1
|
Atzemian N, Mohammed S, Di Venanzio L, Gorica E, Costantino S, Ruschitzka F, Paneni F. Cardiometabolic disease management: influences from epigenetics. Epigenomics 2025; 17:463-474. [PMID: 40255091 PMCID: PMC12026043 DOI: 10.1080/17501911.2025.2489921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
Epigenomics is a rapidly emerging field that has gathered significant attention as a "non-genetic determinant" implicated in the manifestation of non-communicable diseases. Exploring epigenetic modifications provides novel insights into the management of cardiometabolic disease (CMD). Epigenetics signatures are influenced by environmental stressors such as air pollution, toxins, and urban noises as well as by established cardiovascular risk factors including smoking, sedentary lifestyle, obesity, and diabetes. Understanding how epigenetic alterations lead to CMD as well as inter-individual differences in epigenetic makeup could unveil new molecular targets and new epi-drugs to be employed for precision medicine approaches in the growing population of patients with cardiometabolic disease to reduce cardiovascular risk. Herein, we provide an overview of the latest advancements in epigenetic mechanisms implicated in CMD and possible therapeutic opportunities.
Collapse
Affiliation(s)
- Natalia Atzemian
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, Zurich, Switzerland
| | - Shafeeq Mohammed
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, Zurich, Switzerland
| | - Ludovica Di Venanzio
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, Zurich, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, Zurich, Switzerland
- Cardiology Department of Research and Education, University Heart Center, Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, Zurich, Switzerland
- Cardiology Department of Research and Education, University Heart Center, Zurich, Switzerland
| |
Collapse
|
2
|
Kayzuka C, Rondon-Pereira VC, Nogueira Tavares C, Pacheco Pachado M, Monica FZ, Tanus-Santos JE, Lacchini R. Epigenetics is involved in the pleiotropic effects of statins. Expert Opin Drug Metab Toxicol 2025:1-13. [PMID: 40208655 DOI: 10.1080/17425255.2025.2491732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/18/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
INTRODUCTION Statins have significantly reduced mortality from cardiovascular diseases by lowering serum cholesterol levels. Beyond their lipid-lowering effects, statins improve vascular function, reduce inflammation, decrease reactive oxygen species (ROS) formation, and stabilize atherosclerotic plaques. However, the mechanisms underlying these pleiotropic effects remain unclear. AREA COVERED This narrative review summarizes and discusses epigenetic mechanisms that may explain part of the pleiotropic effects of statins. This approach allows for a reevaluation of statin use beyond its cholesterol-lowering benefits. A structured search was conducted in the PubMed and Scopus databases using specific search terms, including articles published up to August 2024. EXPERT OPINION The pleiotropic effects of statins, including those mediated by the isoprenoid pathway, partially explain their clinical benefits. By inhibiting histone deacetylases (HDACs, the 'erasers') and DNA methyltransferases (DNMTs, the 'writers'), statins promote increased histone acetylation and reduced DNA methylation at gene promoter regions. These epigenetic modifications enhance chromatin accessibility, facilitating gene transcription and protecting the cardiovascular system. Further investigation into these epigenetic mechanisms could support the repositioning of statins for broader therapeutic applications. Statins may have benefits extending beyond their role in managing hypercholesterolemia, as their pleiotropic effects contribute to the prevention of cardiovascular disease-related mortality through mechanisms independent of LDL cholesterol reduction.
Collapse
Affiliation(s)
- Cezar Kayzuka
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Cecilia Nogueira Tavares
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Mayra Pacheco Pachado
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fabiola Zakia Monica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Jose Eduardo Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
3
|
Wu X, Li Y, Wang W, Xu J, Zhao B, Sun W, Ge D, Xiong L, Dou X, Zou X, Wang L, Chen M. DRAM1 enhances the proliferation and metastasis of gastric cancer through the PI3K/AKT/mTOR signaling pathway and energy metabolism. Sci Rep 2025; 15:3542. [PMID: 39875526 PMCID: PMC11775094 DOI: 10.1038/s41598-025-87389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor of the digestive system that is often diagnosed at advanced stages owing to inconspicuous early symptoms and a lack of specific examination methods. Effective treatment of advanced stages remains challenging, emphasizing the need for new therapeutic targets. Metabolic reprogramming, a hallmark of tumors, plays a pivotal role in tumor progression, immune evasion, and immune surveillance. DNA damage-regulated autophagy modulator 1 (DRAM1) encodes a hexameric transmembrane protein that is predominantly located in lysosomes and induces autophagy; however, its mechanism of action in gastric cancer remains unclear. Our study found that elevated DRAM1 expression in patients with GC correlated with survival and prognosis. DRAM1 knockdown suppressed energy metabolism in GC cells through the PI3K/AKT/mTOR signaling pathway, thereby mitigating GC progression. Atorvastatin, a focus of recent tumor research, significantly enhanced apoptosis levels in DRAM1 knockdown GC cells compared to the control group. Therefore, through metabolic reprogramming, DRAM1 may serve as a potential therapeutic target for GC prevention.
Collapse
Affiliation(s)
- Xinrong Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Yifan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Weiwei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Jiale Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Bei Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, 210000, China
| | - Wenqi Sun
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, 210000, China
| | - Dan Ge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, 210000, China
| | - Longying Xiong
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, 210000, China
| | - Xiaotan Dou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, 210000, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, 210000, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, 210000, China.
| | - Min Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China.
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, 210000, China.
| |
Collapse
|
4
|
Sun WT, Du JY, Wang J, Wang YL, Dong ED. Potential preservative mechanisms of cardiac rehabilitation pathways on endothelial function in coronary heart disease. SCIENCE CHINA. LIFE SCIENCES 2025; 68:158-175. [PMID: 39395086 DOI: 10.1007/s11427-024-2656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 10/14/2024]
Abstract
Cardiac rehabilitation, a comprehensive exercise-based lifestyle and medical management, is effective in decreasing morbidity and improving life quality in patients with coronary heart disease. Endothelial function, an irreplaceable indicator in coronary heart disease progression, is measured by various methods in traditional cardiac rehabilitation pathways, including medicinal treatment, aerobic training, and smoking cessation. Nevertheless, studies on the effect of some emerging cardiac rehabilitation programs on endothelial function are limited. This article briefly reviewed the endothelium-beneficial effects of different cardiac rehabilitation pathways, including exercise training, lifestyle modification and psychological intervention in patients with coronary heart disease, and related experimental models, and summarized both uncovered and potential cellular and molecular mechanisms of the beneficial roles of various cardiac rehabilitation pathways on endothelial function. In exercise training and some lifestyle interventions, the enhanced bioavailability of nitric oxide, increased circulating endothelial progenitor cells (EPCs), and decreased oxidative stress are major contributors to preventing endothelial dysfunction in coronary heart disease. Moreover, the preservation of endothelial-dependent hyperpolarizing factors and inflammatory suppression play roles. On the one hand, to develop more endothelium-protective rehabilitation methods in coronary heart disease, adequately designed and sized randomized multicenter clinical trials should be advanced using standardized cardiac rehabilitation programs and existing assessment methods. On the other hand, additional studies using suitable experimental models are warranted to elucidate the relationship between some new interventions and endothelial protection in both macro- and microvasculature.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jian-Yong Du
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jia Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yi-Long Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Er-Dan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- The Institute of Cardiovascular Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
Vartak T, Giardini E, Kelly D, Moran B, Kennedy C, Barry M, Godson C, Brennan E. Induction of let-7d-5p miRNA modulates aortic smooth muscle inflammatory signaling and phenotypic switching. Atherosclerosis 2024; 395:117573. [PMID: 38796407 DOI: 10.1016/j.atherosclerosis.2024.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND AND AIMS Activation of vascular smooth muscle cell inflammation is recognised as an important early driver of vascular disease. We have previously identified the let-7 miRNA family as important regulators of inflammation in in vitro and in vivo models of atherosclerosis. Here we investigated a dual statin/let-7d-5p miRNA combination therapy approach to target human aortic SMC (HAoSMC) activation and inflammation. METHODS In vitro studies using primary HAoSMCs were performed to investigate the effects of let-7d-5p miRNA overexpression and inhibition. HAoSMCs were treated with combinations of the inflammatory cytokine tumor necrosis factor-α (TNF-α), and atorvastatin or lovastatin. HAoSMC Bulk RNA-seq transcriptomics of HAoSMCs revealed downstream regulatory networks modulated by let-7d-5p miRNA overexpression and statins. Proteome profiler cytokine array, Western blotting and quantitative PCR analyses were performed on HAoSMCs to validate key findings. RESULTS Let-7d-5p overexpression significantly attenuated TNF-α-induced upregulation of IL-6, ICAM1, VCAM1, CCL2, CD68, MYOCD gene expression in HAoSMCs (p<0.05). Statins (atorvastatin, lovastatin) significantly attenuated inflammatory gene expression and upregulated Let-7d levels in HAoSMCs (p<0.05). Bulk RNA-seq analysis of a dual Let-7d-5p overexpression/statin therapy in HAoSMCs revealed that let-7d-5p activation and statins converge on key inflammatory pathways (IL-6, IL-1β, TNF-α, IFN-γ). Let-7d-5p overexpression led to reduced expression of the ox-LDL receptor OLR1, and this was associated with lower ox-LDL uptake in HAoSMCs. In silico analysis of smooth muscle cell phenotypic switching shows that overexpression of let-7d-5p in HAoSMCs maintains a contractile phenotype. CONCLUSIONS Targeting the Let-7 network alongside statins can modulate HAoSMC activation and attenuate key inflammatory pathway signals.
Collapse
Affiliation(s)
- Tanwi Vartak
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Elena Giardini
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Daniel Kelly
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Bruce Moran
- St. Vincent's University Hospital, Dublin, Ireland
| | - Ciarán Kennedy
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Mary Barry
- Department of Vascular Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
6
|
Hosseini FS, Ahmadi A, Kesharwani P, Hosseini H, Sahebkar A. Regulatory effects of statins on Akt signaling for prevention of cancers. Cell Signal 2024; 120:111213. [PMID: 38729324 DOI: 10.1016/j.cellsig.2024.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Statins, which are primarily used as lipid-lowering drugs, have been found to exhibit anti-tumor effects through modulating and interfering with various signaling pathways. In observational studies, statin use has been associated with a significant reduction in the progression of various cancers, including colon, lung, prostate, pancreas, and esophagus cancer, as well as melanoma and B and T cell lymphoma. The mevalonate pathway, which is affected by statins, plays a crucial role in activating Rho, Ras, and Rab proteins, thereby impacting the proliferation and apoptosis of tumor cells. Statins block this pathway, leading to the inhibition of isoprenoid units, which are critical for the activation of these key proteins, thereby affecting cancer cell behavior. Additionally, statins affect MAPK and Cdk2, which in turn reduce the expression of p21 and p27 cyclin-dependent kinase inhibitors. Akt signaling plays a crucial role in key cancer cell features like proliferation, invasion, and apoptosis by activating multiple effectors in downstream pathways such as FOXO, PTEN, NF-κB, GSK3β, and mTOR. The PI3K/Akt signaling is necessary for many events in the metastatic pathway and has been implicated in the resistance to cytostatic drugs. The Akt/PTEN axis is currently attracting great interest for its role in carcinogenesis. Statins have been shown to activate the purinergic receptor P2X7 and affect Akt signaling, which may have important anti-cancer effects. Hence, targeting Akt shows promise as an effective approach to cancer prevention and therapy. This review aims to provide a comprehensive discussion on the specific impact of statins through Akt signaling in different types of cancer.
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Park JH, Hothi P, de Lomana ALG, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. SCIENCE ADVANCES 2024; 10:eadj7706. [PMID: 38848360 PMCID: PMC11160475 DOI: 10.1126/sciadv.adj7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Anoop P. Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Xi C, Palani C, Takezaki M, Shi H, Horuzsko A, Pace BS, Zhu X. Simvastatin-Mediated Nrf2 Activation Induces Fetal Hemoglobin and Antioxidant Enzyme Expression to Ameliorate the Phenotype of Sickle Cell Disease. Antioxidants (Basel) 2024; 13:337. [PMID: 38539870 PMCID: PMC10968127 DOI: 10.3390/antiox13030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 06/04/2024] Open
Abstract
Sickle cell disease (SCD) is a pathophysiological condition of chronic hemolysis, oxidative stress, and elevated inflammation. The transcription factor Nrf2 is a master regulator of oxidative stress. Here, we report that the FDA-approved oral agent simvastatin, an inhibitor of hydroxymethyl-glutaryl coenzyme A reductase, significantly activates the expression of Nrf2 and antioxidant enzymes. Simvastatin also induces fetal hemoglobin expression in SCD patient primary erythroid progenitors and a transgenic mouse model. Simvastatin alleviates SCD symptoms by decreasing hemoglobin S sickling, oxidative stress, and inflammatory stress in erythroblasts. Particularly, simvastatin increases cellular levels of cystine, the precursor for the biosynthesis of the antioxidant reduced glutathione, and decreases the iron content in SCD mouse spleen and liver tissues. Mechanistic studies suggest that simvastatin suppresses the expression of the critical histone methyltransferase enhancer of zeste homolog 2 to reduce both global and gene-specific histone H3 lysine 27 trimethylation. These chromatin structural changes promote the assembly of transcription complexes to fetal γ-globin and antioxidant gene regulatory regions in an antioxidant response element-dependent manner. In summary, our findings suggest that simvastatin activates fetal hemoglobin and antioxidant protein expression, modulates iron and cystine/reduced glutathione levels to improve the phenotype of SCD, and represents a therapeutic strategy for further development.
Collapse
Affiliation(s)
- Caixia Xi
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Chithra Palani
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
| | - Mayuko Takezaki
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Anatolij Horuzsko
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Betty S. Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Xingguo Zhu
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| |
Collapse
|
9
|
Park JH, Hothi P, Lopez Garcia de Lomana A, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578510. [PMID: 38370784 PMCID: PMC10871280 DOI: 10.1101/2024.02.02.578510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Anoop P Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC
- Center for Advanced Genomic Technologies, Duke University, Durham, NC
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA
| |
Collapse
|
10
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
11
|
Piao X, Ma L, Xu Q, Zhang X, Jin C. Noncoding RNAs: Versatile regulators of endothelial dysfunction. Life Sci 2023; 334:122246. [PMID: 37931743 DOI: 10.1016/j.lfs.2023.122246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Noncoding RNAs have recently emerged as versatile regulators of endothelial dysfunction in atherosclerosis, a chronic inflammatory disease characterized by the formation of plaques within the arterial walls. Through their ability to modulate gene expression, noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, play crucial roles in various cellular processes involved in endothelial dysfunction (ECD), such as inflammation, pyroptosis, migration, proliferation, apoptosis, oxidative stress, and angiogenesis. This review provides an overview of the current understanding of the regulatory roles of noncoding RNAs in endothelial dysfunction during atherosclerosis. It highlights the specific noncoding RNAs that have been implicated in the pathogenesis of ECD, their target genes, and the mechanisms by which they contribute to ECD. Furthermore, we have reviewed the current therapeutics in atherosclerosis and explore their interaction with noncoding RNAs. Understanding the intricate regulatory network of noncoding RNAs in ECD may open up new opportunities for the development of novel therapeutic strategies to combat ECD.
Collapse
Affiliation(s)
- Xiong Piao
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China.
| | - Lie Ma
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Qinqi Xu
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Xiaomin Zhang
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Chengzhu Jin
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
12
|
Sun S, Meng Y, Li M, Tang X, Hu W, Wu W, Li G, Pang Q, Wang W, Liu B. CD133 + endothelial-like stem cells restore neovascularization and promote longevity in progeroid and naturally aged mice. NATURE AGING 2023; 3:1401-1414. [PMID: 37946040 PMCID: PMC10645602 DOI: 10.1038/s43587-023-00512-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
The stem cell theory of aging dictates that a decline in the number and/or function of stem cells causes tissue degeneration and aging; however, it still lacks unequivocal experimental support. Here, using lineage tracing and single-cell transcriptomics, we identify a population of CD133+ bone marrow-derived endothelial-like cells (ELCs) as potential endothelial progenitor cells, which contribute to tubular structures in vitro and neovascularization in vivo. We demonstrate that supplementation with wild-type and young ELCs respectively restores neovascularization and extends lifespan in progeric and naturally aged mice. Mechanistically, we identify an upregulation of farnesyl diphosphate synthase (FDPS) in aged CD133+ ELCs-a key enzyme in isoprenoid biosynthesis. Overexpression of FDPS compromises the neovascularization capacity of CD133+ ELCs, whereas FDPS inhibition by pamidronate enhances neovascularization, improves health measures and extends lifespan in aged mice. These findings highlight stem cell-based strategies for the treatment of progeria and age-related pathologies.
Collapse
Affiliation(s)
- Shimin Sun
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention; International Cancer Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
- Friedrich Schiller University, Jena, Germany
| | | | - Mingying Li
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention; International Cancer Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention; International Cancer Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Wenjing Hu
- Friedrich Schiller University, Jena, Germany
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Guo Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention; International Cancer Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
| |
Collapse
|
13
|
Piekuś-Słomka N, Mocan LP, Shkreli R, Grapă C, Denkiewicz K, Wesolowska O, Kornek M, Spârchez Z, Słomka A, Crăciun R, Mocan T. Don't Judge a Book by Its Cover: The Role of Statins in Liver Cancer. Cancers (Basel) 2023; 15:5100. [PMID: 37894467 PMCID: PMC10605163 DOI: 10.3390/cancers15205100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Statins, which are inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, are an effective pharmacological tool for lowering blood cholesterol levels. This property makes statins one of the most popular drugs used primarily to prevent cardiovascular diseases, where hyperlipidemia is a significant risk factor that increases mortality. Nevertheless, studies conducted mainly in the last decade have shown that statins might prevent and treat liver cancer, one of the leading causes of cancer-related mortality worldwide. This narrative review summarizes the scientific achievements to date regarding the role of statins in liver tumors. Molecular biology tools have revealed that cell growth and proliferation can be inhibited by statins, which further inhibit angiogenesis. Clinical studies, supported by meta-analysis, confirm that statins are highly effective in preventing and treating hepatocellular carcinoma and cholangiocarcinoma. However, this effect may depend on the statin's type and dose, and more clinical trials are required to evaluate clinical effects. Moreover, their potential hepatotoxicity is a significant caveat for using statins in clinical practice. Nevertheless, this group of drugs, initially developed to prevent cardiovascular diseases, is now a key candidate in hepato-oncology patient management. The description of new drug-statin-like structures, e.g., with low toxicity to liver cells, may bring another clinically significant improvement to current cancer therapies.
Collapse
Affiliation(s)
- Natalia Piekuś-Słomka
- Department of Inorganic and Analytical Chemistry, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Lavinia Patricia Mocan
- Department of Histology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Rezarta Shkreli
- Department of Pharmacy, Faculty of Medical Sciences, Aldent University, 1001-1028 Tirana, Albania;
| | - Cristiana Grapă
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Kinga Denkiewicz
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Oliwia Wesolowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Zeno Spârchez
- 3rd Medical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Rareș Crăciun
- 3rd Medical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
- Department of Gastroenterology, “Octavian Fodor” Institute for Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Tudor Mocan
- Department of Gastroenterology, “Octavian Fodor” Institute for Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- UBBMed Department, Babeș-Bolyai University, 400349 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Saberianpour S, Abolbashari S, Modaghegh MHS, Karimian MS, Eid AH, Sathyapalan T, Sahebkar A. Therapeutic effects of statins on osteoarthritis: A review. J Cell Biochem 2022; 123:1285-1297. [PMID: 35894149 DOI: 10.1002/jcb.30309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/05/2022] [Accepted: 07/13/2022] [Indexed: 11/11/2022]
Abstract
Osteoarthritis (OA) is a progressive joint disease. The etiology of OA is considered to be multifactorial. Currently, there is no definitive treatment for OA, and the existing treatments are not very effective. Hypercholesterolemia is considered a novel risk factor for the development of OA. Statins act as a competitive inhibitor of the β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase and are widely used to manage hypercholesterolemia. Inhibition of HMG-CoA reductase results in reduced synthesis of a metabolite named mevalonate, thereby reducing cholesterol biosynthesis in subsequent steps. By this mechanism, statins such as atorvastatin and simvastatin could potentially have a preventive impact on joint cartilage experiencing osteoarthritic deterioration by reducing serum cholesterol levels. Atorvastatin can protect cartilage degradation following interleukin-1β-stimulation. Atorvastatin stimulates the STAT1-caspase-3 signaling pathway that was shown to be responsible for its anti-inflammatory effects on the knee joint. Simvastatin had chondroprotective effects on OA in vitro by reducing matrix metalloproteinases expression patterns. In this study, we tried to review the therapeutic effects of statins on OA.
Collapse
Affiliation(s)
- Shirin Saberianpour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Abolbashari
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad H S Modaghegh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam S Karimian
- International UNESCO center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Mangas A, Pérez-Serra A, Bonet F, Muñiz O, Fuentes F, Gonzalez-Estrada A, Campuzano O, Rodriguez Roca JS, Alonso-Villa E, Toro R. A microRNA Signature for the Diagnosis of Statins Intolerance. Int J Mol Sci 2022; 23:8146. [PMID: 35897722 PMCID: PMC9330734 DOI: 10.3390/ijms23158146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Atherosclerotic cardiovascular diseases (ASCVD) are the leading cause of morbidity and mortality in Western societies. Statins are the first-choice therapy for dislipidemias and are considered the cornerstone of ASCVD. Statin-associated muscle symptoms are the main reason for dropout of this treatment. There is an urgent need to identify new biomarkers with discriminative precision for diagnosing intolerance to statins (SI) in patients. MicroRNAs (miRNAs) have emerged as evolutionarily conserved molecules that serve as reliable biomarkers and regulators of multiple cellular events in cardiovascular diseases. In the current study, we evaluated plasma miRNAs as potential biomarkers to discriminate between the SI vs. non-statin intolerant (NSI) population. It is a multicenter, prospective, case-control study. A total of 179 differentially expressed circulating miRNAs were screened in two cardiovascular risk patient cohorts (high and very high risk): (i) NSI (n = 10); (ii) SI (n = 10). Ten miRNAs were identified as being overexpressed in plasma and validated in the plasma of NSI (n = 45) and SI (n = 39). Let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p and miR-376c-3p were overexpressed in the plasma of SI patients. The receiver operating characteristic curve analysis supported the discriminative potential of the diagnosis. We propose a three-miRNA predictive fingerprint (let-7f, miR-376a-3p and miR-376c-3p) and several clinical variables (non-HDLc and years of dyslipidemia) for SI discrimination; this model achieves sensitivity, specificity and area under the receiver operating characteristic curve (AUC) of 83.67%, 88.57 and 89.10, respectively. In clinical practice, this set of miRNAs combined with clinical variables may discriminate between SI vs. NSI subjects. This multiparametric model may arise as a potential diagnostic biomarker with clinical value.
Collapse
Affiliation(s)
- Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.M.); (E.A.-V.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Lipid and Atherosclerotic Unit, Internal Medicine Department, Puerta del Mar University Hospital, 11009 Cadiz, Spain;
| | - Alexandra Pérez-Serra
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain; (A.P.-S.); (O.C.)
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17007 Girona, Spain
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.M.); (E.A.-V.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Ovidio Muñiz
- UCERV, UCAMI, Servicio de Medicina Interna, Hospital Virgen del Rocío, 41013 Seville, Spain; (O.M.); (A.G.-E.)
| | - Francisco Fuentes
- Lipid and Atherosclerosis Unit, IMIBIC/Hospital Universitario Reina Sofía/Universidad de Córdoba, 14004 Córdoba, Spain;
- Centro de Investigación Biomédica en Red, Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Aurora Gonzalez-Estrada
- UCERV, UCAMI, Servicio de Medicina Interna, Hospital Virgen del Rocío, 41013 Seville, Spain; (O.M.); (A.G.-E.)
| | - Oscar Campuzano
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain; (A.P.-S.); (O.C.)
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17007 Girona, Spain
- Centro de Investigación Biomédica en Red, Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Juan Sebastian Rodriguez Roca
- Lipid and Atherosclerotic Unit, Internal Medicine Department, Puerta del Mar University Hospital, 11009 Cadiz, Spain;
| | - Elena Alonso-Villa
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.M.); (E.A.-V.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Rocio Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.M.); (E.A.-V.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| |
Collapse
|
16
|
Jalili-Nik M, Mahboobnia K, Guest PC, Majeed M, Al-Rasadi K, Jamialahmadi T, Sahebkar A. Impact of Curcumin on Hepatic Low-Density Lipoprotein Uptake. Methods Mol Biol 2022; 2343:395-400. [PMID: 34473340 DOI: 10.1007/978-1-0716-1558-4_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated levels of plasma low-density lipoprotein cholesterol (LDL-C) are causally related to atherosclerotic cardiovascular disease. Enhancing the removal of LDL particles from the plasma, mainly by the liver, is the most efficient strategy for reducing LDL-C and the ensuing atherosclerosis. In this context, polyphenolic compounds like curcumin have generated interest owing to their lipid-modifying capacity. The promising effect of curcumin has been studied in attenuating atherosclerosis (in experimental models), and correcting dyslipidemia (in clinical studies). The underlying mechanisms of the effects of curcumin are relatively unknown, and the impact of curcumin on hepatic LDL uptake warrants further investigations. Here, we present a protocol to assess the effects of curcumin on LDL uptake in hepatocytes.
Collapse
Affiliation(s)
- Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Mahboobnia
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
17
|
Botts SR, Fish JE, Howe KL. Dysfunctional Vascular Endothelium as a Driver of Atherosclerosis: Emerging Insights Into Pathogenesis and Treatment. Front Pharmacol 2021; 12:787541. [PMID: 35002720 PMCID: PMC8727904 DOI: 10.3389/fphar.2021.787541] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis, the chronic accumulation of cholesterol-rich plaque within arteries, is associated with a broad spectrum of cardiovascular diseases including myocardial infarction, aortic aneurysm, peripheral vascular disease, and stroke. Atherosclerotic cardiovascular disease remains a leading cause of mortality in high-income countries and recent years have witnessed a notable increase in prevalence within low- and middle-income regions of the world. Considering this prominent and evolving global burden, there is a need to identify the cellular mechanisms that underlie the pathogenesis of atherosclerosis to discover novel therapeutic targets for preventing or mitigating its clinical sequelae. Despite decades of research, we still do not fully understand the complex cell-cell interactions that drive atherosclerosis, but new investigative approaches are rapidly shedding light on these essential mechanisms. The vascular endothelium resides at the interface of systemic circulation and the underlying vessel wall and plays an essential role in governing pathophysiological processes during atherogenesis. In this review, we present emerging evidence that implicates the activated endothelium as a driver of atherosclerosis by directing site-specificity of plaque formation and by promoting plaque development through intracellular processes, which regulate endothelial cell proliferation and turnover, metabolism, permeability, and plasticity. Moreover, we highlight novel mechanisms of intercellular communication by which endothelial cells modulate the activity of key vascular cell populations involved in atherogenesis, and discuss how endothelial cells contribute to resolution biology - a process that is dysregulated in advanced plaques. Finally, we describe important future directions for preclinical atherosclerosis research, including epigenetic and targeted therapies, to limit the progression of atherosclerosis in at-risk or affected patients.
Collapse
Affiliation(s)
- Steven R. Botts
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Leal K, Saavedra K, Rebolledo C, Salazar LA. MicroRNAs hsa-miR-618 and hsa-miR-297 Might Modulate the Pleiotropic Effects Exerted by Statins in Endothelial Cells Through the Inhibition of ROCK2 Kinase: in-silico Approach. Front Cardiovasc Med 2021; 8:704175. [PMID: 34485404 PMCID: PMC8415262 DOI: 10.3389/fcvm.2021.704175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023] Open
Abstract
Several studies show that statin therapy improves endothelial function by cholesterol-independent mechanisms called “pleiotropic effects.” These are due to the inhibition of the RhoA/ROCK kinase pathway, its inhibition being an attractive atheroprotective treatment. In addition, recent work has shown that microRNAs, posttranscriptional regulators of gene expression, can affect the response of statins and their efficacy. For this reason, the objective of this study was to identify by bioinformatic analysis possible new microRNAs that could modulate the pleiotropic effects exerted by statins through the inhibition of ROCK kinases. A bioinformatic study was performed in which the differential expression of miRNAs in endothelial cells was compared under two conditions: Control and treated with simvastatin at 10 μM for 24 h, using a microarray. Seven miRNAs were differentially expressed, three up and four down. Within the up group, the miRNAs hsa-miR-618 and hsa-miR-297 present as a predicted target to ROCK2 kinase. Also, functional and enriched pathway analysis showed an association with mechanisms associated with atheroprotective effects. This work shows an in-silico approach of how posttranscriptional regulation mediated by miRNAs could modulate the pleiotropic effects exerted by statins on endothelial cells, through the inhibition of ROCK2 kinase and its effects.
Collapse
Affiliation(s)
- Karla Leal
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Camilo Rebolledo
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
19
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
20
|
Napoli C, Bontempo P, Palmieri V, Coscioni E, Maiello C, Donatelli F, Benincasa G. Epigenetic Therapies for Heart Failure: Current Insights and Future Potential. Vasc Health Risk Manag 2021; 17:247-254. [PMID: 34079271 PMCID: PMC8164213 DOI: 10.2147/vhrm.s287082] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the current reductionist approach providing an optimal indication for diagnosis and treatment of patients with heart failure with reduced ejection fraction (HFrEF), there are no standard pharmacological therapies for heart failure with preserved ejection fraction (HFpEF). Although in its infancy in cardiovascular diseases, the epigenetic-based therapy ("epidrugs") is capturing the interest of physician community. In fact, an increasing number of controlled clinical trials is evaluating the putative beneficial effects of: 1) direct epigenetic-oriented drugs, eg, apabetalone, and 2) repurposed drugs with a possible indirect epigenetic interference, eg, metformin, statins, sodium glucose transporter inhibitors 2 (SGLT2i), and omega 3 polyunsaturated fatty acids (PUFAs) in both HFrEF and HFpEF, separately. Apabetalone is the first and unique direct epidrug tested in cardiovascular patients to date, and the BETonMACE trial has reported a reduction in first HF hospitalization (any EF value) and cardiovascular death in patients with type 2 diabetes and recent acute coronary syndrome, suggesting a possible role in secondary prevention. Patients with HFpEF seem to benefit from supplementation to the standard therapy with statins, metformin, and SGLT2i owing to their ability in reducing mortality. In contrast, the vasodilator hydralazine, with or without isosorbide dinitrate, did not provide beneficial effects. In HFrEF, metformin and SGLT2i could reduce the risk of incident HF and mortality in affected patients whereas clinical trials based on statins provided mixed results. Furthermore, PUFAs diet supplementation was significantly associated with reduced cardiovascular risk in both HFpEF and HFrEF. Future large trials will reveal whether direct and indirect epitherapy will remain a work in progress or become a useful way to customize the therapy in the real-world management of HFpEF and HFrEF. Our goal is to discuss the recent advancement in the epitherapy as a possible way to improve personalized therapy of HF.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Vittorio Palmieri
- Department of Cardiac Surgery and Transplantation, Heart Transplantation Unit in Adults of the 'Ospedali dei Colli Monaldi-Cotugno-CTO', Naples, Italy
| | - Enrico Coscioni
- Department of Cardiac Surgery, Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplants, Monaldi Hospital, Azienda dei Colli, Naples, Italy
| | - Francesco Donatelli
- Chair of Cardiac Surgery, Department of Cardiothoracic Center, Istituto Clinico Sant'Ambrogio, University of Milan, Milan, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| |
Collapse
|
21
|
Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, von Haehling S, Jamialahmadi T, Sahebkar A. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle 2021; 12:237-251. [PMID: 33511728 PMCID: PMC8061391 DOI: 10.1002/jcsm.12654] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Statins are a family of drugs that are used for treating hyperlipidaemia with a recognized capacity to prevent cardiovascular disease events. They inhibit β-hydroxy β-methylglutaryl-coenzyme A reductase, i.e. the rate-limiting enzyme in mevalonate pathway, reduce endogenous cholesterol synthesis, and increase low-density lipoprotein clearance by promoting low-density lipoprotein receptor expression mainly in the hepatocytes. Statins have pleiotropic effects including stabilization of atherosclerotic plaques, immunomodulation, anti-inflammatory properties, improvement of endothelial function, antioxidant, and anti-thrombotic action. Despite all beneficial effects, statins may elicit adverse reactions such as myopathy. Studies have shown that mitochondria play an important role in statin-induced myopathies. In this review, we aim to report the mechanisms of action of statins on mitochondrial function. Results have shown that statins have several effects on mitochondria including reduction of coenzyme Q10 level, inhibition of respiratory chain complexes, induction of mitochondrial apoptosis, dysregulation of Ca2+ metabolism, and carnitine palmitoyltransferase-2 expression. The use of statins has been associated with the onset of additional pathological conditions like diabetes and dementia as a result of interference with mitochondrial pathways by various mechanisms, such as reduction in mitochondrial oxidative phosphorylation, increase in oxidative stress, decrease in uncoupling protein 3 concentration, and interference in amyloid-β metabolism. Overall, data reported in this review suggest that statins may have major effects on mitochondrial function, and some of their adverse effects might be mediated through mitochondrial pathways.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical SciencesBojnurdIran
| | - Erfan Tavana
- Student Research Committee, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Giovanni Fanni
- Department of Medical SciencesUniversity of TurinTurinItaly
| | - Simona Bo
- Department of Medical Sciences, AOU Città della Salute e della Scienza di TorinoUniversity of TurinTurinItaly
| | - Maciej Banach
- Department of HypertensionWAM University Hospital in LodzMedical University of Lodz, LodzPoland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), LodzPoland
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of MedicineUniversity of PerugiaPerugiaItaly
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| | - Tannaz Jamialahmadi
- Department of Food Science and TechnologyIslamic Azad UniversityQuchanQuchanIran
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
- Halal Research Center of IRIFDATehranIran
| |
Collapse
|
22
|
Stamerra CA, Di Giosia P, Ferri C, Giorgini P, Reiner Z, Johnston TP, Sahebkar A. Statin therapy and sex hormones. Eur J Pharmacol 2021; 890:173745. [PMID: 33227286 DOI: 10.1016/j.ejphar.2020.173745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022]
Abstract
Current guidelines recommend statin therapy for all adult patients with coronary artery disease irrespective of sex. Over recent years, some concerns have been raised concerning the effects of statins on endogenous steroid hormones synthesis. The aim of this review was to summarize the effects of statins on endogenous sex hormones in order to clarify their role and safety in different clinical settings. Results suggest that HMG-CoA inhibitors may slightly impair adrenal and/or gonadal steroid hormone production. In men, statins do not cause any clinically-relevant harmful effects on erectile function and spermatogenesis and, in women, statins have beneficial effects in treatment of polycystic ovary syndrome (PCOS). Additional research is needed to provide specific clinical recommendations concerning this topic.
Collapse
Affiliation(s)
- Cosimo Andrea Stamerra
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6 - San Salvatore Hospital, Via Vetoio, Coppito, 67100, L'Aquila, Italy
| | - Paolo Di Giosia
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6 - San Salvatore Hospital, Via Vetoio, Coppito, 67100, L'Aquila, Italy
| | - Claudio Ferri
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6 - San Salvatore Hospital, Via Vetoio, Coppito, 67100, L'Aquila, Italy
| | - Paolo Giorgini
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6 - San Salvatore Hospital, Via Vetoio, Coppito, 67100, L'Aquila, Italy
| | - Zeljko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Halal Research Center of IRI, FDA, Tehran, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|