1
|
Gao Q, Yao D, Yin Z, Yu G, Shi B, Wang J. Comprehensive multi-omics approach reveals potential therapeutic targets and agents for osteoarthritis. Postgrad Med J 2025; 101:464-474. [PMID: 39665162 DOI: 10.1093/postmj/qgae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND The mechanisms underlying osteoarthritis (OA) remain unclear, and effective treatments are lacking. This study aims to identify OA-related genes and explore their potential in drug repositioning for OA treatment. METHODS Transcriptome-wide association studies (TWAS) were performed using genome-wide association studies summary data and expression quantitative trait loci data from the Genotype-Tissue Expression project. Differentially expressed genes between OA patients and healthy controls were identified using four datasets from the Gene Expression Omnibus database. Gene ontology and pathway enrichment analyses identified potential hub genes associated with OA. A network-based drug repositioning approach was applied to discover potential therapeutic drugs for OA. RESULTS Through TWAS and mRNA expression profiling, 7 and 167 OA-related genes were identified, respectively. From these, 128 OA-related genes were selected based on common biological processes. Using the maximal clique centrality algorithm, 10 core-related genes (JUN, VEGFA, FN1, CD44, PTGS2, STAT1, MAP 2K7, GRB2, EP300, and PXN) were identified for network-based drug repositioning. Consequently, 24 drugs were identified based on 128 OA-related genes and 23 drugs based on 10 core OA-related genes. Some identified drugs, such as dexamethasone, menadione, and hyaluronic acid, have been previously reported for OA and/or rheumatoid arthritis treatment. Network analysis also indicated that spironolactone, lovastatin, and atorvastatin may have potential in OA treatment. CONCLUSION This study identified potential OA-related genes and explored their roles in drug repositioning, suggesting the repurposing of existing drugs and the development of new therapeutic options for OA patients. Key message What is already known on this topic The exact pathogenesis of osteoarthritis (OA) remains unclear, and currently, there are no approved drugs that can prevent, halt, or inhibit the progression of OA. What this study adds We identified 128 OA-related genes and 10 core-related genes based on common biological processes revealed by TWAS and mRNA expression profiling. Using these genes, we discovered potential drugs for OA through the Network-based drug repositioning method. How this study might affect research, practice, or policy This study provides recommendations for repositioning existing drugs and developing new treatment options for patients with OA.
Collapse
Affiliation(s)
- Qingxia Gao
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 18877, Jing 10 Road, Jinan 250000, Shandong, China
| | - Dawei Yao
- Endocrine and Metabolic Disease Hospital of Shandong First Medical University, No. 18877, Jing 10 Road, Jinan 250000, Shandong, China
| | - Zuozhen Yin
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 18877, Jing 10 Road, Jinan 250000, Shandong, China
| | - Gongchang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 18877, Jing 10 Road, Jinan 250000, Shandong, China
| | - Bin Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 18877, Jing 10 Road, Jinan 250000, Shandong, China
| | - Jiaying Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 18877, Jing 10 Road, Jinan 250000, Shandong, China
| |
Collapse
|
2
|
Lin Y, He C, Liu J, Chung HY, Chen ZY, Wong WT. Houttuynia cordata Thunb. Extracts Alleviate Atherosclerosis and Modulate Gut Microbiota in Male Hypercholesterolemic Hamsters. Nutrients 2024; 16:3290. [PMID: 39408257 PMCID: PMC11478543 DOI: 10.3390/nu16193290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Aims: Hypercholesterolemia leads to cardiovascular diseases and atherosclerosis. Previous studies have highlighted the crucial role of gut microbiota in alleviating atherosclerosis progression and reducing plasma cholesterol. However, the protective effects of Houttuynia cordata Thunb (HCT), a well-known fishy Chinese herb, against hypercholesterolemia and vasculopathy remain largely unknown. This study aims to explore the effects of HCT extracts on vascular health and gut microbiota in golden Syrian hamsters with hypercholesterolemia. Methods: The hypercholesterolemia hamster model was established by feeding with a high-cholesterol diet. Aqueous or ethanolic HCT extracts were mixed with diet and concurrently given to hamsters for Six weeks. Plasma lipid profiles were evaluated. Aortas were collected to detect fatty streak areas. Feces were collected to analyze the abundance of microorganisms in the gut microbiota. Results: HCT ethanolic extract treatment remarkedly decreased plasma levels of total cholesterol and high-density lipoprotein cholesterol in hypercholesterolemic hamsters. Notably, both aqueous and ethanolic extracts of HCT reduced atherosclerotic plaques in hamsters fed with a high-cholesterol diet. Strikingly, the effects of HCT ethanolic extract in reducing atherosclerotic plaques are greater than aqueous extract. Furthermore, at the phylum level, the relative abundance of Firmicutes was decreased in hamsters treated with aqueous and ethanolic extracts of HCT. By contrast, the abundance of Bacteroidetes was increased by HCT treatment. At the family level, HCT extract favourably modulated the relative abundance of Porphyromonadaceae and Bacteroidales_S24-7_group. These findings indicate that HCT extracts may facilitate the growth of short-chain fatty acids-producing bacteria to alter gut microbiota composition, contributing to the reduction of plasma lipid levels. Conclusions: This study offers evidence demonstrating the effects of HCT extracts on alleviating atherosclerosis and lowering plasma cholesterol levels in the male hypercholesterolemic hamster model, offering novel insights into the pharmacological effects and promoting the application of HCT. This study highlights the potential of HCT as a dietary supplement to alleviate atherosclerosis, lower plasma cholesterol, and modulate the abundance of microorganisms in gut microbiota.
Collapse
Affiliation(s)
- Yuhong Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.L.); (C.H.); (H.-Y.C.); (Z.-Y.C.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chufeng He
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.L.); (C.H.); (H.-Y.C.); (Z.-Y.C.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianhui Liu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;
| | - Hau-Yin Chung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.L.); (C.H.); (H.-Y.C.); (Z.-Y.C.)
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.L.); (C.H.); (H.-Y.C.); (Z.-Y.C.)
| | - Wing-Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.L.); (C.H.); (H.-Y.C.); (Z.-Y.C.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
3
|
Banzi R, Garattini S. Paving the way towards medicines for women and men. Eur J Clin Pharmacol 2024; 80:1255-1256. [PMID: 38592471 DOI: 10.1007/s00228-024-03683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Affiliation(s)
- Rita Banzi
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Via Mario Negri 2, Milan, Italy
| | - Silvio Garattini
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Via Mario Negri 2, Milan, Italy.
| |
Collapse
|
4
|
Huang X, Liang N, Zhang F, Lin W, Ma W. Lovastatin-Induced Mitochondrial Oxidative Stress Leads to the Release of mtDNA to Promote Apoptosis by Activating cGAS-STING Pathway in Human Colorectal Cancer Cells. Antioxidants (Basel) 2024; 13:679. [PMID: 38929118 PMCID: PMC11200898 DOI: 10.3390/antiox13060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Statins are 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors widely used in the treatment of hyperlipidemia. The inhibition of HMG-CoA reductase in the mevalonate pathway leads to the suppression of cell proliferation and induction of apoptosis. The cyclic GMP-AMP synthase (cGAS) stimulator of the interferon genes (STING) signaling pathway has been suggested to not only facilitate inflammatory responses and the production of type I interferons (IFN), but also activate other cellular processes, such as apoptosis. It has not been studied, however, whether cGAS-STING activation is involved in the apoptosis induced by statin treatment in human colorectal cancer cells. In this study, we reported that lovastatin impaired mitochondrial function, including the depolarization of mitochondrial membrane potential, reduction of oxygen consumption, mitochondrial DNA (mtDNA) integrity, and mtDNA abundance in human colorectal cancer HCT116 cells. The mitochondrial dysfunction markedly induced ROS production in mitochondria, whereas the defect in mitochondria respiration or depletion of mitochondria eliminated reactive oxygen species (ROS) production. The ROS-induced oxidative DNA damage by lovastatin treatment was attenuated by mitochondrial-targeted antioxidant mitoquinone (mitoQ). Upon DNA damage, mtDNA was released into the cytosol and bound to DNA sensor cGAS, thus activating the cGAS-STING signaling pathway to trigger a type I interferon response. This effect was not activated by nuclear DNA (nuDNA) or mitochondrial RNA, as the depletion of mitochondria compromised this effect, but not the knockdown of retinoic acid-inducible gene-1/melanoma differentiation-associated protein 5 (RIG-I/MDA5) adaptor or mitochondrial antiviral signaling protein (MAVS). Moreover, lovastatin-induced apoptosis was partly dependent on the cGAS-STING signaling pathway in HCT116 cells as the knockdown of cGAS or STING expression rescued cell viability and mitigated apoptosis. Similarly, the knockdown of cGAS or STING also attenuated the antitumor effect of lovastatin in the HCT116 xenograft model in vivo. Our findings suggest that lovastatin-induced apoptosis is at least partly mediated through the cGAS-STING signaling pathway by triggering mtDNA accumulation in the cytosol in human colorectal cancer HCT116 cells.
Collapse
Affiliation(s)
- Xiaoming Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ning Liang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Fuming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
5
|
Öztürk K, Kuzu TE, Ayrıkçil S, Gürgan CA, Önder GÖ, Yay A. Effect of systemic atorvastatin on bone regeneration in critical-sized defects in hyperlipidemia: an experimental study. Int J Implant Dent 2023; 9:50. [PMID: 38097856 PMCID: PMC10721777 DOI: 10.1186/s40729-023-00508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
PURPOSE Hypocholesterolemic medications similar to atorvastatin are efficient in lowering blood lipid levels; however, compared to other medications in the statin family, their impact on bone metabolism is claimed to be insufficient. The impact of atorvastatin on bone regeneration in dental implantology in individuals with hyperlipidemia who received atorvastatin in the clinic is doubtful. METHODS In the study, 16 male New Zealand rabbits of 6 months were used. All rabbits were fed a high-cholesterol diet for 8 weeks, and hyperlipidemia was created. It was confirmed that the total cholesterol level in rabbits was above 105 mg/dl. A critical-sized defect was created in the mandible. The defect was closed with xenograft and membrane. Oral 10 mg/kg atorvastatin was started in the experimental group, and no drug was administered in the control group. At 16th week, animals were sacrificed. For histomorphological examination, the new bone area, osteoclast, and osteoblast activities were evaluated. RESULTS While new bone area (45,924 µm2, p < 0.001) and AP intensities (105.645 ± 16.727, p = 0.006) were higher in the atorvastatin group than in the control group, TRAP intensities in the control group (82.192 ± 5.346, p = 0.021) were higher than that in the atorvastatin group. CONCLUSIONS It has been found that high blood lipid levels will adversely affect bone graft healing and the use of systemic atorvastatin contributes to bone healing. Clinicians should pay attention to the selection of surgical materials, considering the importance of questioning drug use in their patients and the risks in cases of non-use.
Collapse
Affiliation(s)
- Kübra Öztürk
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Türkiye.
| | - Turan Emre Kuzu
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Türkiye
| | - Semih Ayrıkçil
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Türkiye
| | - Cem Abdulkadir Gürgan
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Türkiye
| | - Gözde Özge Önder
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
6
|
Davies C, Morgan AE, Mc Auley MT. Computationally Modelling Cholesterol Metabolism and Atherosclerosis. BIOLOGY 2023; 12:1133. [PMID: 37627017 PMCID: PMC10452179 DOI: 10.3390/biology12081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. The underlying pathological driver of CVD is atherosclerosis. The primary risk factor for atherosclerosis is elevated low-density lipoprotein cholesterol (LDL-C). Dysregulation of cholesterol metabolism is synonymous with a rise in LDL-C. Due to the complexity of cholesterol metabolism and atherosclerosis mathematical models are routinely used to explore their non-trivial dynamics. Mathematical modelling has generated a wealth of useful biological insights, which have deepened our understanding of these processes. To date however, no model has been developed which fully captures how whole-body cholesterol metabolism intersects with atherosclerosis. The main reason for this is one of scale. Whole body cholesterol metabolism is defined by macroscale physiological processes, while atherosclerosis operates mainly at a microscale. This work describes how a model of cholesterol metabolism was combined with a model of atherosclerotic plaque formation. This new model is capable of reproducing the output from its parent models. Using the new model, we demonstrate how this system can be utilized to identify interventions that lower LDL-C and abrogate plaque formation.
Collapse
Affiliation(s)
- Callum Davies
- Department of Physical, Mathematical and Engineering Sciences, University of Chester, Chester CH1 4BJ, UK;
| | - Amy E. Morgan
- School of Health & Sport Sciences, Liverpool Hope University, Liverpool L16 9JD, UK;
| | - Mark T. Mc Auley
- Department of Physical, Mathematical and Engineering Sciences, University of Chester, Chester CH1 4BJ, UK;
| |
Collapse
|
7
|
Srivastava RAK. A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD. Cells 2023; 12:1648. [PMID: 37371118 DOI: 10.3390/cells12121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Since the discovery of the LDL receptor in 1973 by Brown and Goldstein as a causative protein in hypercholesterolemia, tremendous amounts of effort have gone into finding ways to manage high LDL cholesterol in familial hypercholesterolemic (HoFH and HeFH) individuals with loss-of-function mutations in the LDL receptor (LDLR) gene. Statins proved to be the first blockbuster drug, helping both HoFH and HeFH individuals by inhibiting the cholesterol synthesis pathway rate-limiting enzyme HMG-CoA reductase and inducing the LDL receptor. However, statins could not achieve the therapeutic goal of LDL. Other therapies targeting LDLR include PCSK9, which lowers LDLR by promoting LDLR degradation. Inducible degrader of LDLR (IDOL) also controls the LDLR protein, but an IDOL-based therapy is yet to be developed. Among the LDLR-independent pathways, such as angiopoietin-like 3 (ANGPTL3), apolipoprotein (apo) B, apoC-III and CETP, only ANGPTL3 offers the advantage of treating both HoFH and HeFH patients and showing relatively better preclinical and clinical efficacy in animal models and hypercholesterolemic individuals, respectively. While loss-of-LDLR-function mutations have been known for decades, gain-of-LDLR-function mutations have recently been identified in some individuals. The new information on gain of LDLR function, together with CRISPR-Cas9 genome/base editing technology to target LDLR and ANGPTL3, offers promise to HoFH and HeFH individuals who are at a higher risk of developing atherosclerotic cardiovascular disease (ASCVD).
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions LLC, Boston, MA 02101-02117, USA
- College of Professional Studies, Northeastern University, Boston, MA 02101-02117, USA
| |
Collapse
|
8
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
9
|
May L, Bartolo B, Harrison D, Guzik T, Drummond G, Figtree G, Ritchie R, Rye KA, de Haan J. Translating atherosclerosis research from bench to bedside: navigating the barriers for effective preclinical drug discovery. Clin Sci (Lond) 2022; 136:1731-1758. [PMID: 36459456 PMCID: PMC9727216 DOI: 10.1042/cs20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. An ongoing challenge remains the development of novel pharmacotherapies to treat CVD, particularly atherosclerosis. Effective mechanism-informed development and translation of new drugs requires a deep understanding of the known and currently unknown biological mechanisms underpinning atherosclerosis, accompanied by optimization of traditional drug discovery approaches. Current animal models do not precisely recapitulate the pathobiology underpinning human CVD. Accordingly, a fundamental limitation in early-stage drug discovery has been the lack of consensus regarding an appropriate experimental in vivo model that can mimic human atherosclerosis. However, when coupled with a clear understanding of the specific advantages and limitations of the model employed, preclinical animal models remain a crucial component for evaluating pharmacological interventions. Within this perspective, we will provide an overview of the mechanisms and modalities of atherosclerotic drugs, including those in the preclinical and early clinical development stage. Additionally, we highlight recent preclinical models that have improved our understanding of atherosclerosis and associated clinical consequences and propose model adaptations to facilitate the development of new and effective treatments.
Collapse
Affiliation(s)
- Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, U.S.A
| | - Tomasz Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Gemma A. Figtree
- Kolling Research Institute, University of Sydney, Sydney, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Judy B. de Haan
- Cardiovascular Inflammation and Redox Biology Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department Cardiometabolic Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
10
|
Schoch L, Sutelman P, Suades R, Casani L, Padro T, Badimon L, Vilahur G. Hypercholesterolemia-Induced HDL Dysfunction Can Be Reversed: The Impact of Diet and Statin Treatment in a Preclinical Animal Model. Int J Mol Sci 2022; 23:8596. [PMID: 35955730 PMCID: PMC9368958 DOI: 10.3390/ijms23158596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
High-density lipoproteins (HDL) undergo adverse remodeling and loss of function in the presence of comorbidities. We assessed the potential of lipid-lowering approaches (diet and rosuvastatin) to rescue hypercholesterolemia-induced HDL dysfunction. Hypercholesterolemia was induced in 32 pigs for 10 days. Then, they randomly received one of the 30-day interventions: (I) hypercholesterolemic (HC) diet; (II) HC diet + rosuvastatin; (III) normocholesterolemic (NC) diet; (IV) NC diet + rosuvastatin. We determined cholesterol efflux capacity (CEC), antioxidant potential, HDL particle number, HDL apolipoprotein content, LDL oxidation, and lipid levels. Hypercholesterolemia time-dependently impaired HDL function (−62% CEC, −11% antioxidant index (AOI); p < 0.01), increased HDL particles numbers 2.8-fold (p < 0.0001), reduced HDL-bound APOM (−23%; p < 0.0001), and increased LDL oxidation 1.7-fold (p < 0.0001). These parameters remained unchanged in animals on HC diet alone up to day 40, while AOI deteriorated up to day 25 (−30%). The switch to NC diet reversed HDL dysfunction, restored apolipoprotein M content and particle numbers, and normalized cholesterol levels at day 40. Rosuvastatin improved HDL, AOI, and apolipoprotein M content. Apolipoprotein A-I and apolipoprotein C-III remained unchanged. Lowering LDL-C levels with a low-fat diet rescues HDL CEC and antioxidant potential, while the addition of rosuvastatin enhances HDL antioxidant capacity in a pig model of hypercholesterolemia. Both strategies restore HDL-bound apolipoprotein M content.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Pablo Sutelman
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Rosa Suades
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Laura Casani
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Teresa Padro
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
- Cardiovascular Research Chair, Autonomous University of Barcelona (UAB), 08025 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
| |
Collapse
|
11
|
Thomsen ML, Grønkjær C, Iervolino A, Rej S, Trepiccione F, Christensen BM. Atorvastatin does not ameliorate nephrogenic diabetes insipidus induced by lithium or potassium depletion in mice. Physiol Rep 2021; 9:e15111. [PMID: 34762363 PMCID: PMC8582289 DOI: 10.14814/phy2.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
Acquired forms of nephrogenic diabetes insipidus (NDI) include lithium (Li)-induced and hypokalemia-induced NDI. Both forms are associated with AQP2 downregulation and collecting duct (CD) cellular remodeling. Statins are cholesterol-lowering drugs appearing to increase AQP2 membrane-translocation and improve urine concentration in other NDI models. We have investigated if statins are able to prevent or rescue the Li-induced changes in mice and in a mouse cortical CD cell line (mCCDc1l ). Biotinylation assays showed that acute (1hr) atorvastatin, simvastatin, or fluvastatin increased AQP2 membrane accumulation in mCCDc1l cells showing that the cell line responds to acute statin treatment. To see whether chronic statin treatment abolish the Li effects, mCCDc1l cells were treated with 48 h Li, combined Li/atorvastatin or combined Li/simvastatin. Li reduced AQP2, but combined Li/atorvastatin or Li/simvastatin did not prevent AQP2 downregulation. In mice, chronic (21 days) Li increased urine output and reduced urine osmolality, but combined Li/atorvastatin did not prevent these effects. In inner medulla (IM), Li reduced total AQP2 and increased pS261-AQP2. Combined Li/atorvastatin did not abolish these changes. Atorvastatin did not prevent a Li-induced increase in intercalated cells and proliferation in IM. In mice with already established NDI, atorvastatin had no effect on the Li-induced changes either. Mice subjected to 14 days of potassium-deficient diet developed polyuria and AQP2 downregulation in IM. Co-treatment with atorvastatin did not prevent this. In conclusion, atorvastatin does not appear to be able to prevent or rescue Li-NDI or to prevent hypokalemic-induced NDI.
Collapse
Affiliation(s)
| | | | - Anna Iervolino
- Department of Translational Medical SciencesUniversity of Campania “L. Vanvitelli”NaplesItaly
- Biogem Institute of Molecular Biology and GeneticsAriano IrpinoItaly
| | - Soham Rej
- Jewish General Hospital/Lady Davis Institute/Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Francesco Trepiccione
- Department of Translational Medical SciencesUniversity of Campania “L. Vanvitelli”NaplesItaly
- Biogem Institute of Molecular Biology and GeneticsAriano IrpinoItaly
| | | |
Collapse
|
12
|
Huang XM, Huang JJ, Du JJ, Zhang N, Long Z, Yang Y, Zhong FF, Zheng BW, Shen YF, Huang Z, Qin X, Chen JH, Lin QY, Lin WJ, Ma WZ. Autophagy inhibitors increase the susceptibility of KRAS-mutant human colorectal cancer cells to a combined treatment of 2-deoxy-D-glucose and lovastatin. Acta Pharmacol Sin 2021; 42:1875-1887. [PMID: 33608672 PMCID: PMC8564510 DOI: 10.1038/s41401-021-00612-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
RAS-driven colorectal cancer relies on glucose metabolism to support uncontrolled growth. However, monotherapy with glycolysis inhibitors like 2-deoxy-D-glucose causes limited effectiveness. Recent studies suggest that anti-tumor effects of glycolysis inhibition could be improved by combination treatment with inhibitors of oxidative phosphorylation. In this study we investigated the effect of a combination of 2-deoxy-D-glucose with lovastatin (a known inhibitor of mevalonate pathway and oxidative phosphorylation) on growth of KRAS-mutant human colorectal cancer cell lines HCT116 and LoVo. A combination of lovastatin (>3.75 μM) and 2-deoxy-D-glucose (>1.25 mM) synergistically reduced cell viability, arrested cells in the G2/M phase, and induced apoptosis. The combined treatment also reduced cellular oxygen consumption and extracellular acidification rate, resulting in decreased production of ATP and lower steady-state ATP levels. Energy depletion markedly activated AMPK, inhibited mTOR and RAS signaling pathways, eventually inducing autophagy, the cellular pro-survival process under metabolic stress, whereas inhibition of autophagy by chloroquine (6.25 μM) enhanced the cytotoxic effect of the combination of lovastatin and 2-deoxy-D-glucose. These in vitro experiment results were reproduced in a nude mouse xenograft model of HCT116 cells. Our findings suggest that concurrently targeting glycolysis, oxidative phosphorylation, and autophagy may be a promising regimen for the management of RAS-driven colorectal cancers.
Collapse
Affiliation(s)
- Xiao-Ming Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jia-Jun Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jing-Jing Du
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Na Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ze Long
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - You Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Fang-Fang Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Bo-Wen Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yun-Fu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zhe Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiang Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jun-He Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qian-Yu Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wan-Jun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wen-Zhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
13
|
El-Say KM, Ahmed TA, Aljefri AH, El-Sawy HS, Fassihi R, Abou-Gharbia M. Oleic acid-reinforced PEGylated polymethacrylate transdermal film with enhanced antidyslipidemic activity and bioavailability of atorvastatin: A mechanistic ex-vivo/in-vivo analysis. Int J Pharm 2021; 608:121057. [PMID: 34461173 DOI: 10.1016/j.ijpharm.2021.121057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
To enhance the poor bioavailability and extensive liver metabolism of atorvastatin calcium (ATC), we have developed an oleic acid-reinforced PEGylated polymethacrylate (OLA-PEG-E-RLPO) transdermal film as a convenient and alternative delivery system. The effect of varying levels of Eudragit RLPO, PEG 400, and oleic acid on the target product profile was optimized through Quality by Design (QbD) approach. The ATC-loaded OLA-PEG-E-RLPO transdermal films were evaluated in ex-vivo experiments using full thickness skin, utilizing Franz cell studies, and undergone in-vivo pharmacokinetics/pharmacodynamics (PK/PD) assessment, using poloxamer-induced dyslipidemic Sprague-Dawley rats. At 2 and 12 h, the optimized ATC films with a thickness of 0.79 mm showed permeation of 37.34% and 97.23% into the receptor compartment, respectively. Steady-state flux was 0.172 mg/cm2h, with 7.01 × 10-4 cm/h permeability coefficient, and 0.713 × 10-3 cm2/h diffusion coefficient. In-vivo PK results indicated that the absorption profiles (AUC0-∞) of the optimized film in pre-treated group of animals were 8.6-fold and 2.8-fold greater than controls pre-treated with non-PEGylated non-oleic acid film and orally administered ATC, respectively. PD assessment of the lipid panel indicated that the lipid profile of the optimized film pre-treated group reached normal levels after 12 h, along with the significant enhancement over the non-PEGylated non-oleic acid film and the oral marketed tablet groups. The histopathological findings revealed near-normal hepatocyte structure for the optimized film pre-treated animal group. Our results further indicate that transdermal delivery films based on an optimized ATC-loaded OLA-PEG-E-RLPO were successfully developed and their assessment in both ex-vivo and in-vivo suggests enhanced permeability and improvement in bioavailability and antidyslipidemic activity of ATC. This approach can provide several advantages, especially during chronic administration of ATC, including improvement in patient compliance, therapeutic benefits, bioavailability, and feasibility for commercialization and as a platform for other drug classes.
Collapse
Affiliation(s)
- Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Arwa H Aljefri
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Reza Fassihi
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, United States.
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, United States
| |
Collapse
|
14
|
Wańkowicz P, Staszewski J, Dębiec A, Nowakowska-Kotas M, Szylińska A, Turoń-Skrzypińska A, Rotter I. Pre-Stroke Statin Therapy Improves In-Hospital Prognosis Following Acute Ischemic Stroke Associated with Well-Controlled Nonvalvular Atrial Fibrillation. J Clin Med 2021; 10:3036. [PMID: 34300202 PMCID: PMC8305559 DOI: 10.3390/jcm10143036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Many studies have confirmed the positive effect of statins in the secondary prevention of ischemic stroke. Although several studies have concluded that statins may also be beneficial in patients with atrial fibrillation-related stroke, the results of those studies are inconclusive. Therefore, the aim of this study was to analyze the effect of pre-stroke statin therapy on atrial fibrillation-related stroke among patients with a well-controlled atrial fibrillation. This retrospective multicenter analysis comprised 2309 patients with acute stroke, with a total of 533 patients meeting the inclusion criteria. The results showed a significantly lower neurological deficit on the National Institutes of Health Stroke Scale at hospital admission and discharge in the group of atrial fibrillation-related stroke patients who took statins before hospitalization compared with those who did not (p < 0.001). In addition, in-hospital mortality was significantly higher in the atrial fibrillation-related stroke patients not taking statins before hospitalization than in those who did (p < 0.001). Based on the results of our previous research and this current study, we postulate that the addition of a statin to the oral anticoagulants may be helpful in the primary prevention of atrial fibrillation-related stroke.
Collapse
Affiliation(s)
- Paweł Wańkowicz
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland; (A.S.); (A.T.-S.); (I.R.)
| | - Jacek Staszewski
- Department of Neurology, Military Medical Institute, Szaserów 128, 04-141 Warszawa, Poland; (J.S.); (A.D.)
| | - Aleksander Dębiec
- Department of Neurology, Military Medical Institute, Szaserów 128, 04-141 Warszawa, Poland; (J.S.); (A.D.)
| | - Marta Nowakowska-Kotas
- Department of Neurology, Medical University of Wrocław, Borowska 213, 50-566 Wrocław, Poland;
| | - Aleksandra Szylińska
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland; (A.S.); (A.T.-S.); (I.R.)
| | - Agnieszka Turoń-Skrzypińska
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland; (A.S.); (A.T.-S.); (I.R.)
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland; (A.S.); (A.T.-S.); (I.R.)
| |
Collapse
|
15
|
Orlowski S, Mourad JJ, Gallo A, Bruckert E. Coronaviruses, cholesterol and statins: Involvement and application for Covid-19. Biochimie 2021; 189:51-64. [PMID: 34153377 PMCID: PMC8213520 DOI: 10.1016/j.biochi.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
The infectious power of coronaviruses is dependent on cholesterol present in the membranes of their target cells. Indeed, the virus enters the infected cell either by fusion or by endocytosis, in both cases involving cholesterol-enriched membrane microdomains. These membrane domains can be disorganized in-vitro by various cholesterol-altering agents, including statins that inhibit cell cholesterol biosynthesis. As a consequence, numerous cell physiology processes, such as signaling cascades, can be compromised. Also, some examples of anti-bacterial and anti-viral effects of statins have been observed for infectious agents known to be cholesterol dependent. In-vivo, besides their widely-reported hypocholesterolemic effect, statins display various pleiotropic effects mediated, at least partially, by perturbation of membrane microdomains as a consequence of the alteration of endogenous cholesterol synthesis. It should thus be worth considering a high, but clinically well-tolerated, dose of statin to treat Covid-19 patients, in the early phase of infection, to inhibit virus entry into the target cells, in order to control the viral charge and hence avoid severe clinical complications. Based on its efficacy and favorable biodisposition, an option would be considering Atorvastatin, but randomized controlled clinical trials are required to test this hypothesis. This new therapeutic proposal takes benefit from being a drug repurposing, applied to a widely-used drug presenting a high efficiency-to-toxicity ratio. Additionally, this therapeutic strategy avoids any risk of drug resistance by viral mutation since it is host-targeted. Noteworthy, the same pharmacological approach could also be proposed to address different animal coronavirus endemic infections that are responsible for heavy economic losses.
Collapse
Affiliation(s)
- Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR 9198, and CEA / DRF / Institut des Sciences du Vivant Frédéric-Joliot / SB2SM, and Université Paris-Saclay, 91191, Gif-sur-Yvette, Cedex, France.
| | - Jean-Jacques Mourad
- Department of Internal Medicine and ESH Excellence Centre, Groupe Hospitalier Paris Saint-Joseph, Paris, France.
| | - Antonio Gallo
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Eric Bruckert
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| |
Collapse
|
16
|
Dubińska-Magiera M, Migocka-Patrzałek M, Lewandowski D, Daczewska M, Jagla K. Zebrafish as a Model for the Study of Lipid-Lowering Drug-Induced Myopathies. Int J Mol Sci 2021; 22:5654. [PMID: 34073503 PMCID: PMC8198905 DOI: 10.3390/ijms22115654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/06/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced myopathies are classified as acquired myopathies caused by exogenous factors. These pathological conditions develop in patients without muscle disease and are triggered by a variety of medicaments, including lipid-lowering drugs (LLDs) such as statins, fibrates, and ezetimibe. Here we summarise the current knowledge gained via studies conducted using various models, such as cell lines and mammalian models, and compare them with the results obtained in zebrafish (Danio rerio) studies. Zebrafish have proven to be an excellent research tool for studying dyslipidaemias as a model of these pathological conditions. This system enables in-vivo characterization of drug and gene candidates to further the understanding of disease aetiology and develop new therapeutic strategies. Our review also considers important environmental issues arising from the indiscriminate use of LLDs worldwide. The widespread use and importance of drugs such as statins and fibrates justify the need for the meticulous study of their mechanism of action and the side effects they cause.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| |
Collapse
|
17
|
Lee SH, Shin HS, Oh I. The Protective Effects of Statins Towards Vessel Wall Injury Caused by a Stent Retrieving Mechanical Thrombectomy Device : A Histological Analysis of the Rabbit Carotid Artery Model. J Korean Neurosurg Soc 2021; 64:693-704. [PMID: 33985322 PMCID: PMC8435644 DOI: 10.3340/jkns.2020.0303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/03/2021] [Indexed: 12/29/2022] Open
Abstract
Objective Endovascular mechanical thrombectomy (MT) has been regarded as one of the standard treatments for acute ischemic stroke caused by large vessel occlusion. Despite the wide use of stent retrievers for MT, arterial intimal damage caused when deployed stent is pulled has been a certain disadvantage. We hypothesized that statin could protect and stabilize vessel damage after endovascular MT using a stent retriever. In this animal study, we observed the protective effects of the statins towards MT-induced vessel wall injury. Methods Twenty-eight carotid arteries of fourteen rabbits were used in the experiments with MT using stent retriever. We divided the rabbits into four groups as follows : group 1, negative control; group 2, positive control; group 3, statin before MT; and group 4, statin after MT. After MT procedures, we harvested the carotid arteries and performed histomorphological and immunohistochemical analyses. Results In histomorphological analysis with hematoxylin and eosin and Masson's trichrome stain, significant intimal thickening (p<0.05) was observed in the positive control (group 2), compared to in the negative control (group 1). Intimal thickening was improved in the statin-administered groups (groups 3 and 4 vs. group 2, p<0.05). We also observed that statin administration after MT (group 4) resulted in a more effective decrease in intimal thickness than statin administration before MT (group 3) (p<0.05). We performed immunohistochemical analysis with the antibodies for tumor necrosis factor-alpha (TNF-α), cluster of differentiation (CD)11b, and CD163. In contrast to the negative control (group 1), the stained percentage areas of all immunological markers were markedly increased in the positive control (group 2) (p<0.05). Based on statin administration, the percentage area of TNF-α staining was significantly reduced (p<0.05) in group 3, compared to the positive control group (group 2). However, significant differences were not observed for CD11b and CD163 staining. In group 4, no significant differences were observed for TNF-α, CD11b, and CD163 staining (p≥0.05). The differences in the percentage areas of the different markers between the statin-administered groups (groups 3 and 4) were also not revealed. Conclusion We presented that statin administration before and after MT exerted protective effects towards vessel wall injury. The efficacy of statins was greater post-administration than pre-administration. Thus, statin administration in routine prescriptions in the peri-procedural period is strongly advised.
Collapse
Affiliation(s)
- Seung Hwan Lee
- Department of Neurosurgery, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hee Sup Shin
- Department of Neurosurgery, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Inho Oh
- Department of Neurosurgery, Veterans Health Service Medical Center, Seoul, Korea
| |
Collapse
|
18
|
Quantitative proteome comparison of human hearts with those of model organisms. PLoS Biol 2021; 19:e3001144. [PMID: 33872299 PMCID: PMC8084454 DOI: 10.1371/journal.pbio.3001144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/29/2021] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Delineating human cardiac pathologies and their basic molecular mechanisms relies on research conducted in model organisms. Yet translating findings from preclinical models to humans present a significant challenge, in part due to differences in cardiac protein expression between humans and model organisms. Proteins immediately determine cellular function, yet their large-scale investigation in hearts has lagged behind those of genes and transcripts. Here, we set out to bridge this knowledge gap: By analyzing protein profiles in humans and commonly used model organisms across cardiac chambers, we determine their commonalities and regional differences. We analyzed cardiac tissue from each chamber of human, pig, horse, rat, mouse, and zebrafish in biological replicates. Using mass spectrometry–based proteomics workflows, we measured and evaluated the abundance of approximately 7,000 proteins in each species. The resulting knowledgebase of cardiac protein signatures is accessible through an online database: atlas.cardiacproteomics.com. Our combined analysis allows for quantitative evaluation of protein abundances across cardiac chambers, as well as comparisons of cardiac protein profiles across model organisms. Up to a quarter of proteins with differential abundances between atria and ventricles showed opposite chamber-specific enrichment between species; these included numerous proteins implicated in cardiac disease. The generated proteomics resource facilitates translational prospects of cardiac studies from model organisms to humans by comparisons of disease-linked protein networks across species. This study provides protein abundance profiles for thousands of proteins across cardiac chambers for humans and five commonly used model organisms. This quantitative proteomics dataset represents the most comprehensive such resource to date, and can be queried via a web browser to identify the most appropriate model organism for future studies.
Collapse
|
19
|
Bhattarai AK, Acharya A, Karki PK. Use of Statins as Lipid Lowering Agent in Hypercholesterolemia in a Tertiary Care Hospital: A Descriptive Cross-sectional Study. JNMA J Nepal Med Assoc 2020; 58:1031-1035. [PMID: 34506382 PMCID: PMC8028536 DOI: 10.31729/jnma.5444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 11/01/2022] Open
Abstract
INTRODUCTION Lipids contribute to atherosclerosis and obesity that can lead to different cardiovascular diseases. Statins are hydroxymethylglutaryl reductase inhibitors that effectively lower the cholesterol level. It is widely prescribed in the treatment of hypercholesterolemia. Thus it optimizes the lipoprotein profile. The selection of a particular drug by the practitioner should be primarily based on clinical outcome. This study was conducted to find the type of statins that are most preferred by the doctors for treating dyslipidemia and preferred the fixed-dose in a tertiary care hospital. METHODS This was a descriptive cross-sectional study conducted among the practicing doctors of Kathmandu Medical College from July to August 2020. Ethical approval was taken from the Institutional Review Committee of the college (Ref: 207202006). Convenient sampling was done. A semi-structured questionnaire was used with consent. The data were analyzed with Social Statistical Package for the Social Sciences version 20. RESULTS Statins, with the score 4.25 was accounted for most preferred for the treatment of dyslipidemia. Among different statins, atorvastatin with a score of 4.48 was most popular followed by rosuvastatin 2.9 score and simvastatin 2.1 scores. CONCLUSIONS Statins were the most preferred agents for the treatment of dyslipidemia. Although different types of statins ought to have similar efficacy in treating dyslipidemia, atorvastatin was found to be popular and the most commonly prescribed one. The most common side effect reported with statins was myopathy.
Collapse
Affiliation(s)
| | - Anna Acharya
- Department of Pharmacology, Kathmandu Medical College, Duwakot, Bhaktapur, Nepal
| | - Prabin Kumar Karki
- Department of Physiology, Kathmandu Medical College, Duwakot, Bhaktapur, Nepal
| |
Collapse
|
20
|
Teucrium leucocladum: An Effective Tool for the Treatment of Hyperglycemia, Hyperlipidemia, and Oxidative Stress in Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3272103. [PMID: 33293988 PMCID: PMC7718044 DOI: 10.1155/2020/3272103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
Teucrium leucocladum is among the most used traditional medicinal plants in Palestine, which is used for the treatment of hyperglycemia and colon spasms from ancient times. Therefore, the current investigation aimed for the first time to determine the hypoglycemic, hypolipidemic, and oxidative stress inhibitory effects of the aerial parts (stem and leaves) of T. leucocladum hydrophilic (water) extract in streptozotocin- (STZ-) induced diabetic rats (65 mg/kg), given intraperitoneally at a dose of 100 mg/kg for 21 days. The rats were divided into four groups as control (C), control + T. leucocladum extract (C + TL), diabetes (D), and diabetes + T. leucocladum extract (D + TL). The antioxidant activity was analyzed using in vitro 2,2-diphenyl-1-picrylhydrazyl and in vivo methods by measuring the plasma and tissue malondialdehyde (MDA) levels using a colorimetric assay. On the other hand, glutathione peroxidase (GSH-Px), erythrocyte superoxide dismutase (SOD) enzyme levels, serum paraoxonase (PON), and arylesterase (ARE) enzyme activities were assessed by utilizing standard biochemical kits. Besides, the blood glucose and serum insulin levels were assessed by a glucometer and Rat ELISA Kit, respectively. However, the autoanalyzer was used to evaluate the lipid profile. The diabetic rat group that administered T. leucocladum extract showed the best reduction in the tissue and plasma MDA levels and an increase of insulin-releasing potentials. Besides, the serum PON and ARE activities and erythrocyte superoxide dismutase and whole blood glutathione peroxidase enzyme levels were significantly increased in all animals treated with T. leucocladum extract. The current investigation demonstrated that T. leucocladum manifests antihyperglycemic and antihyperlipidemic effects and also increased the antioxidative defense system and reduced the lipid peroxidation process in experimental diabetic rats.
Collapse
|
21
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
Tramacere I, Boncoraglio GB, Banzi R, Del Giovane C, Kwag KH, Squizzato A, Moja L. Comparison of statins for secondary prevention in patients with ischemic stroke or transient ischemic attack: a systematic review and network meta-analysis. BMC Med 2019; 17:67. [PMID: 30914063 PMCID: PMC6436237 DOI: 10.1186/s12916-019-1298-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Statins may prevent recurrent ischemic events after ischemic stroke. Determining which statin to use remains controversial. We aimed to summarize the evidence for the use of statins in secondary prevention for patients with ischemic stroke by comparing benefits and harms of various statins. METHODS We searched for randomized controlled trials (RCTs) assessing statins in patients with ischemic stroke or transient ischemic attack (TIA) in MEDLINE, EMBASE, and CENTRAL up to July 2017. Two authors extracted data and appraised risks of bias. We performed pairwise meta-analyses and trial sequential analyses (TSA) to compare statins versus placebo/no statin, and network meta-analyses using frequentist random-effects models to compare statins through indirect evidence. We used GRADE to rate the overall certainty of evidence. Primary outcomes were all-cause mortality and all strokes. Secondary outcomes were different types of strokes, cardiovascular events, and adverse events. RESULTS We identified nine trials (10,741 patients). No head-to-head RCTs were found. The median follow-up period was 2.5 years. Statins did not seem to modify all stroke and all-cause mortality outcomes; they were associated with a decreased risk of ischemic stroke (odds ratio, OR, 0.81 [95% CI, 0.70 to 0.93]; absolute risk difference, ARD, - 1.6% [95% CI, - 2.6 to - 0.6%]), ischemic stroke or TIA (OR, 0.75 [95% CI, 0.64 to 0.87]; ARD, - 4.2% [95% CI, - 6.2 to - 2.1%]), and cardiovascular event (OR, 0.75 [95% CI, 0.69 to 0.83]; ARD, - 5.4% [95% CI, - 6.8 to - 3.6%]), and did not seem to modify rhabdomyolysis, myalgia, or rise in creatine kinase. In the comparison of different statins, moderate- to high-quality evidence indicated that differences between pharmaceutical products seemed modest, with high doses (e.g., atorvastatin 80 mg/day and simvastatin 40 mg/day) associated with the greatest benefits. TSA excluded random error as a cause of the findings for ischemic stroke and cardiovascular event outcomes. Evidence for increased risk of hemorrhagic stroke was sensitive to the exclusion of the SPARCL trial. CONCLUSIONS Evidence strongly suggests that statins are associated with a reduction in the absolute risk of ischemic strokes and cardiovascular events. Differences in effects among statins were modest, signaling potential therapeutic equivalence. TRIAL REGISTRATION PROSPERO CRD42018079112.
Collapse
Affiliation(s)
- Irene Tramacere
- Department of Research and Clinical Development, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy.
| | - Giorgio B Boncoraglio
- Department of Cerebrovascular Disease, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rita Banzi
- Center for Drug Regulatory Policies, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cinzia Del Giovane
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Koren H Kwag
- Medical School for International Health, Ben Gurion University, Beersheba, Israel
| | | | - Lorenzo Moja
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Unit of Clinical Epidemiology, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| |
Collapse
|
23
|
Yang Y, Rong X, Lv X, Jiang W, Yang Y, Lai D, Xu S, Fu G. Inhibition of mevalonate pathway prevents ischemia-induced cardiac dysfunction in rats via RhoA-independent signaling pathway. Cardiovasc Ther 2018; 35. [PMID: 28665545 DOI: 10.1111/1755-5922.12285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 11/27/2022] Open
Abstract
AIM We previously demonstrated that anoxia-mediated Ca2+ handling dysfunction could be ameliorated through inhibition of mevalonate pathway via RhoA- and Ras-related mechanisms in H9c2 cells. In this study, we further explored whether inhibition of mevalonate pathway is associated with cardiac remodeling and dysfunction in ischemic cardiomyopathy, and discussed the possible role of Ras, Rac and RhoA in cardiac dysfunction. METHODS We investigated the role of mevalonate pathway in cardiac remodeling and cardiomyocyte Ca2+ handling proteins expression in a rat model of cardiac dysfunction due to myocardial infarction (MI). After MI, adult male Sprague-Dawley rats were treated with drugs that antagonize key components in mevalonate pathway, including 3-hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, and Rho-kinase for 10 weeks. The protein expression of ryanodine receptor 2 (RyR2), sarcoplasmic reticulum Ca2+ ATPase (SERCA) 2a, phospholamban (PLB), phospho-PLB at serine-16 (PSer16-PLB), FKBP12.6, and RhoA as well as RyR2 and FKBP12.6 mRNA levels was evaluated. RESULTS Rosuvastatin and alendronate treatment prevented myocardial remodeling, improved cardiac function and reduced infarct size. Furthermore, rosuvastatin and alendronate promoted an increase in the protein expression of SERCA2a and PSer16-PLB/PLB ratio as well as partially restored the RyR2 and FKBP12.6 gene and protein expression. Fasudil failed to exert these beneficial effects. CONCLUSIONS These findings indicate that mevalonate pathway inhibition by rosuvastatin and alendronate prevents cardiac remodeling and dysfunction possibly through RhoA-independent mechanisms.
Collapse
Affiliation(s)
- Ying Yang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiqing Rong
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenbing Jiang
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, China
| | - Yuan Yang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dongwu Lai
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shiming Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Fontoura-Andrade JL, Amorim RFBD, Sousa JBD. Improving reproducibility and external validity. The role of standardization and data reporting of laboratory rat husbandry and housing. Acta Cir Bras 2017; 32:251-262. [PMID: 28403350 DOI: 10.1590/s0102-865020170030000010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/24/2017] [Indexed: 11/22/2022] Open
Abstract
Purpose: To identify the most relevant flaws in standardization in husbandry practices and lack of transparency to report them. This review proposes some measures in order to improve transparency, reproducibility and eventually external validity in experimental surgery experiments with rat model. Methods: We performed a search of scientific articles in PUBMED data base. The survey was conducted from august 2016 to January 2017. The keywords used were "reproducibility", "external validity", "rat model", "rat husbandry", "rat housing", and the time frame was up to January 2017. Articles discarded were the ones which the abstract or the key words did not imply that the authors would discuss any relationship of husbandry and housing with the reproducibility and transparency of reporting animal experiment. Reviews and papers that discussed specifically reproducibility and data reporting transparency were laboriously explored, including references for other articles that could fulfil the inclusion criteria. A total of 246 articles were initially found but only 44 were selected. Results: Lack of transparency is the rule and not the exception when reporting results with rat model. This results in poor reproducibility and low external validity with the consequence of considerable loss of time and financial resources. There are still much to be done to improve compliance and adherence of researchers, editors and reviewers to adopt guidelines to mitigate some of the challenges that can impair reproducibility and external validity. Conclusions: Authors and reviewers should avoid pitfalls of absent, insufficient or inaccurate description of relevant information the rat model used. This information should be correctly published or reported on another source easily available for readers. Environmental conditions are well known by laboratory animal personnel and are well controlled in housing facilities, but usually neglected in experimental laboratories when the rat model is a novelty for the researcher.
Collapse
Affiliation(s)
- José Luiz Fontoura-Andrade
- Fellow Master degree, Postgraduate Program in Medical Sciences, School of Medicine, Universidade de Brasilia (UnB). DVM, Experimental and Compared Surgery Laboratory, Armed Forces Hospital, Brasilia-DF, Brazil. Acquisition of data, manuscript writing
| | | | - João Batista de Sousa
- PhD, Associate Professor, Department of Surgery, School of Medicine, UnB, Brasilia-DF, Brazil. Manuscript writing, critical revision
| |
Collapse
|
25
|
Ouweneel AB, van der Sluis RJ, Nahon JE, Van Eck M, Hoekstra M. Simvastatin treatment aggravates the glucocorticoid insufficiency associated with hypocholesterolemia in mice. Atherosclerosis 2017; 261:99-104. [DOI: 10.1016/j.atherosclerosis.2017.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/30/2017] [Accepted: 02/17/2017] [Indexed: 11/26/2022]
|
26
|
Garattini S, Grignaschi G. Animal testing is still the best way to find new treatments for patients. Eur J Intern Med 2017; 39:32-35. [PMID: 27916437 DOI: 10.1016/j.ejim.2016.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
Experimental research proceeds by hypotheses formulated on the basis of previous or new knowledge and then tested. If they are accepted, they serve as the basis for further hypotheses, and if they are rejected new hypotheses can be developed. In other words, when we are at the frontiers of knowledge the path is forged by "trial and error". When a trial shows a hypothesis is wrong, this is a step toward making fewer errors. This process also applies to drug development. There is no magic formula at present to predict - at the pre-clinical level - the therapeutic value of a drug for people with a disease. However, pre-clinical studies are needed in order to formulate hypotheses that justify clinical trials. Without these preliminary studies in vitro and in vivo in selected animal species it would be unethical to test still unproven chemicals in humans.
Collapse
Affiliation(s)
- Silvio Garattini
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | |
Collapse
|
27
|
Villani C, Sacchetti G, Bagnati R, Passoni A, Fusco F, Carli M, Invernizzi RW. Lovastatin fails to improve motor performance and survival in methyl-CpG-binding protein2-null mice. eLife 2016; 5:22409. [PMID: 27892851 PMCID: PMC5132339 DOI: 10.7554/elife.22409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/18/2016] [Indexed: 01/25/2023] Open
Abstract
Previous studies provided evidence for the alteration of brain cholesterol homeostasis in 129.Mecp2-null mice, an experimental model of Rett syndrome. The efficacy of statins in improving motor symptoms and prolonging survival of mutant mice suggested a potential role of statins in the therapy of Rett syndrome. In the present study, we show that Mecp2 deletion had no effect on brain and reduced serum cholesterol levels and lovastatin (1.5 mg/kg, twice weekly as in the previous study) had no effects on motor deficits and survival when Mecp2 deletion was expressed on a background strain (C57BL/6J; B6) differing from that used in the earlier study. These findings indicate that the effects of statins may be background specific and raise important issues to consider when contemplating clinical trials. The reduction of the brain cholesterol metabolite 24S-hydroxycholesterol (24S-OHC) found in B6.Mecp2-null mice suggests the occurrence of changes in brain cholesterol metabolism and the potential utility of using plasma levels of 24S-OHC as a biomarker of brain cholesterol homeostasis in RTT. DOI:http://dx.doi.org/10.7554/eLife.22409.001
Collapse
Affiliation(s)
- Claudia Villani
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Giuseppina Sacchetti
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Renzo Bagnati
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Alice Passoni
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Federica Fusco
- Genetics of Neurodegenerative Diseases Unit, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Mirjana Carli
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Roberto William Invernizzi
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| |
Collapse
|
28
|
Rebalka IA, Raleigh MJ, Snook LA, Rebalka AN, MacPherson REK, Wright DC, Schertzer JD, Hawke TJ. Statin Therapy Alters Lipid Storage in Diabetic Skeletal Muscle. Front Endocrinol (Lausanne) 2016; 7:95. [PMID: 27486434 PMCID: PMC4949251 DOI: 10.3389/fendo.2016.00095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022] Open
Abstract
While statins significantly reduce cholesterol levels and thereby reduce the risk of cardiovascular disease, the development of myopathy with statin use is a significant clinical side effect. Recent guidelines recommend increasing inclusion criteria for statin treatment in diabetic individuals; however, the impact of statins on skeletal muscle health in those with diabetes (who already suffer from impairments in muscle health) is ill defined. Here, we investigate the effects of fluvastatin treatment on muscle health in wild type (WT) and streptozotocin (STZ)-induced diabetic mice. WT and STZ-diabetic mice received diet enriched with 600 mg/kg fluvastatin or control chow for 24 days. Muscle morphology, intra and extracellular lipid levels, and lipid transporter content were investigated. Our findings indicate that short-term fluvastatin administration induced a myopathy that was not exacerbated by the presence of STZ-induced diabetes. Fluvastatin significantly increased ectopic lipid deposition within the muscle of STZ-diabetic animals, findings that were not seen with diabetes or statin treatment alone. Consistent with this observation, only fluvastatin-treated diabetic mice downregulated protein expression of lipid transporters FAT/CD36 and FABPpm in their skeletal muscle. No differences in FAT/CD36 or FABPpm mRNA content were observed. Altered lipid compartmentalization resultant of a downregulation in lipid transporter content in STZ-induced diabetic skeletal muscle was apparent in the current investigation. Given the association between ectopic lipid deposition in skeletal muscle and the development of insulin-resistance, our findings highlight the necessity for more thorough investigations into the impact of statins in humans with diabetes.
Collapse
Affiliation(s)
- Irena A. Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew J. Raleigh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Laelie A. Snook
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Alexandra N. Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | - David C. Wright
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Thomas J. Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- *Correspondence: Thomas J. Hawke,
| |
Collapse
|