1
|
Dai R, Yin Y, Yu M, Zhang Y, Zhang J, Liu T, Fang X, Wu X, Shen Q, Xu H. Genitourinary defects, anxiety and aggressive-like behavior and glucose metabolism disorders in Zmym2 mutant mice with inserted piggyBac transposon. Front Cell Dev Biol 2025; 13:1523266. [PMID: 40313719 PMCID: PMC12043690 DOI: 10.3389/fcell.2025.1523266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Mutations in ZMYM2 lead to syndromic congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Tbx18 is co-expressed with Zmym2 in mesenchymal compartment of developing mouse ureter, indicating a potential in vivo relevance of the TBX18-ZMYM2 protein interaction in ureter development. The presence of multiple phenotypes beyond the urinary system in CAKUT patients carrying ZMYM2 mutations suggests that ZMYM2 has extensive roles in various developmental processes. This study aims to comprehensively examine the multi-phenotypic consequence of ZMYM2 mutations, with a particular focus on the roles of ZMYM2 in embryonic development, late metanephros formation, and the reproductive, nervous and endocrine systems, in addition to its role in urinary system. Using a new Zmym2 mutant mouse model with an inserted piggyBac transposon (PB), we found that homozygous Zmym2 mutations resulted in severe growth retardation of embryos by embryonic day 9.5 (E9.5D) and lethality from E10.5D. Heterozygous mutations caused morphogenetic issues in the genitourinary system, including duplex kidneys, vesicoureteral reflux (VUR), and cryptorchidism. And these heterozygous mutants exhibited anxiety and aggressive-like behaviors, and glucose metabolism disorders. Additionally, Zmym2 mutations induced duplicated ureteric bud (UB) eruption and abnormal nephrogenic zone extension, contributing to duplex kidney formation. Reduced apoptosis in the nephric duct might have contributed to abnormal ureter-bladder connections, which could explain the observed cases of VUR. Notably, Tbx18 is co-expressed with Zmym2 in mouse kidney, reduced Tbx18 expression in Zmym2 mutants further supports the hypothesis that Zmym2 interacts with Tbx18 during kidney development. Zmym2 PB mouse is the first model to demonstrate roles of Zmym2 in neuroethology and endocrinology, extending its significant beyond genitourinary defects and embryonic development. Further investigation of these phenotypes in CAKUT patients carrying ZMYM2 mutations will enhance our understanding of their phenotypes and improve strategies for early diagnosis, monitoring, and treatment.
Collapse
Affiliation(s)
- Rufeng Dai
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Ye Yin
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Yumeng Zhang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jingjia Zhang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Tianyi Liu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiaoyan Fang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- National Key Laboratory of Kidney Diseases, People's Liberation Army General Hospital, Beijing, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- National Key Laboratory of Kidney Diseases, People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
2
|
Dajnowicz-Brzezik P, Żebrowska E, Maciejczyk M, Zalewska A, Chabowski A. α -lipoic acid supplementation reduces oxidative stress and inflammation in red skeletal muscle of insulin-resistant rats. Biochem Biophys Res Commun 2025; 742:151107. [PMID: 39667068 DOI: 10.1016/j.bbrc.2024.151107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/16/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
α -lipoic acid (ALA) is an eight-carbon saturated fatty acid with strong antioxidant activity. Despite previous reports of ALA's protective properties in treating cardiovascular and metabolic diseases (including insulin resistance and diabetes), little is known about the compound's effects on skeletal muscle metabolism. In particular, the effect of ALA on glycooxidative and nitrosative damage in red muscles during insulin resistance is unknown. This study investigated the therapeutic potential of ALA on the antioxidant barrier as well as oxidative, nitrosative and carbonyl stress in the red skeletal muscle of rats with high-fat diet-induced insulin resistance. Male Wistar cmdb/outbred rats were divided into four equal groups: control diet (CTRL), high fat diet (HFD), CTRL + ALA (30 mg/kg body weight for 4 weeks; intragastrically) and HFD + ALA. Enzymatic and nonenzymatic antioxidant systems, protein and lipid glycoxidation, nitrosative stress, and selected inflammatory/apoptosis parameters were assessed using colorimetric, fluorimetric, and immune-enzymatic methods. ALA lowered body weight and glucose metabolism parameters in insulin-resistant rats. ALA not only strengthened enzymatic antioxidant defense (by increasing superoxide dismutase, catalase and glutathione peroxidase activity) but also stimulated the synthesis of non-enzymatic GSH. ALA supplementation inhibited lipid peroxidation (decreased lipid hydroperoxides and malondialdehyde content) and prevented protein oxidation (by lowering advanced oxidation protein products concentration) in red muscle. ALA's multifactorial actions on muscle tissue also included inhibition of inflammation and apoptosis, requiring further research to elucidate its effects in metabolic diseases.
Collapse
Affiliation(s)
- Patrycja Dajnowicz-Brzezik
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C st., 15-222, Bialystok, Poland.
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C st., 15-222, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza 2C st., 15-222, Bialystok, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, M. Skłodowskiej-Curie 24A st., 15-276, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C st., 15-222, Bialystok, Poland
| |
Collapse
|
3
|
Boboc IKS, Dumitrelea PD, Meca AD, Mititelu-Tartau L, Bogdan M. Exploring the Impact of Semaglutide on Cognitive Function and Anxiety-Related Behaviors in a Murine Model of Alzheimer's Disease. Biomedicines 2024; 12:2689. [PMID: 39767596 PMCID: PMC11673043 DOI: 10.3390/biomedicines12122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, is characterized by progressive cognitive decline and behavioral disturbances, with an increasing incidence as the global population ages. This study investigates the effects of semaglutide (SEM), a glucagon-like peptide-1 analog, on cognitive function and anxiety-like behavior in a transgenic murine model of AD. METHODS 20 mice were randomly distributed into the following groups (n = 5): (WT + VEH) group: C57BL/6J + saline, (WT + SEM) group: C57BL/6J + semaglutide, (AD + VEH) group: AD + saline, (AD + SEM) group: AD + semaglutide. The animals underwent a four-week treatment, during which we monitored blood glucose levels, body weight, and responses in an open field test, novel object recognition test, social chamber test, and 0-maze test. RESULTS Post-treatment, SEM significantly reduced blood glucose levels in AD mice, aligning them with those of wild-type controls. Cognitive assessments indicated an improvement in the investigation index for SEM-treated mice compared to those receiving a vehicle, suggesting cognitive benefits. Although SEM did not significantly enhance motor and exploratory activities, it displayed a potential anxiolytic effect, particularly evident in the combined anxiety index, with notable differences observed before and after treatment in the AD group. CONCLUSIONS The findings of this pilot study suggest that SEM may play a dual role in managing AD by improving glycemic control and potentially enhancing cognitive function. As the landscape of AD treatment evolves, the comprehensive approach of utilizing SEM could pave the way for innovative interventions targeting the complex interplay of metabolic and cognitive dysfunctions in this challenging neurodegenerative disorder.
Collapse
Affiliation(s)
- Ianis Kevyn Stefan Boboc
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.K.S.B.); (A.D.M.)
| | | | - Andreea Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.K.S.B.); (A.D.M.)
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.K.S.B.); (A.D.M.)
| |
Collapse
|
4
|
Daniels Gatward LF, King AJF. Matching model with mechanism: Appropriate rodent models for studying various aspects of diabetes pathophysiology. Methods Cell Biol 2024; 192:39-68. [PMID: 39863393 DOI: 10.1016/bs.mcb.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans. This includes pathogenesis specifically involving the beta cell, which is no longer considered to be innocuous in the development and progression of diabetes. In this chapter we explore rodent models that incorporate the initiating factors believed to be involved in type 1 diabetes (autoimmunity) and type 2 diabetes (insulin resistance), before further discussing rodents that can be used to model specific mechanisms involved in a failure of functional beta cell mass (impaired beta cell function and beta cell apoptosis). We segregate models of beta cell pathogenesis based on the beta cell stressor predominantly associated with phenotype, but it is important to consider that most rodent models will exhibit more than one beta cell stressor. Similarly, many models exhibit more than one pathogenic mechanism, for example the same model may show insulin resistance, impaired beta cell function as well as beta cell loss. This can complicate interpretation of results and should be considered, and the model thoroughly researched, during the experimental planning stage.
Collapse
Affiliation(s)
- Lydia F Daniels Gatward
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom
| | - Aileen J F King
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
5
|
Siqueira F, Rodrigues F, Ribeiro S, Veras H, Ferreira F, Siqueira R, dos Santos A, Havt A, Lima A. Induced acute hyperglycemia modifies the barrier function of the intestinal epithelium by tissue inflammation and tight junction disruption resulting in hydroelectrolytic secretion in an animal model. Braz J Med Biol Res 2024; 57:e13309. [PMID: 38656073 PMCID: PMC11027184 DOI: 10.1590/1414-431x2024e13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetic-metabolic syndrome (MetS-D) has a high prevalence worldwide, in which an association with the rupture of the intestinal epithelium barrier function (IEBF) has been pointed out, but the functional and morphological properties are still not well understood. This study aimed to evaluate the impact of acute hyperglycemia diabetes on intestinal tight junction proteins, metabolic failure, intestinal ion and water transports, and IEBF parameters. Diabetes was induced in male Rattus norvegicus (200-310 g) with 0.5 mL of streptozotocin (70 mg/kg). Glycemic and clinical parameters were evaluated every 7 days, and intestinal parameters were evaluated on the 14th day. The MetS-D animals showed a clinical pattern of hyperglycemia, with increases in the area of villi and crypts, lactulose:mannitol ratio, myeloperoxidase (MPO) activity, and intestinal tissue concentrations of malondialdehyde (MDA), but showed a reduction in reduced glutathione (GSH) when these parameters were compared to the control. The MetS-D group had increased secretion of Na+, K+, Cl-, and water compared to the control group in ileal tissue. Furthermore, we observed a reduction in mRNA transcript of claudin-2, claudin-15, and NHE3 and increases of SGLT-1 and ZO-1 in the MetS-D group. These results showed that MetS-D triggered intestinal tissue inflammation, oxidative stress, complex alterations in gene regulatory protein transcriptions of intestinal transporters and tight junctions, damaging the IEBF and causing hydroelectrolyte secretion.
Collapse
Affiliation(s)
- F.J.W.S. Siqueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F.A.P. Rodrigues
- Departamento de Educação Física e Esporte, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Fortaleza, CE, Brasil
| | - S.A. Ribeiro
- Programa de Pós-Graduação em Ciências Médicas, Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - H.N. Veras
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F.C.S. Ferreira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R.C.L. Siqueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A.A. dos Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A. Havt
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A.A.M. Lima
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
6
|
Kinyi HW, Kato CD, Tusubira D, Kiwanuka GN. Comparison of the Nutritional Status of Swiss Albino Mice Fed on Either a Purified or Cereal-Based Diet for 15 weeks. Biochem Res Int 2023; 2023:9121174. [PMID: 37293435 PMCID: PMC10247330 DOI: 10.1155/2023/9121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Background Laboratory animals are commonly fed on cereal-based diets (CBDs) whose nutrient composition is unknown and may confound the metabolic response to study interventions. Purified diets such as AIN-93M are therefore recommended, as their nutrient composition is known. However, few studies have evaluated their use as adequate control diets. The aim of this study was to compare the nutrition status of Swiss albino mice fed on either CBD or AIN-93M for 15 weeks. Methods Twenty Swiss albino mice aged 6-8 weeks and weighing 21.7 g ± 0.6 were fed on either CBD or AIN-93M diet for 15 weeks. Their nutritional status was evaluated using anthropometric and hematological indices, serum glucose, total protein, albumin, and total cholesterol to select an appropriate normal control diet. Results The CBD had low-calorie content (2.57 kcal/g) and protein (11 ± 3.8 g/100 g) compared to AIN-93M (3.8 kcal/g and 14 g/100 g, respectively). The BMI of male mice fed on CBD and AIN-93M diets was significantly higher (P=0.0139 and P=0.0325, respectively) compared to that of females fed on similar diets. Animals in the CBD group had lower hemoglobin (15.1-16.9 g/dl) compared to those in the AIN-93M group (18.1-20.8 g/dl). Serum albumin levels were higher in both male (P=0.001) and female (P=3 × 10-6) mice fed on AIN-93M compared to those fed on CBD. Females in the AIN-93M group had higher cholesterol (P=0.026) than those in the CBD group. Conclusion The AIN-93 diet of caloric value 3.85 kcal/g (total protein 14 g, total fat 4 g of soy bean oil, fibre 5 g, and total carbohydrate 42 g per 100 g) can be safely used as a normal control diet in long-term research studies using Swiss albino mice.
Collapse
Affiliation(s)
- Hellen W. Kinyi
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
- Department of Biochemistry, School of Medicine, Kabale University, P.O. Box 317, Kabale, Uganda
| | - Charles Drago Kato
- School of Biosecurity, Biotechnical and Laboratory Studies, College of Veterinary Medicine, Animal Resource and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Deusdedit Tusubira
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Gertrude N. Kiwanuka
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| |
Collapse
|
7
|
The Interaction of Food Allergy and Diabetes: Food Allergy Effects on Diabetic Mice by Intestinal Barrier Destruction and Glucagon-like Peptide 1 Reduction in Jejunum. Foods 2022; 11:foods11233758. [PMID: 36496564 PMCID: PMC9741085 DOI: 10.3390/foods11233758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in food allergies and diabetes leads to the assumption that they are related. This study aimed to (1) verify the interaction between food allergy and diabetes and (2) explore the potential mechanisms by which food allergy promotes diabetes. Female BALB/c mice were grouped into a control group (CK), an ovalbumin-sensitized group (OVA), a diabetes group (STZ), and a diabetic allergic group (STZ + OVA) (Mice were modeled diabetes with STZ first, then were given OVA to model food allergies), and an allergic diabetic group (OVA + STZ) (Mice were modeled food allergies with OVA first, then were given STZ to model diabetes). The results showed that OVA + STZ mice exhibited a more serious Th2 humoral response, and they were more susceptible to diabetes. Furthermore, when the OVA + STZ mice were in the sensitized state, the intestinal barrier function was severely impaired, and mast cell activation was promoted. Moreover, we found that the effect of food allergy on diabetes is related to the inhibition of GLP-1 secretion and the up-regulation of the PI3K/Akt/mTOR/NF-κB P65 signaling pathway in the jejunum. Overall, our results suggest that food allergies have interactions with diabetes, which sheds new light on the importance of food allergies in diabetes.
Collapse
|
8
|
Kennard MR, Nandi M, Chapple S, King AJ. The glucose tolerance test in mice: Sex, drugs and protocol. Diabetes Obes Metab 2022; 24:2241-2252. [PMID: 35815375 PMCID: PMC9795999 DOI: 10.1111/dom.14811] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/30/2022]
Abstract
AIM To establish the impact of sex, dosing route, fasting duration and acute habituation stress on glucose tolerance test (GTT) measurements used in the preclinical evaluation of potential glucose-modulating therapeutics. METHODS Adult male and female C57Bl/6J mice, implanted with HD-XG glucose telemetry devices, were fasted for 16 hours or 6 hours following acute habituation stress due to whole cage change, cage change with retention of used bedding or no cage change prior to intraperitoneal (IP) GTTs. To evaluate protocol refinement and sex on the ability of the GTT to detect drug effects, we administered 250 mg/kg oral metformin or 10 nmol/kg IP exendin-4 using optimized protocols. RESULTS Female mice were less sensitive to human intervention when initiating fasting. Following a 6-hour fast, retention of bedding whilst changing the cage base promotes quicker stabilization of basal blood glucose in both sexes. Prolonged fasting for 16 hours resulted in an exaggerated GTT response but induced pronounced basal hypoglycaemia. Following GTT protocol optimization the effect of exendin-4 and metformin was equivalent in both sexes, with females showing a more modest but more reproducible GTT response. CONCLUSIONS Variations in GTT protocol have profound effects on glucose homeostasis. Protocol refinement and/or the use of females still allows for detection of drug effects, providing evidence that more severe phenotypes are not an essential prerequisite when characterizing/validating new drugs.
Collapse
Affiliation(s)
| | - Manasi Nandi
- Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Sarah Chapple
- School of Cardiovascular Medicine & SciencesKing's College LondonLondonUK
| | | |
Collapse
|
9
|
Persaud S. Diabetes basic science research takes centre stage. Diabet Med 2021; 38:e14734. [PMID: 34811783 DOI: 10.1111/dme.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|