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100000, China
| | - Xiaoyan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100000, China.
| |
Collapse
|
13
|
Mazzurco M, Pulvirenti G, Caccamo M, Presti S, Soma R, Salafia S, Praticò ER, Filosco F, Falsaperla R, Praticò AD. PCDH19-Related Epilepsies. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:312-319. [DOI: 10.1055/s-0041-1728641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractProtocadherin-19 (PCDH19) is considered one of the most relevant genes related to epilepsy. To date, more than 150 mutations have been identified as causative for PCDH19-female epilepsy (also known as early infantile epileptic encephalopathy-9, EIEE9), which is characterized by early onset epilepsy, intellectual disabilities, and behavioral disturbances. More recently, mosaic-males (i.e., exhibiting the variants in less than 25% of their cells) have been described as affected by infant-onset epilepsy associated with intellectual disability, as well as compulsive or aggressive behavior and autistic features. Although little is known about the physiological role of PCDH19 protein and the pathogenic mechanisms that lead to EIEE9, many reports and clinical observation seem to suggest a relevant role of this protein in the development of cellular hyperexcitability. However, a genotype–phenotype correlation is difficult to establish. The main feature of EIEE9 consists in early onset of seizures, which generally occur in clusters lasting 1 to 5 minutes and repeating up to 10 times a day for several days. Seizures tend to present during febrile episodes, similarly to the first phases of Dravet syndrome and PCDH19 variants have been found in ∼25% of females who present with features of Dravet syndrome and testing negative for SCN1A variants. There is no “standardized” treatment for PCDH19-related epilepsy and most of the patients receiving a combination of several drugs. In this review, we focus on the latest researches on these aspects, with regard to protein expression, its known functions, and the mechanisms by which the protein acts. The clinical phenotypes related to PCDH19 mutations are also discussed.
Collapse
Affiliation(s)
| | - Giulio Pulvirenti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Martina Caccamo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Santiago Presti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rachele Soma
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | | | - Federica Filosco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Kovačević M, Milićević O, Branković M, Janković M, Novaković I, Sokić D, Ristić A, Shamsani J, Vojvodić N. Novel variants in established epilepsy genes in focal epilepsy. Seizure 2023; 110:146-152. [PMID: 37390664 DOI: 10.1016/j.seizure.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023] Open
Abstract
INTRODUCTION Next generation sequencing (NGS) has greatly expanded our understanding of genetic contributors in multiple epilepsy syndromes, including focal epilepsy. Describing the genetic architecture of common syndromes promises to facilitate the diagnostic process as well as aid in the identification of patients who stand to benefit from genetic testing, but most studies to date have been limited to examining children or adults with intellectual disability. Our aim was to determine the yield of targeted sequencing of 5 established epilepsy genes (DEPDC5, LGI1, SCN1A, GRIN2A, and PCHD19) in an extensively phenotyped cohort of focal epilepsy patients with normal intellectual function or mild intellectual disability, as well as describe novel variants and determine the characteristics of variant carriers. PATIENTS AND METHODS Targeted panel sequencing was performed on 96 patients with a strong clinical suspicion of genetic focal epilepsy. Patients had previously gone through a comprehensive diagnostic epilepsy evaluation in The Neurology Clinic, University Clinical Center of Serbia. Variants of interest (VOI) were classified using the American College of Medical Genetics and the Association for Molecular Pathology criteria. RESULTS Six VOI in eight (8/96, 8.3%) patients were found in our cohort. Four likely pathogenic VOI were determined in six (6/96, 6.2%) patients, two DEPDC5 variants in two patients, one SCN1A variant in two patients and one PCDH19 variant in two patients. One variant of unknown significance (VUS) was found in GRIN2A in one (1/96, 1.0%) patient. Only one VOI in GRIN2A was classified as likely benign. No VOI were detected in LGI1. CONCLUSION Sequencing of only five known epilepsy genes yielded a diagnostic result in 6.2% of our cohort and revealed multiple novel variants. Further research is necessary for a better understanding of the genetic basis in common epilepsy syndromes in patients with normal intellectual function or mild intellectual disability.
Collapse
Affiliation(s)
- Maša Kovačević
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | | | | | - Milena Janković
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivana Novaković
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragoslav Sokić
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ristić
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Nikola Vojvodić
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Baud MO, Ramantani G. Seizure remissions and cycles in pediatric focal epilepsy. Dev Med Child Neurol 2023; 65:308-309. [PMID: 36062963 DOI: 10.1111/dmcn.15405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Maxime O Baud
- Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Perinelli MG, Riva A, Amadori E, Follo R, Striano P. Learnings in developmental and epileptic encephalopathies: what do we know? Expert Rev Neurother 2023; 23:45-57. [PMID: 36726225 DOI: 10.1080/14737175.2023.2176221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Developmental and Epileptic Encephalopathies (DEEs) encompass a group of neurological disorders caused by either abnormal neuronal development and white matter maturation or even by weak synaptic plasticity. Hitherto, patients commonly have epileptic seizures featuring cognitive dysfunction, such as neurosensory disorders, difficulties in learning, behavioral disturbances, or speech delay. AREAS COVERED This paper provides a comprehensive review of the current knowledge of DEEs and cognition. Medline/Pubmed database was screened for in-English articles published between 1967-2022 dealing with the topic of DEEs and cognitive development. Two authors independently screened the title and abstract of each record and reviewed the selected articles. Reviews, randomized clinical trials, and case reports were selected. EXPERT OPINION Scientific literature has never explicitly dealt with the early neuro-psychomotor rehabilitation and neuropsychological assessment of patients with DEEs. Targeted intervention and environmental stimuli can influence the maturation of neuronal circuits and shape changes in physical and mental development based on neuronal plasticity, particularly if applied in 'critical periods' liable to heightened sensitivity. Thus, 'early neurorehabilitation interventions' are worthy of being more and more applied to clinical practice to improve the quality of life and reduce the psychosocial burden on families and caregivers.
Collapse
Affiliation(s)
- Martina Giorgia Perinelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisabetta Amadori
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
17
|
Focal cortical dysplasia as a cause of epilepsy: The current evidence of associated genes and future therapeutic treatments. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Lamers D, Landi S, Mezzena R, Baroncelli L, Pillai V, Cruciani F, Migliarini S, Mazzoleni S, Pasqualetti M, Passafaro M, Bassani S, Ratto GM. Perturbation of Cortical Excitability in a Conditional Model of PCDH19 Disorder. Cells 2022; 11:cells11121939. [PMID: 35741068 PMCID: PMC9222106 DOI: 10.3390/cells11121939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
PCDH19 epilepsy (DEE9) is an X-linked syndrome associated with cognitive and behavioral disturbances. Since heterozygous females are affected, while mutant males are spared, it is likely that DEE9 pathogenesis is related to disturbed cell-to-cell communication associated with mosaicism. However, the effects of mosaic PCDH19 expression on cortical networks are unknown. We mimicked the pathology of DEE9 by introducing a patch of mosaic protein expression in one hemisphere of the cortex of conditional PCDH19 knockout mice one day after birth. In the contralateral area, PCDH19 expression was unaffected, thus providing an internal control. In this model, we characterized the physiology of the disrupted network using local field recordings and two photon Ca2+ imaging in urethane anesthetized mice. We found transient episodes of hyperexcitability in the form of brief hypersynchronous spikes or bursts of field potential oscillations in the 9–25 Hz range. Furthermore, we observed a strong disruption of slow wave activity, a crucial component of NREM sleep. This phenotype was present also when PCDH19 loss occurred in adult mice, demonstrating that PCDH19 exerts a function on cortical circuitry outside of early development. Our results indicate that a focal mosaic mutation of PCDH19 disrupts cortical networks and broaden our understanding of DEE9.
Collapse
Affiliation(s)
- Didi Lamers
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Silvia Landi
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
| | - Roberta Mezzena
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Laura Baroncelli
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Vinoshene Pillai
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Federica Cruciani
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Sara Migliarini
- Unit of Cellular and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy; (S.M.); (M.P.)
| | - Sara Mazzoleni
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Massimo Pasqualetti
- Unit of Cellular and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy; (S.M.); (M.P.)
| | - Maria Passafaro
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Silvia Bassani
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Gian Michele Ratto
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
- Correspondence:
| |
Collapse
|
19
|
Moloney PB, Dugan P, Widdess-Walsh P, Devinsky O, Delanty N. Genomics in the Presurgical Epilepsy Evaluation. Epilepsy Res 2022; 184:106951. [DOI: 10.1016/j.eplepsyres.2022.106951] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/23/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022]
|
20
|
Cwetsch AW, Ziogas I, Narducci R, Savardi A, Bolla M, Pinto B, Perlini LE, Bassani S, Passafaro M, Cancedda L. A rat model of a focal mosaic expression of PCDH19 replicates human brain developmental abnormalities and behaviors. Brain Commun 2022; 4:fcac091. [PMID: 35528232 PMCID: PMC9070467 DOI: 10.1093/braincomms/fcac091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022] Open
Abstract
Protocadherin 19 gene-related epilepsy or protocadherin 19 clustering epilepsy is an infantile-onset epilepsy syndrome characterized by psychiatric (including autism-related), sensory, and cognitive impairment of varying degrees. Protocadherin 19 clustering epilepsy is caused by X-linked protocadherin 19 protein loss of function. Due to random X-chromosome inactivation, protocadherin 19 clustering epilepsy-affected females present a mosaic population of healthy and protocadherin 19-mutant cells. Unfortunately, to date, no current mouse model can fully recapitulate both the brain histological and behavioural deficits present in people with protocadherin 19 clustering epilepsy. Thus, the search for a proper understanding of the disease and possible future treatment is hampered. By inducing a focal mosaicism of protocadherin 19 expression using in utero electroporation in rats, we found here that protocadherin 19 signalling in specific brain areas is implicated in neuronal migration, heat-induced epileptic seizures, core/comorbid behaviours related to autism and cognitive function.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
- Instituto de Biotecnologia y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Ilias Ziogas
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Roberto Narducci
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dulbecco Telethon Institute, Italy
| | - Maria Bolla
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Laura E Perlini
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | | | | | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dulbecco Telethon Institute, Italy
| |
Collapse
|
21
|
Borghi R, Magliocca V, Trivisano M, Specchio N, Tartaglia M, Bertini E, Compagnucci C. Modeling PCDH19-CE: From 2D Stem Cell Model to 3D Brain Organoids. Int J Mol Sci 2022; 23:ijms23073506. [PMID: 35408865 PMCID: PMC8998847 DOI: 10.3390/ijms23073506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with intellectual disability and autism. Unfortunately, little is known about the pathogenic mechanism underlying this disease and an effective treatment is lacking. Studies with zebrafish and murine models have provided insights on the function of PCDH19 during brain development and how its altered function causes the disease, but these models fail to reproduce the human phenotype. Induced pluripotent stem cell (iPSC) technology has provided a complementary experimental approach for investigating the pathogenic mechanisms implicated in PCDH19-CE during neurogenesis and studying the pathology in a more physiological three-dimensional (3D) environment through the development of brain organoids. We report on recent progress in the development of human brain organoids with a particular focus on how this 3D model may shed light on the pathomechanisms implicated in PCDH19-CE.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Marina Trivisano
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Nicola Specchio
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
- Correspondence:
| |
Collapse
|
22
|
Nagarajan L, Ghosh S, Dyke J, Lee S, Silberstein J, Azmanov D, Richard W. Epilepsy surgery in PCDH 19 related developmental and epileptic encephalopathy: A case report. Epilepsy Behav Rep 2022; 19:100560. [PMID: 35856042 PMCID: PMC9287778 DOI: 10.1016/j.ebr.2022.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/03/2022] Open
Abstract
PCDH19 pathogenic variants may be associated with DEE in females. Epilepsy Surgery may be an option for PCDH19 related drug-resistant epilepsy.
We report a female child with PCDH19 related developmental and epileptic encephalopathy with drug-resistant seizures, cognitive and language impairment, autism spectrum disorder and sleep dysfunction. Her seizures, which started at 10 months of age, were resistant to multiple anti-seizure medications. Developmental stagnation followed by regression occurred after the onset of recurrent seizures. Her ictal EEGS suggested left temporal lobe origin for her recorded seizures. MRI upon expert re-review showed a subtle abnormality in the left temporal lobe. In view of the severe nature and frequency of her seizures, a left temporal lobectomy was undertaken at the age of 2 years and 3 months. Though her seizure outcome was Engel class 3, her seizure frequency and severity were significantly reduced. She has been seizure-free for 10 months at her last outpatient assessment when she was 4 years and 8 months of age (2 years and 5 months after epilepsy surgery). However she recently had an admission for COVID19 infection, with a breakthrough cluster of seizures. Her developmental trajectory changed, though she is making good progress with her cognitive and language skills.
Collapse
Affiliation(s)
- Lakshmi Nagarajan
- Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- School of Medicine, University of Western Australia, WA 6009, Australia
- Corresponding author at: Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia.
| | - Soumya Ghosh
- Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia. WA 6009, Australia
| | - Jason Dyke
- School of Medicine, University of Western Australia, WA 6009, Australia
- PathWest Neuropathology, Royal Perth Hospital, Victoria Street, Perth, WA 6000, Australia
| | - Sharon Lee
- School of Medicine, University of Western Australia, WA 6009, Australia
- Dept of Neurosurgery, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | - Jonathan Silberstein
- Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | - Dimitar Azmanov
- Dept of Neurosurgery, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | - Warne Richard
- WA State Wide Neurosurgery Service, WA 6009, Australia
| |
Collapse
|
23
|
Liu YH, Cheng YT, Tsai MH, Chou IJ, Hung PC, Hsieh MY, Wang YS, Chen YJ, Kuo CY, Lin JJ, Wang HS, Lin KL. Genetics and clinical correlation of Dravet syndrome and its mimics - experience of a tertiary center in Taiwan. Pediatr Neonatol 2021; 62:550-558. [PMID: 34226156 DOI: 10.1016/j.pedneo.2021.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Dravet syndrome is a severe developmental and epileptic encephalopathy characterized by the onset of prolonged febrile and afebrile seizures in infancy and SCN1A gene mutations. In some cases, non-SCN1A gene mutations can present with a phenotype very similar to that of Dravet syndrome. The aim of this study was to compare phenotypes of patients with SCN1A and non-SCN1A gene mutation-related Dravet syndrome. METHODS Thirty-six patients with Dravet syndrome-like phenotypes were followed from July 2017 to December 2019. We retrospectively analyzed their clinical profiles and genetic surveys. RESULTS Of the 36 enrolled patients, 15 (41.7%) had SCN1A mutations, one (2.8%) had an SCN8A mutation, one (2.8%) had an STX1B mutation, and five females (13.9%) had PCDH 19 mutations. The median age at first seizure onset was 7 months in those with SCN1A mutations, 1.3 years in those with PCDH19 mutations, and 10 months for the remaining patients. The majority of the patients with SCN1A mutations had status epilepticus (80% vs. 20%) and fever-sensitive seizures (76% vs. 31%) compared to those with PCDH19 mutations. The patients with SCN1A-related seizures had a higher rate of focal seizures as first seizure type than those without SCN1A mutations. Three of five (60%) patients with PCDH19 mutations had brain magnetic resonance imaging abnormalities. The three most commonly used antiseizure medications were sodium valproate, levetiracetam, and clobazam. Seven of the 15 patients with SCN1A mutations used stiripentol. The median time from seizure onset to genetic diagnosis was 6.6 years (range 4 months-22.3 years). CONCLUSION The patients with SCN1A mutations in this study had high rates of fever-sensitive seizures, status epilepticus, seizure onset with focal seizure type, and relatively young age at seizure onset. The patients with PCDH19 mutations had a relatively high rate of abnormal brain magnetic resonance imaging findings.
Collapse
Affiliation(s)
- Yi-Hsuan Liu
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ting Cheng
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Meng-Han Tsai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - I-Jun Chou
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Cheng Hung
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Ying Hsieh
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Shan Wang
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Ju Chen
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
| | - Cheng-Yen Kuo
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jainn-Jim Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huei-Shyong Wang
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
24
|
Cellular and Behavioral Characterization of Pcdh19 Mutant Mice: subtle Molecular Changes, Increased Exploratory Behavior and an Impact of Social Environment. eNeuro 2021; 8:ENEURO.0510-20.2021. [PMID: 34272258 PMCID: PMC8362684 DOI: 10.1523/eneuro.0510-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/15/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Mutations in the X-linked cell adhesion protein PCDH19 lead to seizures, cognitive impairment, and other behavioral comorbidities when present in a mosaic pattern. Neither the molecular mechanisms underpinning this disorder nor the function of PCDH19 itself are well understood. By combining RNA in situ hybridization with immunohistochemistry and analyzing single-cell RNA sequencing datasets, we reveal Pcdh19 expression in cortical interneurons and provide a first account of the subtypes of neurons expressing Pcdh19/PCDH19, both in the mouse and the human cortex. Our quantitative analysis of the Pcdh19 mutant mouse exposes subtle changes in cortical layer composition, with no major alterations of the main axonal tracts. In addition, Pcdh19 mutant animals, particularly females, display preweaning behavioral changes, including reduced anxiety and increased exploratory behavior. Importantly, our experiments also reveal an effect of the social environment on the behavior of wild-type littermates of Pcdh19 mutant mice, which show alterations when compared with wild-type animals not housed with mutants.
Collapse
|
25
|
Borghi R, Magliocca V, Petrini S, Conti LA, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Dissecting the Role of PCDH19 in Clustering Epilepsy by Exploiting Patient-Specific Models of Neurogenesis. J Clin Med 2021; 10:jcm10132754. [PMID: 34201522 PMCID: PMC8268119 DOI: 10.3390/jcm10132754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022] Open
Abstract
PCDH19-related epilepsy is a rare genetic disease caused by defective function of PCDH19, a calcium-dependent cell–cell adhesion protein of the cadherin superfamily. This disorder is characterized by a heterogeneous phenotypic spectrum, with partial and generalized febrile convulsions that are gradually increasing in frequency. Developmental regression may occur during disease progression. Patients may present with intellectual disability (ID), behavioral problems, motor and language delay, and a low motor tone. In most cases, seizures are resistant to treatment, but their frequency decreases with age, and some patients may even become seizure-free. ID generally persists after seizure remission, making neurological abnormalities the main clinical issue in affected individuals. An effective treatment is lacking. In vitro studies using patient-derived induced pluripotent stem cells (iPSCs) reported accelerated neural differentiation as a major endophenotype associated with PCDH19 mutations. By using this in vitro model system, we show that accelerated in vitro neurogenesis is associated with a defect in the cell division plane at the neural progenitors stage. We also provide evidence that altered PCDH19 function affects proper mitotic spindle orientation. Our findings identify an altered equilibrium between symmetric versus asymmetric cell division as a previously unrecognized mechanism contributing to the pathogenesis of this rare epileptic encephalopathy.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Sandra Moreno
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Correspondence:
| |
Collapse
|
26
|
Abstract
INTRODUCTION Focal cortical dysplasias (FCDs) represent the most common etiology in pediatric drug-resistant focal epilepsies undergoing surgical treatment. The localization, extent and histopathological features of FCDs are considerably variable. Somatic mosaic mutations of genes that encode proteins in the PI3K-AKTmTOR pathway, which also includes the tuberous sclerosis associated genes TSC1 and TSC2, have been implicated in FCD type II in a substantial subset of patients. Surgery is the principal therapeutic option for FCD-related epilepsy. Advanced neurophysiological and neuroimaging techniques have improved surgical outcome and reduced the risk of postsurgical deficits. Pharmacological MTOR inhibitors are being tested in clinical trials and might represent an example of personalized treatment of epilepsy based on the known mechanisms of disease, used alone or in combination with surgery. AREAS COVERED This review will critically analyze the advances in the diagnosis and treatment of FCDs, with a special focus on the novel therapeutic options prompted by a better understanding of their pathophysiology. EXPERT OPINION Focal cortical dysplasia is a main cause of drug-resistant epilepsy, especially in children. Novel, personalized approaches are needed to more effectively treat FCD-related epilepsy and its cognitive consequences.
Collapse
Affiliation(s)
- Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Carmen Barba
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| |
Collapse
|
27
|
García-Hernández JL, Corchete LA, Marcos-Alcalde Í, Gómez-Puertas P, Fons C, Lazo PA. Pathogenic convergence of CNVs in genes functionally associated to a severe neuromotor developmental delay syndrome. Hum Genomics 2021; 15:11. [PMID: 33557955 PMCID: PMC7871650 DOI: 10.1186/s40246-021-00309-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Complex developmental encephalopathy syndromes might be the consequence of unknown genetic alterations that are likely to contribute to the full neurological phenotype as a consequence of pathogenic gene combinations. METHODS To identify the additional genetic contribution to the neurological phenotype, we studied as a test case a boy, with a KCNQ2 exon-7 partial duplication, by single-nucleotide polymorphism (SNP) microarray to detect copy-number variations (CNVs). RESULTS The proband presented a cerebral palsy like syndrome with a severe motor and developmental encephalopathy. The SNP array analysis detected in the proband several de novo CNVs, nine partial gene losses (LRRC55, PCDH9, NALCN, RYR3, ELAVL2, CDH13, ATP1A2, SLC17A5, ANO3), and two partial gene duplications (PCDH19, EFNA5). The biological functions of these genes are associated with ion channels such as calcium, chloride, sodium, and potassium with several membrane proteins implicated in neural cell-cell interactions, synaptic transmission, and axon guidance. Pathogenically, these functions can be associated to cerebral palsy, seizures, dystonia, epileptic crisis, and motor neuron dysfunction, all present in the patient. CONCLUSIONS Severe motor and developmental encephalopathy syndromes of unknown origin can be the result of a phenotypic convergence by combination of several genetic alterations in genes whose physiological function contributes to the neurological pathogenic mechanism.
Collapse
Affiliation(s)
- Juan L García-Hernández
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Luis A Corchete
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Network Center for Biomedical Research in Cancer (CIBERONC), Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Carmen Fons
- Neurology Department, Hospital Sant Joan de Déu, Sant Joan de Déu Research Institute, Esplugues de Llobregat, Barcelona and CIBERER, Instituto de Salud Carlos III, Barcelona, Spain.
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
28
|
Jesus-Ribeiro J, Pires LM, Melo JD, Ribeiro IP, Rebelo O, Sales F, Freire A, Melo JB. Genomic and Epigenetic Advances in Focal Cortical Dysplasia Types I and II: A Scoping Review. Front Neurosci 2021; 14:580357. [PMID: 33551717 PMCID: PMC7862327 DOI: 10.3389/fnins.2020.580357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction: Focal cortical dysplasias (FCDs) are a group of malformations of cortical development that constitute a common cause of drug-resistant epilepsy, often subjected to neurosurgery, with a suboptimal long-term outcome. The past few years have witnessed a dramatic leap in our understanding of the molecular basis of FCD. This study aimed to provide an updated review on the genomic and epigenetic advances underlying FCD etiology, to understand a genotype-phenotype correlation and identify priorities to lead future translational research. Methods: A scoping review of the literature was conducted, according to previously described methods. A comprehensive search strategy was applied in PubMed, Embase, and Web of Science from inception to 07 May 2020. References were screened based on title and abstract, and posteriorly full-text articles were assessed for inclusion according to eligibility criteria. Studies with novel gene variants or epigenetic regulatory mechanisms in patients that underwent epilepsy surgery, with histopathological diagnosis of FCD type I or II according to Palmini's or the ILAE classification system, were included. Data were extracted and summarized for an overview of evidence. Results: Of 1,156 candidate papers, 39 met the study criteria and were included in this review. The advent of next-generation sequencing enabled the detection in resected FCD tissue of low-level brain somatic mutations that occurred during embryonic corticogenesis. The mammalian target of rapamycin (mTOR) signaling pathway, involved in neuronal growth and migration, is the key player in the pathogenesis of FCD II. Somatic gain-of-function variants in MTOR and its activators as well as germline, somatic, and second-hit mosaic loss-of-function variants in its related repressors have been reported. However, the genetic background of FCD type I remains elusive, with a pleomorphic repertoire of genes affected. DNA methylation and microRNAs were the two epigenetic mechanisms that proved to have a functional role in FCD and may represent molecular biomarkers. Conclusion: Further research into the possible pathogenic causes of both FCD subtypes is required, incorporating single-cell DNA/RNA sequencing as well as methylome and proteomic analysis. The collected data call for an integrated clinicopathologic and molecular genetic diagnosis in current practice not only to improve diagnostic accuracy but also to guide the development of future targeted treatments.
Collapse
Affiliation(s)
- Joana Jesus-Ribeiro
- Epilepsy and Sleep Monitoring Unit, Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal
- iCBR/CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís Miguel Pires
- iCBR/CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Ilda Patrícia Ribeiro
- iCBR/CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal
| | - Francisco Sales
- Epilepsy and Sleep Monitoring Unit, Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal
| | - António Freire
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana Barbosa Melo
- iCBR/CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
29
|
Right Place at the Right Time: How Changes in Protocadherins Affect Synaptic Connections Contributing to the Etiology of Neurodevelopmental Disorders. Cells 2020; 9:cells9122711. [PMID: 33352832 PMCID: PMC7766791 DOI: 10.3390/cells9122711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
During brain development, neurons need to form the correct connections with one another in order to give rise to a functional neuronal circuitry. Mistakes during this process, leading to the formation of improper neuronal connectivity, can result in a number of brain abnormalities and impairments collectively referred to as neurodevelopmental disorders. Cell adhesion molecules (CAMs), present on the cell surface, take part in the neurodevelopmental process regulating migration and recognition of specific cells to form functional neuronal assemblies. Among CAMs, the members of the protocadherin (PCDH) group stand out because they are involved in cell adhesion, neurite initiation and outgrowth, axon pathfinding and fasciculation, and synapse formation and stabilization. Given the critical role of these macromolecules in the major neurodevelopmental processes, it is not surprising that clinical and basic research in the past two decades has identified several PCDH genes as responsible for a large fraction of neurodevelopmental disorders. In the present article, we review these findings with a focus on the non-clustered PCDH sub-group, discussing the proteins implicated in the main neurodevelopmental disorders.
Collapse
|
30
|
Francis F, Cappello S. Neuronal migration and disorders - an update. Curr Opin Neurobiol 2020; 66:57-68. [PMID: 33096394 DOI: 10.1016/j.conb.2020.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/15/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
This review highlights genes, proteins and subcellular mechanisms, recently shown to influence cortical neuronal migration. A current view on mechanisms which become disrupted in a diverse array of migration disorders is presented. The microtubule (MT) cytoskeleton is a major player in migrating neurons. Recently, variable impacts on MTs have been revealed in different cell compartments. Thus there are a multiplicity of effects involving centrosomal, microtubule-associated, as well as motor proteins. However, other causative factors also emerge, illuminating cortical neuronal migration research. These include disruptions of the actin cytoskeleton, the extracellular matrix, different adhesion molecules and signaling pathways, especially revealed in disorders such as periventricular heterotopia. These recent advances often involve the use of human in vitro models as well as model organisms. Focusing on cell-type specific knockouts and knockins, as well as generating omics and functional data, all seem critical for an integrated view on neuronal migration dysfunction.
Collapse
Affiliation(s)
- Fiona Francis
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, F-75005 Paris, France; Institut du Fer à Moulin, Paris, France.
| | | |
Collapse
|
31
|
Gabapentin treatment in a patient with KCNQ2 developmental epileptic encephalopathy. Pharmacol Res 2020; 160:105200. [DOI: 10.1016/j.phrs.2020.105200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
|
32
|
Lenge M, Marini C, Canale E, Napolitano A, De Masi S, Trivisano M, Mei D, Longo D, Rossi Espagnet MC, Lucenteforte E, Barba C, Specchio N, Guerrini R. Quantitative MRI-Based Analysis Identifies Developmental Limbic Abnormalities in PCDH19 Encephalopathy. Cereb Cortex 2020; 30:6039-6050. [PMID: 32582916 DOI: 10.1093/cercor/bhaa177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Protocadherin-19 (PCDH19) is a calcium dependent cell-adhesion molecule involved in neuronal circuit formation with prevalent expression in the limbic structures. PCDH19-gene mutations cause a developmental encephalopathy with prominent infantile onset focal seizures, variably associated with intellectual disability and autistic features. Diagnostic neuroimaging is usually unrevealing. We used quantitative MRI to investigate the cortex and white matter in a group of 20 PCDH19-mutated patients. By a statistical comparison between quantitative features in PCDH19 brains and in a group of age and sex matched controls, we found that patients exhibited bilateral reductions of local gyrification index (lGI) in limbic cortical areas, including the parahippocampal and entorhinal cortex and the fusiform and lingual gyri, and altered diffusivity features in the underlying white matter. In patients with an earlier onset of seizures, worse psychiatric manifestations and cognitive impairment, reductions of lGI and diffusivity abnormalities in the limbic areas were more pronounced. Developmental abnormalities involving the limbic structures likely represent a measurable anatomic counterpart of the reduced contribution of the PCDH19 protein to local cortical folding and white matter organization and are functionally reflected in the phenotypic features involving cognitive and communicative skills as well as local epileptogenesis.
Collapse
Affiliation(s)
- Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy.,Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy.,Clinical Trial Office, Children's Hospital A. Meyer-University of Florence, 50139 Florence, Italy
| | - Carla Marini
- Child Neuropsychiatry Unit, Maternal Child Department, University Hospital Ospedali Riuniti, 60100 Ancona, Italy
| | - Edoardo Canale
- Paediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, 16100 Genova, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Salvatore De Masi
- Clinical Trial Office, Children's Hospital A. Meyer-University of Florence, 50139 Florence, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Davide Mei
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Maria Camilla Rossi Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy.,NESMOS Department, Sapienza University, 00100 Rome, Italy
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Carmen Barba
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy.,IRCCS Stella Maris Foundation, 56018 Pisa, Italy
| |
Collapse
|
33
|
Yang X, Chen J, Zheng B, Liu X, Cao Z, Wang X. PCDH19-Related Epilepsy in Early Onset of Chinese Male Patient: Case Report and Literature Review. Front Neurol 2020; 11:311. [PMID: 32425876 PMCID: PMC7203462 DOI: 10.3389/fneur.2020.00311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/31/2020] [Indexed: 11/29/2022] Open
Abstract
Mutations in PCDH19 are associated with epilepsy, intellectual disability and behavioral disturbances, mostly related to females. The unique X-linked pattern of inheritance affects females predominantly, while usually is transmitted through asymptomatic males. Recently, new research has demonstrated that males with a mosaic pattern of inheritance could also be affected. As yet, PCDH19 mutations have been reported in hundreds of females; however, only 15 mosaic males were reported to exhibit epileptic seizures with the onset ranges between 6 and 31 months. These patients were usually reported to carry various mutations in the PCDH19. Here we describe a non-sense variant at the PCDH19 (c.498C>G; p.Y166*) in the Chinese male that exhibited early developmental delay and frequent seizures starting from the age of 5 months. We aim that this case report, focusing on studying clinical seizures, therapeutic approaches, and the patient's prognosis, will contribute to the cumulative knowledge of this rare and complex genetic disorder.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Chen
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - BiXia Zheng
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xianyu Liu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zixuan Cao
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Wang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Zhao X, Wang Y, Mei S, Kong X. A novel PCDH19 missense mutation, c.812G>A (p.Gly271Asp), identified using whole-exome sequencing in a Chinese family with epilepsy female restricted mental retardation syndrome. Mol Genet Genomic Med 2020; 8:e1234. [PMID: 32314541 PMCID: PMC7284031 DOI: 10.1002/mgg3.1234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 11/12/2022] Open
Abstract
Background Epilepsy limited to females with mental retardation (EFMR) is a rare type of epilepsy with an X‐linked mode of inheritance, which affect heterozygous females while the males are not affected. Mutations within the protocadherin 19 (PCDH19) gene have been identified as the direct cause of EFMR. The phenotype of EFMR is characterized by seizure onset in infancy with or without cognitive impairment, intellectual disturbances, and autistic features. Methods Whole‐exome sequencing (WES) was performed in the proband to identify the underlying genetic mutations. The candidate genes were confirmed by Sanger sequencing following PCR amplification. In silico analyses were conducted to predict the effect of the novel missense mutation on the function of PCDH19 protein. Results We identified three female patients in a family with a novel missense mutation in PCDH19, c.812G>A (p. (Gly271Asp)). The patients III‐1 and III‐2 presented with more severe clinical phenotypes and an earlier age of onset (6 and 11 months, respectively), intellectual disability, and movement disorders. By contrast, patient II‐4 has a later age of onset (23 months), and there was no relapse of seizures without antiepileptic treatment after the age of six. In silico analyses showed that p. (Gly271Asp) in the PCDH19 affects a highly conserved residue. Conclusions Our results indicated that patients with the same PCDH19 mutation in a family may show intrafamilial phenotypic variability. Givening the mother of the proband was 18 weeks pregnant and intends to have a prenatal diagnosis, the more reasonable and less harmful strategies for prenatal diagnosis could be chosen based on the results of noninvasive prenatal testing and genetic testing.
Collapse
Affiliation(s)
- Xuechao Zhao
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Gene Editing of Human Genetic Disease, Erqi District, Zhengzhou, People's Republic of China
| | - Yanhong Wang
- Henan provincial key laboratory of children's genetics and metabolic diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, Zhengzhou, China
| | - Shiyue Mei
- Henan provincial key laboratory of children's genetics and metabolic diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, Zhengzhou, China
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Gene Editing of Human Genetic Disease, Erqi District, Zhengzhou, People's Republic of China
| |
Collapse
|
35
|
PCDH19-Related Epilepsy Syndrome: A Comprehensive Clinical Review. Pediatr Neurol 2020; 105:3-9. [PMID: 32057594 DOI: 10.1016/j.pediatrneurol.2019.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
PCDH19-related epilepsy is a distinct childhood-onset epilepsy syndrome characterized by brief clusters of febrile and afebrile seizures with onset primarily before the age of three years, cognitive impairment, autistic traits, and behavioral abnormalities. PCDH19 gene is located in Xq22 and produces nonclustered delta protocadherin. This disorder primarily manifests in heterozygote females due to random X chromosome inactivation leading to somatic mosaicism and abnormal cellular interference between cells with and without delta-protocadherin. This article reviews the clinical features based on a comprehensive literature review (MEDLINE using PubMed and OvidSP vendors with appropriate keywords to incorporate recent evidence), personal practice, and experience. Significant progress has been made in the past 10 years, including identification of the gene responsible for the condition, characterization of clinical phenotypes, and development of animal models. More rigorous studies involving quality-of-life measures as well as standardized neuropsychiatric testing are necessary to understand the full spectrum of the disease. The recent discovery of allopregnanolone deficiency in patients with PCDH19-related epilepsy leads to opportunities in precision therapy. A phase 3 clinical study is currently active to evaluate the efficacy, safety, and tolerability of adjunctive ganaxolone (an allopregnanolone analog) therapy.
Collapse
|
36
|
Cárdenas-Rodríguez N, Carmona-Aparicio L, Pérez-Lozano DL, Ortega-Cuellar D, Gómez-Manzo S, Ignacio-Mejía I. Genetic variations associated with pharmacoresistant epilepsy (Review). Mol Med Rep 2020; 21:1685-1701. [PMID: 32319641 PMCID: PMC7057824 DOI: 10.3892/mmr.2020.10999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common, serious neurological disorder worldwide. Although this disease can be successfully treated in most cases, not all patients respond favorably to medical treatments, which can lead to pharmacoresistant epilepsy. Drug-resistant epilepsy can be caused by a number of mechanisms that may involve environmental and genetic factors, as well as disease- and drug-related factors. In recent years, numerous studies have demonstrated that genetic variation is involved in the drug resistance of epilepsy, especially genetic variations found in drug resistance-related genes, including the voltage-dependent sodium and potassium channels genes, and the metabolizer of endogenous and xenobiotic substances genes. The present review aimed to highlight the genetic variants that are involved in the regulation of drug resistance in epilepsy; a comprehensive understanding of the role of genetic variation in drug resistance will help us develop improved strategies to regulate drug resistance efficiently and determine the pathophysiological processes that underlie this common human neurological disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Liliana Carmona-Aparicio
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Diana L Pérez-Lozano
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Daniel Ortega-Cuellar
- Laboratory of Experimental Nutrition, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Saúl Gómez-Manzo
- Laboratory of Genetic Biochemistry, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Iván Ignacio-Mejía
- Laboratory of Translational Medicine, Military School of Health Graduates, Lomas de Sotelo, Militar, Mexico City 11200, Mexico
| |
Collapse
|
37
|
Hoelz H, Herdl C, Gerstl L, Tacke M, Vill K, von Stuelpnagel C, Rost I, Hoertnagel K, Abicht A, Hollizeck S, Larsen LHG, Borggraefe I. Impact on Clinical Decision Making of Next-Generation Sequencing in Pediatric Epilepsy in a Tertiary Epilepsy Referral Center. Clin EEG Neurosci 2020; 51:61-69. [PMID: 31554424 DOI: 10.1177/1550059419876518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background. Next-generation sequencing (NGS) describes new powerful techniques of nucleic acid analysis, which allow not only disease gene identification diagnostics but also applications for transcriptome/methylation analysis and meta-genomics. NGS helps identify many monogenic epilepsy syndromes. Pediatric epilepsy patients can be tested using NGS epilepsy panels to diagnose them, thereby influencing treatment choices. The primary objective of this study was to evaluate the impact of genetic testing on clinical decision making in pediatric epilepsy patients. Methods. We completed a single-center retrospective cohort study of 91 patients (43 male) aged 19 years or less undergoing NGS with epilepsy panels differing in size ranging from 5 to 434 genes from October 2013 to September 2017. Results. During a mean time of 3.6 years between symptom onset and genetic testing, subjects most frequently showed epileptic encephalopathy (40%), focal epilepsy (33%), and generalized epilepsy (18%). In 16 patients (18% of the study population), "pathogenic" or "likely pathogenic" results according to ACMG criteria were found. Ten of the 16 patients (63%) experienced changes in clinical management regarding their medication and avoidance of further diagnostic evaluation, that is, presurgical evaluation. Conclusion. NGS epilepsy panels contribute to the diagnosis of pediatric epilepsy patients and may change their clinical management with regard to both preventing unnecessary and potentially harmful diagnostic procedures and management. Thus, the present data support the early implementation in order to adopt clinical management in selected cases and prevent further invasive investigations. Given the relatively small sample size and heterogeneous panels a larger prospective study with more homogeneous panels would be helpful to further determine the impact of NGS on clinical decision making.
Collapse
Affiliation(s)
- Hannes Hoelz
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Herdl
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Lucia Gerstl
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Moritz Tacke
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Katharina Vill
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Celina von Stuelpnagel
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany.,Paracelsus Medical University, Salzburg, Austria
| | - Imma Rost
- Zentrum für Humangenetik und Laboratoriumsdiagnostik Dr. Klein Dr. Rost und Kollegen, Martinsried, Germany
| | | | - Angela Abicht
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,Medical Genetics Center-MGZ, Munich, Germany
| | - Sebastian Hollizeck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Department of Pediatrics, Ludwig-Maximilians-University, Munich, Germany
| | | | - Ingo Borggraefe
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany.,Epilepsy Center (Pediatric Section), Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
38
|
Trivisano M, Specchio N. The role of PCDH19 in refractory status epilepticus. Epilepsy Behav 2019; 101:106539. [PMID: 31678000 DOI: 10.1016/j.yebeh.2019.106539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023]
Abstract
PCDH19-Girls Clustering Epilepsy (GCE) is an epileptic syndrome with infantile onset, characterized by clustered and fever-induced seizures, often associated with intellectual disability (ID) and autistic features. Seizures clusters could progress into status epilepticus (SE) with different semiology, both convulsive and nonconvulsive SE (NCSE), and often refractory to conventional antiepileptic drugs. We reviewed literature on PCDH19-GCE, in order to define prevalence, semiology, treatments, and outcome of SE. We conducted a comprehensive review of the PCDH19-GCE literature on the public databases PubMed and EMBASE from January 2008 to July 2019. An overall number of 59 full-text articles were selected, retrieved, and assessed for eligibility. We collected 269 cases with PCDH19-GCE, in 85 of them, a history of SE was reported. Prevalence of SE in all selected series of PCDH19-GCE series is 31.5%. Data on SE were fully exhaustive in 21 cases. There was no gender difference in SE occurrence. Median age at first SE occurrence was 12 months (6 months-11 years). Semiology of SE was reported in 17 cases: it was convulsive in 15 and nonconvulsive in 2. Status epilepticus was refractory in 15 out of 21 cases (71.4%). Benzodiazepine was the most commonly used drug for SE. Alternative treatments with steroids and ketogenic diet were reported as well. We found a high prevalence of ID and autism (19 out of 21 patients, 90%). Despite the relatively high frequency of SE in those patients, there are few specific descriptions of the semiology, EEG pattern, and treatment approach. We strongly believe that a multicenter study looking specifically at SE characteristics might improve the knowledge and consequently the overall outcome. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".
Collapse
Affiliation(s)
- Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
39
|
Yang L, Liu J, Su Q, Li Y, Yang X, Xu L, Tong L, Li B. Novel and de novo mutation of PCDH19 in Girls Clustering Epilepsy. Brain Behav 2019; 9:e01455. [PMID: 31714027 PMCID: PMC6908879 DOI: 10.1002/brb3.1455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND PCDH19 has become the second most relevant gene in epilepsy after SCN1A. Seizures often provoked by fever. METHODS We screened 152 children with fever-sensitive epilepsy for gene detection. Their clinical information was followed up. RESULTS We found eight PCDH19 point mutations (four novel and four reported) and one whole gene deletion in 10 female probands (seven sporadic cases and three family cases) who also had cluster seizures. The common clinical features of 16 patients in 10 families included fever-sensitive and cluster seizures, mainly focal or tonic-clonic seizures, and absence of status epilepticus, normal intelligence, or mild-to-moderate cognitive impairment, the onset age ranges from 5 months to 20 years. Only four patients had multiple or focal transient discharges in interictal EEG. Focal seizures originating in the frontal region were recorded in four patients, two from the parietal region, and one from the occipital region. CONCLUSION PCDH19 mutation can be inherited or de novo. The clinical spectrum of PCDH19 mutation includes PCDH19 Girls Clustering Epilepsy with or without mental retardation, psychosis, and asymptomatic male. The onset age of PCDH19 Girls Clustering Epilepsy can range from infancy to adulthood. Sisters in the same family may be sensitive to the same antiepileptic drugs. And our report expands the mutation spectrum of PCDH19 Girls Clustering Epilepsy.
Collapse
Affiliation(s)
- Li Yang
- Department of Pediatrics, Qilu Hospital Affiliated to Shandong University, Jinan, China.,Department of Pediatrics, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Jing Liu
- Department of Pediatrics, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Quanping Su
- Central Laboratory, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Yufen Li
- Department of Pediatrics, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Liyun Xu
- Department of Pediatrics, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Lili Tong
- Department of Pediatrics, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
40
|
Lv X, Ren SQ, Zhang XJ, Shen Z, Ghosh T, Xianyu A, Gao P, Li Z, Lin S, Yu Y, Zhang Q, Groszer M, Shi SH. TBR2 coordinates neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the mammalian cortex. Nat Commun 2019; 10:3946. [PMID: 31477701 PMCID: PMC6718393 DOI: 10.1038/s41467-019-11854-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogenesis is coordinated with structural and functional development remains largely unclear. The T-box protein TBR2/EOMES is preferentially enriched in intermediate progenitors and supports cortical neurogenesis expansion. Here we show that TBR2 regulates fine-scale spatial and circuit organization of excitatory neurons in addition to enhancing neurogenesis in the mouse cortex. TBR2 removal leads to a significant reduction in neuronal, but not glial, output of individual radial glial progenitors as revealed by mosaic analysis with double markers. Moreover, in the absence of TBR2, clonally related excitatory neurons become more laterally dispersed and their preferential synapse development is impaired. Interestingly, TBR2 directly regulates the expression of Protocadherin 19 (PCDH19), and simultaneous PCDH19 expression rescues neurogenesis and neuronal organization defects caused by TBR2 removal. Together, these results suggest that TBR2 coordinates neurogenesis expansion and precise microcircuit assembly via PCDH19 in the mammalian cortex.
Collapse
Affiliation(s)
- Xiaohui Lv
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Si-Qiang Ren
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin-Jun Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Zhongfu Shen
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tanay Ghosh
- Inserm, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, Paris, 75005, France.,Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Anjin Xianyu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Peng Gao
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhizhong Li
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Susan Lin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Yang Yu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Qiangqiang Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Matthias Groszer
- Inserm, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, Paris, 75005, France
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Graduate Program in Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA. .,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
41
|
Copy number variation analysis in 83 children with early-onset developmental and epileptic encephalopathy after targeted resequencing of a 109-epilepsy gene panel. J Hum Genet 2019; 64:1097-1106. [DOI: 10.1038/s10038-019-0661-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
|
42
|
Benova B, Jacques TS. Genotype-phenotype correlations in focal malformations of cortical development: a pathway to integrated pathological diagnosis in epilepsy surgery. Brain Pathol 2019; 29:473-484. [PMID: 30485578 PMCID: PMC8028510 DOI: 10.1111/bpa.12686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Malformations of cortical development (MCD) comprise a broad spectrum of developmental brain abnormalities. Patients presenting with MCDs often suffer from drug-resistant focal epilepsy, and some become candidates for epilepsy surgery. Their likelihood of achieving freedom from seizures, however, remains uncertain, and depends in a major part on the underlying pathology. Tissue samples obtained in epilepsy surgery form the basis of definite histopathological diagnosis; however, new molecular genetic methods have not yet been implemented in diagnostic processes for MCD cases. Furthermore, it has not been completely understood how the underlying pathology affects patients' outcomes after epilepsy surgery. We performed a systematic literature review of studies describing both histopathological and molecular genetic findings in MCD, along with studies on epilepsy surgery outcomes. We aimed to correlate the genetic causes with the underlying morphological abnormalities in focal cortical malformations and to stress the importance of the underlying biology for patient management and counseling. From the summarized findings of multiple authors, it is obvious that MCD may have a diverse genetic background despite a similar or even identical histopathological picture. Even though most of their molecular genetic findings converge on various levels of the PI3K/AKT/mTOR pathway, the exact mechanisms underlying MCD formation have not yet been completely described or indeed how this pathway generates a diverse range of histological abnormalities. Based on our findings, we therefore propose that all patients diagnosed and operated for drug-resistant epilepsy should have an integrated molecular and pathological diagnosis similar to the current practice in brain tumor diagnostic processes that might lead to more accurate diagnosis and effective stratification of patients undergoing epilepsy surgery.
Collapse
Affiliation(s)
- Barbora Benova
- 2nd Faculty of Medicine, Department of Paediatric NeurologyCharles University and Motol University HospitalPragueCzech Republic
- 2nd Faculty of MedicineCharles UniversityPragueCzech Republic
- Developmental Biology and Cancer ProgrammeUCL GOS Institute of Child HealthLondonUK
| | - Thomas S. Jacques
- Developmental Biology and Cancer ProgrammeUCL GOS Institute of Child HealthLondonUK
- Department of HistopathologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
43
|
Bassani S, Cwetsch AW, Gerosa L, Serratto GM, Folci A, Hall IF, Mazzanti M, Cancedda L, Passafaro M. The female epilepsy protein PCDH19 is a new GABAAR-binding partner that regulates GABAergic transmission as well as migration and morphological maturation of hippocampal neurons. Hum Mol Genet 2019; 27:1027-1038. [PMID: 29360992 PMCID: PMC5886308 DOI: 10.1093/hmg/ddy019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/04/2018] [Indexed: 01/15/2023] Open
Abstract
The PCDH19 gene (Xp22.1) encodes the cell-adhesion protein protocadherin-19 (PCDH19) and is responsible for a neurodevelopmental pathology characterized by female-limited epilepsy, cognitive impairment and autistic features, the pathogenic mechanisms of which remain to be elucidated. Here, we identified a new interaction between PCDH19 and GABAA receptor (GABAAR) alpha subunits in the rat brain. PCDH19 shRNA-mediated downregulation reduces GABAAR surface expression and affects the frequency and kinetics of miniature inhibitory postsynaptic currents (mIPSCs) in cultured hippocampal neurons. In vivo, PCDH19 downregulation impairs migration, orientation and dendritic arborization of CA1 hippocampal neurons and increases rat seizure susceptibility. In sum, these data indicate a role for PCDH19 in GABAergic transmission as well as migration and morphological maturation of neurons.
Collapse
Affiliation(s)
| | - Andrzej W Cwetsch
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Laura Gerosa
- CNR Institute of Neuroscience, Milan 20129, Italy
| | | | | | | | - Michele Mazzanti
- Department of Bioscience, University of Milan, Milan 20133, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy.,Telethon Dulbecco Institute, Milan, Italy
| | | |
Collapse
|
44
|
Gerosa L, Francolini M, Bassani S, Passafaro M. The Role of Protocadherin 19 (PCDH19) in Neurodevelopment and in the Pathophysiology of Early Infantile Epileptic Encephalopathy-9 (EIEE9). Dev Neurobiol 2019; 79:75-84. [PMID: 30431232 DOI: 10.1002/dneu.22654] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/15/2023]
Abstract
PCDH19 is considered one of the most clinically relevant genes in epilepsy, second only to SCN1A. To date about 150 mutations have been identified as causative for PCDH19-female epilepsy (also known as early infantile epileptic encephalopathy-9, EIEE9), which is characterized by early onset epilepsy, intellectual disabilities, and behavioral disturbances. Although little is known about the physiological role of PCDH19 and the pathogenic mechanisms that lead to EIEE9, in this review, we will present latest researches focused on these aspects, underlining protein expression, its known functions and the mechanisms by which the protein acts, with particular interest in PCDH19 extracellular and intracellular roles in neurons.
Collapse
Affiliation(s)
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | | | | |
Collapse
|
45
|
Niazi R, Fanning EA, Depienne C, Sarmady M, Abou Tayoun AN. A mutation update for the PCDH19 gene causing early-onset epilepsy in females with an unusual expression pattern. Hum Mutat 2019; 40:243-257. [PMID: 30582250 DOI: 10.1002/humu.23701] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/26/2018] [Accepted: 12/18/2018] [Indexed: 11/08/2022]
Abstract
The PCDH19 gene consists of six exons encoding a 1,148 amino acid transmembrane protein, Protocadherin 19, which is involved in brain development. Heterozygous pathogenic variants in this gene are inherited in an unusual X-linked dominant pattern in which heterozygous females are affected, while hemizygous males are typically unaffected, although they pass on the pathogenic variant to each affected daughter. PCDH19-related disorder is known to cause early-onset epilepsy in females characterized by seizure clusters exacerbated by fever and in most cases, onset is within the first year of life. This condition was initially described in 1971 and in 2008 PCDH19 was identified as the underlying genetic etiology. This condition is the result of pathogenic loss-of-function variants that may be de novo or inherited from an affected mother or unaffected father and cellular interference has been hypothesized to be the culprit. Heterozygous females are symptomatic because of the presence of both wild-type and mutant cells that interfere with one another due to the production of different surface proteins, whereas nonmosaic hemizygous males produce a homogenous population of cells. Here, we review novel pathogenic variants in the PCDH19 gene since 2012 to date, and summarize any genotype-phenotype correlations.
Collapse
Affiliation(s)
- Rojeen Niazi
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth A Fanning
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris, 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France.,IGBMC, CNRS UMR 7104/INSERM U964/Université de Strasbourg, Illkirch, France
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
46
|
Trivisano M, Pietrafusa N, Terracciano A, Marini C, Mei D, Darra F, Accorsi P, Battaglia D, Caffi L, Canevini MP, Cappelletti S, Cesaroni E, de Palma L, Costa P, Cusmai R, Giordano L, Ferrari A, Freri E, Fusco L, Granata T, Martino T, Mastrangelo M, Bova SM, Parmeggiani L, Ragona F, Sicca F, Striano P, Specchio LM, Tondo I, Zambrelli E, Zamponi N, Zanus C, Boniver C, Vecchi M, Avolio C, Dalla Bernardina B, Bertini E, Guerrini R, Vigevano F, Specchio N. Defining the electroclinical phenotype and outcome of PCDH19-related epilepsy: A multicenter study. Epilepsia 2018; 59:2260-2271. [PMID: 30451291 DOI: 10.1111/epi.14600] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE PCDH19-related epilepsy is an epileptic syndrome with infantile onset, characterized by clustered and fever-induced seizures, often associated with intellectual disability (ID) and autistic features. The aim of this study was to analyze a large cohort of patients with PCDH19-related epilepsy and better define the epileptic phenotype, genotype-phenotype correlations, and related outcome-predicting factors. METHODS We retrospectively collected genetic, clinical, and electroencephalogram (EEG) data of 61 patients with PCDH19-related epilepsy followed at 15 epilepsy centers. All consecutively performed EEGs were analyzed, totaling 551. We considered as outcome measures the development of ID, autistic spectrum disorder (ASD), and seizure persistence. The analyzed variables were the following: gender, age at onset, age at study, genetic variant, fever sensitivity, seizure type, cluster occurrence, status epilepticus, EEG abnormalities, and cognitive and behavioral disorders. Receiver operating characteristic curve analysis was performed to evaluate the age at which seizures might decrease in frequency. RESULTS At last follow-up (median = 12 years, range = 1.9-42.1 years), 48 patients (78.7%) had annual seizures/clusters, 13 patients (21.3%) had monthly to weekly seizures, and 12 patients (19.7%) were seizure-free for ≥2 years. Receiver operating characteristic analysis showed a significant decrease of seizure frequency after the age of 10.5 years (sensitivity = 81.0%, specificity = 70.0%). Thirty-six patients (59.0%) had ID and behavioral disturbances. ASD was present in 31 patients. An earlier age at epilepsy onset emerged as the only predictive factor for ID (P = 0.047) and ASD (P = 0.014). Conversely, age at onset was not a predictive factor for seizure outcome (P = 0.124). SIGNIFICANCE We found that earlier age at epilepsy onset is related to a significant risk for ID and ASD. Furthermore, long-term follow-up showed that after the age of 10 years, seizures decrease in frequency and cognitive and behavioral disturbances remain the primary clinical problems.
Collapse
Affiliation(s)
- Marina Trivisano
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | - Nicola Pietrafusa
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Carla Marini
- Pediatric Neurology Unit and Laboratories, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Davide Mei
- Pediatric Neurology Unit and Laboratories, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Francesca Darra
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | | | | | - Lorella Caffi
- Neuropsychiatric Unit, University of Bergamo, Bergamo, Italy
| | - Maria P Canevini
- Epilepsy Center, San Paolo Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Simona Cappelletti
- Unit of Clinical Psychology, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Luca de Palma
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Costa
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Raffaella Cusmai
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucio Giordano
- Child Neuropsychiatric Unit, Civilian Hospital, Brescia, Italy
| | - Annarita Ferrari
- Department of Developmental Neuroscience, Clinical Neurophysiology Laboratory, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Lucia Fusco
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Tommaso Martino
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | - Massimo Mastrangelo
- Pediatric Neurology Unit, Vittore Buzzi Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Stefania M Bova
- Pediatric Neurology Unit, Vittore Buzzi Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Lucio Parmeggiani
- Department of Neuropediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Federico Sicca
- Department of Developmental Neuroscience, Clinical Neurophysiology Laboratory, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, G. Gaslini Institute, University of Genoa, Genoa, Italy
| | - Luigi M Specchio
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | - Ilaria Tondo
- Unit of Clinical Psychology, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Zambrelli
- Epilepsy Center, San Paolo Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Nelia Zamponi
- Child Neuropsychiatric Unit, University of Ancona, Ancona, Italy
| | - Caterina Zanus
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Clementina Boniver
- Child Neurology and Clinical Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Marilena Vecchi
- Child Neurology and Clinical Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Carlo Avolio
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | | | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Federico Vigevano
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Specchio
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
47
|
Han CL, Zhao XM, Liu YP, Wang KL, Chen N, Hu W, Zhang JG, Ge M, Meng FG. Gene Expression Profiling of Two Epilepsy Models Reveals the ECM/Integrin signaling Pathway is Involved in Epiletogenesis. Neuroscience 2018; 396:187-199. [PMID: 30452975 DOI: 10.1016/j.neuroscience.2018.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
The molecular mechanisms underlying the development of epilepsy, i.e., epileptogenesis, are due to altered expression of a series of genes. Global expression profiling of temporal lobe epilepsy is confounded by a number of factors, including the variability among animal species, animal models, and tissue sampling time-points. In this study, we pooled two microarray datasets of the most used pilocarpine and kainic acid epilepsy models from the Gene Expression Omnibus database. A total of 567 known and novel genes were commonly differentially expressed across the two models. Pathway analyses demonstrated that the dysregulated genes were involved in 46 pathways. Real-time PCR and western blot analysis confirmed the activation of extracellular matrix (ECM)/integrin signaling pathways. Moreover, targeting ECM/integrin signaling inhibits astrocyte activation and promotes neuron injury in the hippocampus of epileptic mice. This study may provide a "gene/pathway database" that with further investigation can determine the mechanisms underlining epileptogenesis and the possible targets for neuron protection in the hippocampus after status epilepticus.
Collapse
Affiliation(s)
- Chun-Lei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China
| | - Xue-Min Zhao
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China
| | - Yun-Peng Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China
| | - Kai-Liang Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China
| | - Ning Chen
- Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Hu
- Department of Neurology, University of Florida, FL 32607, USA
| | - Jian-Guo Zhang
- Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Fan-Gang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China.
| |
Collapse
|
48
|
Winawer MR, Griffin NG, Samanamud J, Baugh EH, Rathakrishnan D, Ramalingam S, Zagzag D, Schevon CA, Dugan P, Hegde M, Sheth SA, McKhann GM, Doyle WK, Grant GA, Porter BE, Mikati MA, Muh CR, Malone CD, Bergin AMR, Peters JM, McBrian DK, Pack AM, Akman CI, LaCoursiere CM, Keever KM, Madsen JR, Yang E, Lidov HG, Shain C, Allen AS, Canoll P, Crino PB, Poduri AH, Heinzen EL. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 2018; 83:1133-1146. [PMID: 29679388 PMCID: PMC6105543 DOI: 10.1002/ana.25243] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/01/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Somatic variants are a recognized cause of epilepsy-associated focal malformations of cortical development (MCD). We hypothesized that somatic variants may underlie a wider range of focal epilepsy, including nonlesional focal epilepsy (NLFE). Through genetic analysis of brain tissue, we evaluated the role of somatic variation in focal epilepsy with and without MCD. METHODS We identified somatic variants through high-depth exome and ultra-high-depth candidate gene sequencing of DNA from epilepsy surgery specimens and leukocytes from 18 individuals with NLFE and 38 with focal MCD. RESULTS We observed somatic variants in 5 cases in SLC35A2, a gene associated with glycosylation defects and rare X-linked epileptic encephalopathies. Nonsynonymous variants in SLC35A2 were detected in resected brain, and absent from leukocytes, in 3 of 18 individuals (17%) with NLFE, 1 female and 2 males, with variant allele frequencies (VAFs) in brain-derived DNA of 2 to 14%. Pathologic evaluation revealed focal cortical dysplasia type Ia (FCD1a) in 2 of the 3 NLFE cases. In the MCD cohort, nonsynonymous variants in SCL35A2 were detected in the brains of 2 males with intractable epilepsy, developmental delay, and magnetic resonance imaging suggesting FCD, with VAFs of 19 to 53%; Evidence for FCD was not observed in either brain tissue specimen. INTERPRETATION We report somatic variants in SLC35A2 as an explanation for a substantial fraction of NLFE, a largely unexplained condition, as well as focal MCD, previously shown to result from somatic mutation but until now only in PI3K-AKT-mTOR pathway genes. Collectively, our findings suggest a larger role than previously recognized for glycosylation defects in the intractable epilepsies. Ann Neurol 2018.
Collapse
Affiliation(s)
- Melodie R. Winawer
- Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Nicole G. Griffin
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| | - Jorge Samanamud
- Department of Neurosurgery, Columbia University, New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Evan H. Baugh
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| | | | | | - David Zagzag
- Department of Pathology, New York University Langone Medical Center, New York, NY, 10016, USA
- Department of Neurosurgery, New York University Langone Medical Center, New York, NY, 10016, USA
| | | | - Patricia Dugan
- Department of Neurology, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Manu Hegde
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Sameer A. Sheth
- Department of Neurological Surgery, Columbia University, New York, NY, 10032, USA
| | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University, New York, NY, 10032, USA
| | - Werner K. Doyle
- Department of Neurosurgery, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Lucile Packard Children’s Hospital at Stanford, Stanford, CA, 94305, USA
| | - Brenda E. Porter
- Department of Neurology, Lucile Packard Children’s Hospital at Stanford, Stanford, CA 94305
| | - Mohamad A. Mikati
- Division of Pediatric Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University, Durham, NC, 27708, USA
| | - Carrie R. Muh
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, 27708, USA
| | - Colin D. Malone
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| | - Ann Marie R. Bergin
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Jurriaan M. Peters
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Danielle K. McBrian
- Division of Pediatric Neurology, Columbia University, New York, NY, 10032, USA
| | - Alison M. Pack
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Cigdem I. Akman
- Division of Pediatric Neurology, Columbia University, New York, NY, 10032, USA
| | | | - Katherine M. Keever
- Department of Neurology, Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph R. Madsen
- Department of Neurosurgery, Boston Children’s Hospital and Department of Neurosurgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital and Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hart G.W. Lidov
- Department of Pathology, Boston Children’s Hospital and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Catherine Shain
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Andrew S. Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27710, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Peter B. Crino
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Annapurna H. Poduri
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, USA
- F.M.Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Erin L. Heinzen
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
49
|
Homan CC, Pederson S, To TH, Tan C, Piltz S, Corbett MA, Wolvetang E, Thomas PQ, Jolly LA, Gecz J. PCDH19 regulation of neural progenitor cell differentiation suggests asynchrony of neurogenesis as a mechanism contributing to PCDH19 Girls Clustering Epilepsy. Neurobiol Dis 2018; 116:106-119. [PMID: 29763708 DOI: 10.1016/j.nbd.2018.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 01/12/2023] Open
Abstract
PCDH19-Girls Clustering Epilepsy (PCDH19-GCE) is a childhood epileptic encephalopathy characterised by a spectrum of neurodevelopmental problems. PCDH19-GCE is caused by heterozygous loss-of-function mutations in the X-chromosome gene, Protocadherin 19 (PCDH19) encoding a cell-cell adhesion molecule. Intriguingly, hemizygous males are generally unaffected. As PCDH19 is subjected to random X-inactivation, heterozygous females are comprised of a mosaic of cells expressing either the normal or mutant allele, which is thought to drive pathology. Despite being the second most prevalent monogeneic cause of epilepsy, little is known about the role of PCDH19 in brain development. In this study we show that PCDH19 is highly expressed in human neural stem and progenitor cells (NSPCs) and investigate its function in vitro in these cells of both mouse and human origin. Transcriptomic analysis of mouse NSPCs lacking Pcdh19 revealed changes to genes involved in regulation of neuronal differentiation, and we subsequently show that loss of Pcdh19 causes increased NSPC neurogenesis. We reprogramed human fibroblast cells harbouring a pathogenic PCDH19 mutation into human induced pluripotent stem cells (hiPSC) and employed neural differentiation of these to extend our studies into human NSPCs. As in mouse, loss of PCDH19 function caused increased neurogenesis, and furthermore, we show this is associated with a loss of human NSPC polarity. Overall our data suggests a conserved role for PCDH19 in regulating mammalian cortical neurogenesis and has implications for the pathogenesis of PCDH19-GCE. We propose that the difference in timing or "heterochrony" of neuronal cell production originating from PCDH19 wildtype and mutant NSPCs within the same individual may lead to downstream asynchronies and abnormalities in neuronal network formation, which in-part predispose the individual to network dysfunction and epileptic activity.
Collapse
Affiliation(s)
- Claire C Homan
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Thu-Hien To
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Chuan Tan
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Mark A Corbett
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Lachlan A Jolly
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia.
| | - Jozef Gecz
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia.
| |
Collapse
|
50
|
Suzuki-Muromoto S, Wakusawa K, Miyabayashi T, Sato R, Okubo Y, Endo W, Inui T, Togashi N, Kato A, Oba H, Nakashima M, Saitsu H, Matsumoto N, Haginoya K. A case of new PCDH12 gene variants presented as dyskinetic cerebral palsy with epilepsy. J Hum Genet 2018; 63:749-753. [DOI: 10.1038/s10038-018-0432-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 01/29/2023]
|