1
|
Łojek P, Rzeszutek M. PANS and PANDAS - symptoms beyond OCD and tics - a systematic review. J Psychiatr Res 2025; 187:144-153. [PMID: 40367585 DOI: 10.1016/j.jpsychires.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
This article aims to describe the symptomatology of Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal infections (PANDAS) and Pediatric Acute-onset Neuropsychiatric Syndrome (PANS), and to highlight some of their potential distinctive features, by juxtaposing available data with existing literature on pediatric obsessive - compulsive disorder (OCD). Given the scarcity of high-quality studies, we decided to review a wide range of publications on the clinical presentation of PANS and PANDAS, including case series and case reports, regardless of their methodological heterogeneity. Although PANS and PANDAS share many characteristics with non-PANS/PANDAS OCD, the acute onset of obsessive-compulsive symptoms in conjunction with concomitant features, especially separation anxiety, irritability, emotional lability, or dysgraphia should prompt consideration of a possible post-infectious etiology. Further research aimed at creating more precise diagnostic tools is needed to facilitate differential diagnosis.
Collapse
Affiliation(s)
- Paula Łojek
- Department of Child Psychiatry, Medical University of Warsaw, Żwirki I Wigury 63A, 02-091 Warsaw, Poland
| | - Marcin Rzeszutek
- Department of Child Psychiatry, Medical University of Warsaw, Żwirki I Wigury 63A, 02-091 Warsaw, Poland.
| |
Collapse
|
2
|
Meng H, Bigambo FM, Gu W, Wang X, Li Y. Evaluation of thyroid function tests among children with neurological disorders. Front Endocrinol (Lausanne) 2024; 15:1498788. [PMID: 39717108 PMCID: PMC11663650 DOI: 10.3389/fendo.2024.1498788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Background Thyroid hormones (THs) are essential for brain development. Numerous studies have identified significant links between thyroid dysfunction and cognitive function. However, research on the significance and necessity of thyroid function tests in diagnosis of neurological disorders is limited and subject to controversy. Methods Our study employed a combination of meta-analysis and case-control design. For the meta-analysis, we conducted a systematic search of online databases for studies that compared thyroid function tests in children with neurological disorders to controls. In our case-control study, we recruited a total of 11836 children, comprising 7035 cases and 4801 healthy controls. Wilcoxon Rank Sum Test was used to determine characteristics of thyroid function between the cases and healthy controls. In order to exclude the false discovery rate (FDR), the Benjamini-Hochberg (BH) procedure is applied. Results A total of 12 relevant literature sources were included in the meta-analysis. Compared with controls, free thyroxine (FT4) levels were significantly decreased in neurological disorders in meta-analysis (MD = -0.29, 95% CI: -0.50 to -0.09), whereas thyroid-stimulating hormone (TSH) levels showed no significant difference (MD = -0.07, 95% CI: -0.36 to 0.21). In our case-control study, levels of free thyroxine (FT4), total triiodothyronine (TT3), total thyroxine (TT4), and anti-thyroglobulin antibodies (TG-Ab) were notably reduced among individuals with neurological disorders, compared with healthy controls (P<0.001, P<0.001, P=0.036, P=0.006). However, thyroid-stimulating hormone (TSH) levels did not show any statistically significant differences among the cases and controls. Conclusions Our research demonstrates that, in comparison to controls, children with neurological disorders exhibited a significant decrease in FT4 levels, while TSH levels remained unchanged. This finding provides a reference for potential serum marker of neurological disorders in children. Replication in future studies with the assessment of THs is needed to determine whether thyroid function should be included as a routine screening in these children.
Collapse
Affiliation(s)
- Haojie Meng
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Francis Manyori Bigambo
- Clinical Medical Research Center, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Gu
- Clinical Medical Research Center, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Wang
- Clinical Medical Research Center, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Li
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Sharma A, Pappas D, Gonzalez-Heydrich J, Sullivan NR, Nyp SS. Challenging Case: New-Onset Hallucinations and Developmental Regression in a Child with Autism Spectrum Disorder. J Dev Behav Pediatr 2024; 45:e267-e270. [PMID: 38603607 DOI: 10.1097/dbp.0000000000001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
CASE Nick is a 5-year-old boy who began displaying self-stimulating behaviors and decreased social interactions shortly before turning 3 years. At the age of 3.5 years, he was diagnosed with autism spectrum disorder by a local developmental-behavioral pediatrician. His parents recall that the physician described Nick to be "high functioning" and encouraged them to expect that he would attend college and live independently as an adult. Upon receiving the diagnosis, intervention was initiated using an applied behavioral analysis (ABA) approach. With this intervention, he demonstrated initial gains in the use of complex language and improved social interactions.Concerns regarding suspected psychosis emerged just before starting kindergarten when Nick began experiencing ego-dystonic visual and auditory hallucinations. Initially, Nick verbally responded to the hallucinations and vividly described what he was experiencing. Shortly after the onset of these hallucinations, Nick experienced a significant decrease in the frequency and complexity of his expressive language and became more withdrawn. Over time, his hallucinations intensified, and his parents became increasingly fearful for his safety. Various antipsychotic and mood-stabilizing medications, steroids, and immunotherapy have been trialed with limited improvement of his symptoms.An extensive medical evaluation yielded the following:1. Magnetic resonance imaging of the brain: dilated perivascular spaces.2. Urine organic acids: ketosis and increased lactic acid.3. Antinuclear antibody: minimally positive.4. Vitamin B12: elevated.All other studies, including lumbar puncture, electroencephalogram (awake and asleep), genetic studies (chromosomal microarray, fragile X testing, and whole exome sequencing), metabolic studies, inflammatory markers, and thyroid panel, were negative/normal.Nick is enrolled in a special education classroom within a school that utilizes an ABA-based approach for all students. As part of his educational programming, he receives 25 hours of ABA in a 1:1 setting, 2 hours of speech therapy, 3 hours of occupational therapy, 1 hour of physical therapy, and 30 minutes of music therapy weekly. Current concerns include significant head-banging and thrashing before falling asleep, hyperactivity, unsafe behaviors (e.g., banging on windows, climbing high to reach desired items), aggression toward caregivers, limited ability to complete self-care tasks (e.g., personal hygiene, toileting), significant decline in expressive language, and continued response to internal stimuli.Nick's parents now present to a multidisciplinary center seeking guidance regarding additional therapies/interventions to assist in management of his current developmental and behavioral challenges as well as information regarding his expected developmental trajectory as he reaches adulthood.
Collapse
Affiliation(s)
- Aanchal Sharma
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Brookline, MA
| | - Demetra Pappas
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Brookline, MA
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Nancy R Sullivan
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Brookline, MA
| | - Sarah S Nyp
- Department of Pediatrics, Division of Developmental and Behavioral Health, Children's Mercy Kansas City, UMKC School of Medicine, Kansas City, MO
| |
Collapse
|
4
|
Wang L, Chen Y, Wang M, Zhao C, Qiao D. Relationship between gene-environment interaction and obsessive-compulsive disorder: A systematic review. J Psychiatr Res 2023; 164:281-290. [PMID: 37390623 DOI: 10.1016/j.jpsychires.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/29/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Gene-environment interaction (G × E) refers to the change of genetic effects under the participation of environmental factors resulting in differences in genetic expression. G × E has been studied in the occurrence and development of many neuropsychiatric disorders, including obsessive-compulsive disorder (OCD). AIM A systematic review was conducted to investigate the role of G × E plays in OCD. This review explored the relationship between G × E and the susceptibility to OCD occurrence, disease progression, and treatment response. METHODS This systematic literature search was performed using Web of Science, PubMed, Cochrane Library, and CNKI. Seven studies were selected, which included seven genes (BDNF, COMT, MAO, 5-HTT, SMAD4, PGRN, and SLC1A1) polymorphisms, polygenic risk score (PRS), and two environmental factors (childhood trauma and stressful life events). RESULTS Information from this systematic review indicated that G × E increased the susceptibility to OCD, played a crucial role in the clinical characteristics, and had an inconsistent impact on treatment response of OCD. FUTURE DIRECTIONS The multi-omics studies and the inclusion of G × E in future GWAS studies of OCD should be drawn more attention, which may contribute to a deeper understanding of the etiology of OCD as well as guide therapeutic interventions for the disease.
Collapse
Affiliation(s)
- Lina Wang
- Department of Psychology, Shandong Normal University, Jinan, Shandong, 250358, China; Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, Shandong, 250014, China
| | - Yu Chen
- Jining Medical University, Jining, Shandong, 272000, China
| | - Miao Wang
- Jining Medical University, Jining, Shandong, 272000, China
| | - Chaoben Zhao
- Jining Medical University, Jining, Shandong, 272000, China
| | - Dongdong Qiao
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, Shandong, 250014, China.
| |
Collapse
|
5
|
Lachman HM. Use of cerebral organoids to model environmental and gene x environment interactions in the developing fetus and neurodegenerative disorders. PHENOTYPING OF HUMAN IPSC-DERIVED NEURONS 2023:173-200. [DOI: 10.1016/b978-0-12-822277-5.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Zhang T, Brander G, Isung J, Isomura K, Sidorchuk A, Larsson H, Chang Z, Mataix-Cols D, Fernández de la Cruz L. Prenatal and Early Childhood Infections and Subsequent Risk of Obsessive-Compulsive Disorder and Tic Disorders: A Nationwide, Sibling-Controlled Study. Biol Psychiatry 2022; 93:1023-1030. [PMID: 36155699 DOI: 10.1016/j.biopsych.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Postinfectious autoimmune processes are hypothesized to be causally related to both obsessive-compulsive disorder (OCD) and tic disorders, but current evidence is conflicting. This study examined whether prenatal maternal (and paternal, as an internal control) infections and early childhood infections in the offspring (i.e., during the first 3 years of life) were associated with a subsequent risk of OCD and Tourette syndrome or chronic tic disorder (TS/CTD). METHODS Individuals exposed to any prenatal maternal infection (n = 16,743) and early childhood infection (n = 264,346) were identified from a population-based birth cohort consisting of 2,949,080 singletons born in Sweden between 1973 and 2003 and were followed through 2013. Cox proportional hazard regression models were used to estimate hazard ratios (HRs). Sibling analyses were performed to control for familial confounding. RESULTS At the population level, and after adjusting for parental psychiatric history and autoimmune diseases, a significantly increased risk of OCD and TS/CTD was found in individuals exposed to prenatal maternal (but not paternal) infections (OCD: HR, 1.33; 95% CI, 1.12-1.57; TS/CTD: HR, 1.60; 95% CI, 1.23-2.09) and early childhood infections (OCD: HR, 1.19; 95% CI, 1.14-1.25; TS/CTD: HR, 1.34; 95% CI, 1.24-1.44). However, these associations were no longer significant in the sibling analyses. CONCLUSIONS The results do not support the hypothesis that prenatal maternal or early-life infections play a direct causal role in the etiology of either OCD or TS/CTD. Instead, familial factors (e.g., genetic pleiotropy) may explain both the propensity to infections and the liability to OCD and TS/CTD.
Collapse
Affiliation(s)
- Tianyang Zhang
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Region Stockholm, Sweden; Stockholm Health Care Services, Stockholm, Region Stockholm, Sweden.
| | - Gustaf Brander
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Region Stockholm, Sweden; Stockholm Health Care Services, Stockholm, Region Stockholm, Sweden; Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Josef Isung
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Region Stockholm, Sweden; Stockholm Health Care Services, Stockholm, Region Stockholm, Sweden
| | - Kayoko Isomura
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Region Stockholm, Sweden; Stockholm Health Care Services, Stockholm, Region Stockholm, Sweden
| | - Anna Sidorchuk
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Region Stockholm, Sweden; Stockholm Health Care Services, Stockholm, Region Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Region Stockholm, Sweden; School of Medical Sciences, Örebro Universitet, Örebro, Sweden
| | - Zheng Chang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Region Stockholm, Sweden
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Region Stockholm, Sweden; Stockholm Health Care Services, Stockholm, Region Stockholm, Sweden
| | - Lorena Fernández de la Cruz
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Region Stockholm, Sweden; Stockholm Health Care Services, Stockholm, Region Stockholm, Sweden
| |
Collapse
|
7
|
Trifiletti R, Lachman HM, Manusama O, Zheng D, Spalice A, Chiurazzi P, Schornagel A, Serban AM, van Wijck R, Cunningham JL, Swagemakers S, van der Spek PJ. Identification of ultra-rare genetic variants in pediatric acute onset neuropsychiatric syndrome (PANS) by exome and whole genome sequencing. Sci Rep 2022; 12:11106. [PMID: 35773312 PMCID: PMC9246359 DOI: 10.1038/s41598-022-15279-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Abrupt onset of severe neuropsychiatric symptoms including obsessive-compulsive disorder, tics, anxiety, mood swings, irritability, and restricted eating is described in children with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS). Symptom onset is often temporally associated with infections, suggesting an underlying autoimmune/autoinflammatory etiology, although direct evidence is often lacking. The pathological mechanisms are likely heterogeneous, but we hypothesize convergence on one or more biological pathways. Consequently, we conducted whole exome sequencing (WES) on a U.S. cohort of 386 cases, and whole genome sequencing (WGS) on ten cases from the European Union who were selected because of severe PANS. We focused on identifying potentially deleterious genetic variants that were de novo or ultra-rare (MAF) < 0.001. Candidate mutations were found in 11 genes (PPM1D, SGCE, PLCG2, NLRC4, CACNA1B, SHANK3, CHK2, GRIN2A, RAG1, GABRG2, and SYNGAP1) in 21 cases, which included two or more unrelated subjects with ultra-rare variants in four genes. These genes converge into two broad functional categories. One regulates peripheral immune responses and microglia (PPM1D, CHK2, NLRC4, RAG1, PLCG2). The other is expressed primarily at neuronal synapses (SHANK3, SYNGAP1, GRIN2A, GABRG2, CACNA1B, SGCE). Mutations in these neuronal genes are also described in autism spectrum disorder and myoclonus-dystonia. In fact, 12/21 cases developed PANS superimposed on a preexisting neurodevelopmental disorder. Genes in both categories are also highly expressed in the enteric nervous system and the choroid plexus. Thus, genetic variation in PANS candidate genes may function by disrupting peripheral and central immune functions, neurotransmission, and/or the blood-CSF/brain barriers following stressors such as infection.
Collapse
Affiliation(s)
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Olivia Manusama
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alberto Spalice
- Department of Pediatrics, Pediatric Neurology, Sapienza University of Rome, Rome, Italy
| | - Pietro Chiurazzi
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, UOC Genetica Medica, Rome, Italy
| | - Allan Schornagel
- GGZ-Delfland, Kinderpraktijk Zoetermeer, Zoetermeer, The Netherlands
| | - Andreea M Serban
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Rogier van Wijck
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Effect of Short-Term Deep-Pressure Portable Seat on Behavioral and Biological Stress in Children with Autism Spectrum Disorders: A Pilot Study. Bioengineering (Basel) 2022; 9:bioengineering9020048. [PMID: 35200402 PMCID: PMC8869092 DOI: 10.3390/bioengineering9020048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/12/2023] Open
Abstract
Children with autism spectrum disorder (ASD) have challenging behaviors, which are associated with difficulties in parenting. Deep pressure is a therapeutic modality in occupational therapy, and it was reported to produce a calming effect. This study aimed to determine whether the short-term use of an autism hug machine portable seat (AHMPS) improves behavioral and neurobiological stress in children with ASD, and to determine whether AHMPS with an inflatable wrap or manual pull is more effective. This study enrolled children with ASD who were administered with the inflatable wrap (group I) and manual pull (group II) for 20 min twice a week for 3 weeks. Conners’ Parent Rating Scale-48 (CPRS-48) was used to rate behavioral improvements, and galvanic skin response (GSR) was used to measure sympathetic stress response. A total of 20 children with ASD (14 boys and 6 girls; aged 7–13 years) were included. CPRS-48 presented conduct problems: behavior was significantly decreased in the inflatable group (p = 0.007) compared to the manual pull group. The GSR captured a significant reduction in sympathetic response (p = 0.01) only in group I. Neurobiological stress was reduced in children who were wearing the AHMPS inflatable wrap; therefore, AHMPS inflatable wrap is an effective method to reduce emotional arousal.
Collapse
|
9
|
Patel S, Cooper MN, Jones H, Whitehouse AJO, Dale RC, Guastella AJ. Maternal immune-related conditions during pregnancy may be a risk factor for neuropsychiatric problems in offspring throughout childhood and adolescence. Psychol Med 2021; 51:2904-2914. [PMID: 32476637 DOI: 10.1017/s0033291720001580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Emerging research suggests that maternal immune activation (MIA) may be associated with an increased risk of adverse neurodevelopmental and mental health outcomes in offspring. Using data from the Raine Study, we investigated whether MIA during pregnancy was associated with increased behavioral and emotional problems in offspring longitudinally across development. METHODS Mothers (Generation 1; N = 1905) were classified into the following categories: AAAE (Asthma/Allergy/Atopy/Eczema; N = 1267); infection (during pregnancy; N = 1082); no AAAE or infection (N = 301). The Child Behavior Checklist (CBCL) was administered for offspring at ages 5, 8, 10, 14, and 17. Generalized estimating equations were used to investigate the effect of maternal immune status on CBCL scores. RESULTS AAAE conditions were associated with significant increases in CBCL Total (β 2.49; CI 1.98-3.00), Externalizing (β 1.54; CI 1.05-2.03), and Internalizing (β 2.28; CI 1.80-2.76) scores. Infection conditions were also associated with increased Total (β 1.27; CI 0.77-1.78), Externalizing (β 1.18; CI 0.70-1.66), and Internalizing (β 0.76; CI 0.28-1.24) scores. Exposure to more than one AAAE and/or infection condition was associated with a greater elevation in CBCL scores than single exposures in males and females. Females showed greater increases on the Internalizing scale from MIA, while males showed similar increases on both Internalizing and Externalizing scales. CONCLUSIONS MIA was associated with increased behavioral and emotional problems in offspring throughout childhood and adolescence. This highlights the need to understand the relationship between MIA, fetal development, and long-term outcomes, with the potential to advance early identification and intervention strategies.
Collapse
Affiliation(s)
- Shrujna Patel
- Autism Clinic for Translational Research, Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Matthew N Cooper
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Hannah Jones
- Autism Clinic for Translational Research, Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Russell C Dale
- Autism Clinic for Translational Research, Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Adam J Guastella
- Autism Clinic for Translational Research, Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Santoro JD, Kerr LM, Codden R, Casper TC, Greenberg BM, Waubant E, Kong SW, Mandl KD, Gorman MP. Increased Prevalence of Familial Autoimmune Disease in Children With Opsoclonus-Myoclonus Syndrome. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1079. [PMID: 34475249 PMCID: PMC8422990 DOI: 10.1212/nxi.0000000000001079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
Background and Objectives Opsoclonus-myoclonus syndrome (OMS) is a rare autoimmune disorder associated with neuroblastoma in children, although idiopathic and postinfectious etiologies are present in children and adults. Small cohort studies in homogenous populations have revealed elevated rates of autoimmunity in family members of patients with OMS, although no differentiation between paraneoplastic and nonparaneoplastic forms has been performed. The objective of this study was to investigate the prevalence of autoimmune disease in first-degree relatives of pediatric patients with paraneoplastic and nonparaneoplastic OMS. Methods A single-center cohort study of consecutively evaluated children with OMS was performed. Parents of patients were prospectively administered surveys on familial autoimmune disease. Rates of autoimmune disease in first-degree relatives of pediatric patients with OMS were compared using Fisher exact t test and χ2 analysis: (1) between those with and without a paraneoplastic cause and (2) between healthy and disease (pediatric multiple sclerosis [MS]) controls from the United States Pediatric MS Network. Results Thirty-five patients (18 paraneoplastic, median age at onset 19.0 months; 17 idiopathic, median age at onset 25.0 months) and 68 first-degree relatives (median age 41.9 years) were enrolled. One patient developed systemic lupus erythematosus 7 years after OMS onset. Paraneoplastic OMS was associated with a 50% rate of autoimmune disease in a first-degree relative compared with 29% in idiopathic OMS (p = 0.31). The rate of first-degree relative autoimmune disease per OMS case (14/35, 40%) was higher than healthy controls (86/709, 12%; p < 0.001) and children with pediatric MS (101/495, 20%; p = 0.007). Discussion In a cohort of pediatric patients with OMS, there were elevated rates of first-degree relative autoimmune disease, with no difference in rates observed between paraneoplastic and idiopathic etiologies, suggesting an autoimmune genetic contribution to the development of OMS in children.
Collapse
Affiliation(s)
- Jonathan D Santoro
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA.
| | - Lauren M Kerr
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Rachel Codden
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Theron Charles Casper
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Benjamin M Greenberg
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Emmanuelle Waubant
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Sek Won Kong
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Kenneth D Mandl
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Mark P Gorman
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| |
Collapse
|
11
|
Yoon J, Mao Y. Dissecting Molecular Genetic Mechanisms of 1q21.1 CNV in Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:5811. [PMID: 34071723 PMCID: PMC8197994 DOI: 10.3390/ijms22115811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmental/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize the recent genome-wide association studies (GWASs) that have identified candidate genes positively correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We further present variations reported in the phenotypic severity, genomic penetrance and inheritance.
Collapse
Affiliation(s)
| | - Yingwei Mao
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
12
|
Martino D, Johnson I, Leckman JF. What Does Immunology Have to Do With Normal Brain Development and the Pathophysiology Underlying Tourette Syndrome and Related Neuropsychiatric Disorders? Front Neurol 2020; 11:567407. [PMID: 33041996 PMCID: PMC7525089 DOI: 10.3389/fneur.2020.567407] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The goal of this article is to review the past decade's literature and provide a critical commentary on the involvement of immunological mechanisms in normal brain development, as well as its role in the pathophysiology of Tourette syndrome, other Chronic tic disorders (CTD), and related neuropsychiatric disorders including Obsessive-compulsive disorder (OCD) and Attention deficit hyperactivity disorder (ADHD). Methods: We conducted a literature search using the Medline/PubMed and EMBASE electronic databases to locate relevant articles and abstracts published between 2009 and 2020, using a comprehensive list of search terms related to immune mechanisms and the diseases of interest, including both clinical and animal model studies. Results: The cellular and molecular processes that constitute our "immune system" are crucial to normal brain development and the formation and maintenance of neural circuits. It is also increasingly evident that innate and adaptive systemic immune pathways, as well as neuroinflammatory mechanisms, play an important role in the pathobiology of at least a subset of individuals with Tourette syndrome and related neuropsychiatric disorders In the conceptual framework of the holobiont theory, emerging evidence points also to the importance of the "microbiota-gut-brain axis" in the pathobiology of these neurodevelopmental disorders. Conclusions: Neural development is an enormously complex and dynamic process. Immunological pathways are implicated in several early neurodevelopmental processes including the formation and refinement of neural circuits. Hyper-reactivity of systemic immune pathways and neuroinflammation may contribute to the natural fluctuations of the core behavioral features of CTD, OCD, and ADHD. There is still limited knowledge of the efficacy of direct and indirect (i.e., through environmental modifications) immune-modulatory interventions in the treatment of these disorders. Future research also needs to focus on the key molecular pathways through which dysbiosis of different tissue microbiota influence neuroimmune interactions in these disorders, and how microbiota modification could modify their natural history. It is also possible that valid biomarkers will emerge that will guide a more personalized approach to the treatment of these disorders.
Collapse
Affiliation(s)
- Davide Martino
- Department of Clinical Neurosciences & Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Isaac Johnson
- Child Study Center, Yale University, New Haven, CT, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - James F. Leckman
- Child Study Center, Yale University, New Haven, CT, United States
- Departments of Psychiatry, Pediatrics and Psychology, Yale University, New Haven, CT, United States
| |
Collapse
|
13
|
Patel S, Dale RC, Rose D, Heath B, Nordahl CW, Rogers S, Guastella AJ, Ashwood P. Maternal immune conditions are increased in males with autism spectrum disorders and are associated with behavioural and emotional but not cognitive co-morbidity. Transl Psychiatry 2020; 10:286. [PMID: 32796821 PMCID: PMC7429839 DOI: 10.1038/s41398-020-00976-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Epidemiological and animal research shows that maternal immune activation increases the risk of autism spectrum disorders (ASD) in offspring. Emerging evidence suggests that maternal immune conditions may play a role in the phenotypic expression of neurodevelopmental difficulties in children with ASD and this may be moderated by offspring sex. This study aimed to investigate whether maternal immune conditions were associated with increased severity of adverse neurodevelopmental outcomes in children with ASD. Maternal immune conditions were examined as predictors of ASD severity, behavioural and emotional well-being, and cognitive functioning in a cohort of 363 children with ASD (n = 363; 252 males, 111 females; median age 3.07 [interquartile range 2.64-3.36 years]). We also explored whether these outcomes varied between male and female children. Results showed that maternal asthma was the most common immune condition reported in mothers of children with ASD. A history of maternal immune conditions (p = 0.009) was more common in male children with ASD, compared to female children. Maternal immune conditions were associated with increased behavioural and emotional problems in male and female children. By contrast, maternal immune conditions were not associated with decreased cognitive function. The findings demonstrate that MIA may influence the expression of symptoms in children with ASD and outcomes may vary between males and females.
Collapse
Affiliation(s)
- Shrujna Patel
- grid.1013.30000 0004 1936 834XAutism Clinic for Translational Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia
| | - Russell C. Dale
- grid.1013.30000 0004 1936 834XKids Neuroscience Centre, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Westmead, NSW Australia
| | - Destanie Rose
- grid.27860.3b0000 0004 1936 9684Department of Medical Microbiology and Immunology and MIND Institute, UC Davis, Davis, CA USA
| | - Brianna Heath
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Christine W. Nordahl
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Sally Rogers
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Adam J. Guastella
- grid.1013.30000 0004 1936 834XAutism Clinic for Translational Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology and MIND Institute, UC Davis, Davis, CA, USA.
| |
Collapse
|
14
|
Scola G. The importance of maternal immunity in psychiatry and neurodevelopment. Dev Med Child Neurol 2019; 61:866. [PMID: 30868553 DOI: 10.1111/dmcn.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gustavo Scola
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|