1
|
Gião T, Teixeira T, Almeida MR, Cardoso I. Choroid Plexus in Alzheimer's Disease-The Current State of Knowledge. Biomedicines 2022; 10:224. [PMID: 35203434 PMCID: PMC8869376 DOI: 10.3390/biomedicines10020224] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/31/2023] Open
Abstract
The choroid plexus (CP), located in each of the four ventricles of the brain, is formed by a monolayer of epithelial cells that surrounds a highly vascularized connective tissue with permeable capillaries. These cells are joined by tight junctions forming the blood-cerebrospinal fluid barrier (BCSFB), which strictly regulates the exchange of substances between the blood and cerebrospinal fluid (CSF). The primary purpose of the CP is to secrete CSF, but it also plays a role in the immune surveillance of the central nervous system (CNS) and in the removal of neurotoxic compounds from the CSF. According to recent findings, the CP is also involved in the modulation of the circadian cycle and neurogenesis. In diseases such as Alzheimer's disease (AD), the function of the CP is impaired, resulting in an altered secretory, barrier, transport, and immune function. This review describes the current state of knowledge concerning the roles of the CP and BCSFB in the pathophysiology of AD and summarizes recently proposed therapies that aim to restore CP and BCSFB functions.
Collapse
Affiliation(s)
- Tiago Gião
- Molecular Neurobiology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (T.T.); (M.R.A.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, 4050-013 Porto, Portugal
| | - Tiago Teixeira
- Molecular Neurobiology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (T.T.); (M.R.A.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Maria Rosário Almeida
- Molecular Neurobiology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (T.T.); (M.R.A.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, 4050-013 Porto, Portugal
| | - Isabel Cardoso
- Molecular Neurobiology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (T.T.); (M.R.A.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, 4050-013 Porto, Portugal
| |
Collapse
|
2
|
Arnaud K, Oliveira Moreira V, Vincent J, Dallerac G, Dubreuil C, Dupont E, Richter M, Müller UC, Rondi-Reig L, Prochiantz A, Di Nardo AA. Choroid plexus APP regulates adult brain proliferation and animal behavior. Life Sci Alliance 2021; 4:4/11/e202000703. [PMID: 34544751 PMCID: PMC8473726 DOI: 10.26508/lsa.202000703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022] Open
Abstract
Adult mouse choroid plexus shows elevated APP expression. sAPPα secreted into the CSF modulates neurogenic niche proliferation, whereas choroid plexus expression of fAD APP mutants leads to reduced niche proliferation, deficits in hippocampus synaptic plasticity, and learning defects. Elevated amyloid precursor protein (APP) expression in the choroid plexus suggests an important role for extracellular APP metabolites such as sAPPα in cerebrospinal fluid. Despite widespread App brain expression, we hypothesized that specifically targeting choroid plexus expression could alter animal physiology. Through various genetic and viral approaches in the adult mouse, we show that choroid plexus APP levels significantly impact proliferation in both subventricular zone and hippocampus dentate gyrus neurogenic niches. Given the role of Aβ peptides in Alzheimer disease pathogenesis, we also tested whether favoring the production of Aβ in choroid plexus could negatively affect niche functions. After AAV5-mediated long-term expression of human mutated APP specifically in the choroid plexus of adult wild-type mice, we observe reduced niche proliferation, reduced hippocampus APP expression, behavioral defects in reversal learning, and deficits in hippocampal long-term potentiation. Our findings highlight the unique role played by the choroid plexus in regulating brain function and suggest that targeting APP in choroid plexus may provide a means to improve hippocampus function and alleviate disease-related burdens.
Collapse
Affiliation(s)
- Karen Arnaud
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Vanessa Oliveira Moreira
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Jean Vincent
- Neuroscience Paris Seine, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM, Labex BioPsy, ENP Foundation, Sorbonne University, Paris, France
| | - Glenn Dallerac
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Chantal Dubreuil
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Edmond Dupont
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Max Richter
- Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Functional Genomics, Heidelberg, Germany
| | - Ulrike C Müller
- Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Functional Genomics, Heidelberg, Germany
| | - Laure Rondi-Reig
- Neuroscience Paris Seine, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM, Labex BioPsy, ENP Foundation, Sorbonne University, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| |
Collapse
|
3
|
Xu Y, Wang C, Wey HY, Liang Y, Chen Z, Choi SH, Ran C, Rynearson KD, Bernales DR, Koegel RE, Fiedler SA, Striar R, Wagner SL, Tanzi RE, Zhang C. Molecular imaging of Alzheimer's disease-related gamma-secretase in mice and nonhuman primates. J Exp Med 2021; 217:152091. [PMID: 32936886 PMCID: PMC7553790 DOI: 10.1084/jem.20182266] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/24/2019] [Accepted: 04/28/2020] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of Alzheimer’s disease (AD) is primarily driven by brain accumulation of the amyloid-β-42 (Aβ42) peptide generated from the amyloid-β precursor protein (APP) via cleavages by β- and γ-secretase. γ-Secretase is a prime drug target for AD; however, its brain regional expression and distribution remain largely unknown. Here, we are aimed at developing molecular imaging tools for visualizing γ-secretase. We used our recently developed γ-secretase modulators (GSMs) and synthesized our GSM-based imaging agent, [11C]SGSM-15606. We subsequently performed molecular imaging in rodents, including AD transgenic animals, and macaques, which revealed that our probe displayed good brain uptake and selectivity, stable metabolism, and appropriate kinetics and distribution for imaging γ-secretase in the brain. Interestingly, rodents and macaques shared certain brain areas with high γ-secretase expression, suggesting a functional conservation of γ-secretase. Collectively, we have provided the first molecular brain imaging of γ-secretase, which may not only accelerate our drug discovery for AD but also advance our understanding of AD.
Collapse
Affiliation(s)
- Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Yingxia Liang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Zude Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Kevin D Rynearson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Daniela R Bernales
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Robert E Koegel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Stephanie A Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Robin Striar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA.,Research Biologist, VA San Diego Healthcare System, La Jolla, CA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| |
Collapse
|
4
|
Annexin A5 prevents amyloid-β-induced toxicity in choroid plexus: implication for Alzheimer's disease. Sci Rep 2020; 10:9391. [PMID: 32523019 PMCID: PMC7286910 DOI: 10.1038/s41598-020-66177-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
In Alzheimer’s disease (AD) amyloid-β (Aβ) deposits may cause impairments in choroid plexus, a specialised brain structure which forms the blood–cerebrospinal fluid (CSF) barrier. We previously carried out a mass proteomic-based study in choroid plexus from AD patients and we found several differentially regulated proteins compared with healthy subjects. One of these proteins, annexin A5, was previously demonstrated implicated in blocking Aβ-induced cytotoxicity in neuronal cell cultures. Here, we investigated the effects of annexin A5 on Aβ toxicity in choroid plexus. We used choroid plexus tissue samples and CSF from mild cognitive impairment (MCI) and AD patients to analyse Aβ accumulation, cell death and annexin A5 levels compared with control subjects. Choroid plexus cell cultures from rats were used to analyse annexin A5 effects on Aβ-induced cytotoxicity. AD choroid plexus exhibited progressive reduction of annexin A5 levels along with progressive increased Aβ accumulation and cell death as disease stage was higher. On the other hand, annexin A5 levels in CSF from patients were found progressively increased as the disease stage increased in severity. In choroid plexus primary cultures, Aβ administration reduced endogenous annexin A5 levels in a time-course dependent manner and simultaneously increased annexin A5 levels in extracellular medium. Annexin A5 addition to choroid plexus cell cultures restored the Aβ-induced impairments on autophagy flux and apoptosis in a calcium-dependent manner. We propose that annexin A5 would exert a protective role in choroid plexus and this protection is lost as Aβ accumulates with the disease progression. Then, brain protection against further toxic insults would be jeopardised.
Collapse
|
5
|
Presenilin-mediated cleavage of APP regulates synaptotagmin-7 and presynaptic plasticity. Nat Commun 2018; 9:4780. [PMID: 30429473 PMCID: PMC6235831 DOI: 10.1038/s41467-018-06813-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
Mutations of the intramembrane protease presenilin (PS) or of its main substrate, the amyloid precursor protein (APP), cause early-onset form of Alzheimer disease. PS and APP interact with proteins of the neurotransmitter release machinery without identified functional consequences. Here we report that genetic deletion of PS markedly decreases the presynaptic levels of the Ca2+ sensor synaptotagmin-7 (Syt7) leading to impaired synaptic facilitation and replenishment of synaptic vesicles. The regulation of Syt7 expression by PS occurs post-transcriptionally and depends on γ-secretase proteolytic activity. It requires the substrate APP as revealed by the combined genetic invalidation of APP and PS1, and in particular the APP-Cterminal fragments which interact with Syt7 and accumulate in synaptic terminals under pharmacological or genetic inhibition of γ-secretase. Thus, we uncover a role of PS in presynaptic mechanisms, through APP cleavage and regulation of Syt7, that highlights aberrant synaptic vesicle processing as a possible new pathway in AD. Mutations in presenilin, which cleaves amyloid precursor protein, cause familial Alzheimer’s Disease. Here, the authors show that loss of presenilin leads to loss of synaptotagmin 7, leading to impaired presynaptic release.
Collapse
|
6
|
Xu SY, Jiang J, Pan A, Yan C, Yan XX. Sortilin: a new player in dementia and Alzheimer-type neuropathology. Biochem Cell Biol 2018; 96:491-497. [PMID: 29687731 DOI: 10.1139/bcb-2018-0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Age-related dementias are now a major mortality factor among most human populations in the world, with Alzheimer's disease (AD) being the leading dementia-causing neurodegenerative disease. The pathogenic mechanism underlying dementia disorders, and AD in particular, remained largely unknown. Efforts to develop drugs targeting the disease's hallmark lesions, such as amyloid plaque and tangle pathologies, have been unsuccessful so far. The vacuolar protein sorting 10p (Vps10p) family plays a critical role in membrane signal transduction and protein sorting and trafficking between intracellular compartments. Data emerging during the past few years point to an involvement of this family in the development of AD. Specifically, the Vps10p member sortilin has been shown to participate in amyloid plaque formation, tau phosphorylation, abnormal protein sorting and apoptosis. In this minireview, we update some latest findings from animal experiments and human brain studies suggesting that abnormal sortilin expression is associated with AD-type neuropathology, warranting further research that might lead to novel targets for the development of AD therapies.
Collapse
Affiliation(s)
- Shu-Yin Xu
- a Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Juan Jiang
- a Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Aihua Pan
- a Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Cai Yan
- a Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,b Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xiao-Xin Yan
- a Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
7
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
8
|
Sarajärvi T, Marttinen M, Natunen T, Kauppinen T, Mäkinen P, Helisalmi S, Laitinen M, Rauramaa T, Leinonen V, Petäjä-Repo U, Soininen H, Haapasalo A, Hiltunen M. Genetic Variation in δ-Opioid Receptor Associates with Increased β- and γ-Secretase Activity in the Late Stages of Alzheimer's Disease. J Alzheimers Dis 2016; 48:507-16. [PMID: 26402014 DOI: 10.3233/jad-150221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The agonist-induced activation of human δ-opioid receptor (δOR) has been shown to increase β- (BACE1) and γ-secretase activities leading to increased production of amyloid-β (Aβ) peptide. We have recently shown that phenylalanine to cysteine substitution at amino acid 27 in δOR (δOR-Phe27Cys) increases amyloid-β protein precursor processing through altered endocytic trafficking. Also, a genetic meta-analysis of the δOR-Phe27Cys variation (rs1042114) in two independent Alzheimer's disease (AD) patient cohorts indicated that the heterozygosity of δOR-Phe27Cys increases the risk of AD. Here, we investigated α-, β-, and γ-secretase activities in human brain with respect to δOR-Phe27Cys variation in the temporal cortex of 71 subjects with varying degree of AD-related neurofibrillary pathology (Braak stages I-VI). As a result, a significant increase in β- (p = 0.03) and γ- (p = 0.01), but not α-secretase, activities was observed in late stage AD samples (Braak stages V-VI), which were heterozygous for δOR-Phe27Cys as compared to the δOR-Phe27 and δOR-Cys27 homozygotes. The augmented β-secretase activity was not associated with increased mRNA expression or protein levels of BACE1 in the late stage AD patients, who were heterozygous for the δOR-Phe27Cys variation. These findings suggest that δOR-Phe27Cys variation modulates β- and γ-secretase activity in the late stages of AD likely via post-translational mechanisms other than alterations in the mRNA or protein levels of BACE1, or, in the expression of γ-secretase complex components.
Collapse
Affiliation(s)
- Timo Sarajärvi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Tarja Kauppinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Marjo Laitinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine - Pathology, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Ulla Petäjä-Repo
- Medical Research Center Oulu and Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
9
|
Krzyzanowska A, García-Consuegra I, Pascual C, Antequera D, Ferrer I, Carro E. Expression of regulatory proteins in choroid plexus changes in early stages of Alzheimer disease. J Neuropathol Exp Neurol 2015; 74:359-69. [PMID: 25756589 DOI: 10.1097/nen.0000000000000181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent studies indicate that the choroid plexus has important physiologic and pathologic roles in Alzheimer disease (AD). To obtain additional insight on choroid plexus function, we performed a proteomic analysis of choroid plexus samples from patients with AD stages I to II (n = 16), III to IV (n = 16), and V to VI (n = 11) and 7 age-matched control subjects. We used 2-dimensional differential gel electrophoresis coupled with mass spectrometry to generate a complete picture of changes in choroid plexus protein expression occurring in AD patients. We identified 6 proteins: 14-3-3 β/α, 14-3-3 ε, moesin, proteasome activator complex subunit 1, annexin V, and aldehyde dehydrogenase, which were significantly regulated in AD patient samples (p < 0.05, >1.5-fold variation in expression vs control samples). These proteins are implicated in major physiologic functions including mitochondrial dysfunction and apoptosis regulation. These findings contribute additional significance to the emerging importance of molecular and functional changes of choroid plexus function in the pathophysiology of AD.
Collapse
Affiliation(s)
- Agnieszka Krzyzanowska
- From the Neuroscience Group, Research Institute Hospital; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED); and Proteomic Unit, Research Institute Hospital, Madrid; and Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge; and Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Yan XX, Ma C, Gai WP, Cai H, Luo XG. Can BACE1 inhibition mitigate early axonal pathology in neurological diseases? J Alzheimers Dis 2014; 38:705-18. [PMID: 24081378 DOI: 10.3233/jad-131400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
β-Secretase-1 (BACE1) is the rate-limiting enzyme for the genesis of amyloid-β (Aβ) peptides, the main constituents of the amyloid plaques in the brains of Alzheimer's disease (AD) patients. BACE1 is being evaluated as an anti-Aβ target for AD therapy. Recent studies indicate that BACE1 elevation is associated with axonal and presynaptic pathology during plaque development. Evidence also points to a biological role for BACE1 in axonal outgrowth and synapse formation during development. Axonal, including presynaptic, pathology exists in AD as well as many other neurological disorders such as Parkinson's disease, epilepsy, stroke, and trauma. In this review, we discuss pharmaceutical BACE1 inhibition as a therapeutic option for axonal pathogenesis, in addition to amyloid pathology. We first introduce the amyloidogenic processing of amyloid-β protein precursor and describe the normal expression pattern of the amyloidogenic proteins in the brain, with an emphasis on BACE1. We then address BACE1 elevation relative to amyloid plaque development, followed by updating recent understanding of a neurotrophic role of BACE1 in axon and synapse development. We further elaborate the occurrence of axonal pathology in some other neurological conditions. Finally, we propose pharmacological inhibition of excessive BACE1 activity as an option to mitigate early axonal pathology occurring in AD and other neurological disorders.
Collapse
Affiliation(s)
- Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
11
|
Yang ZY, Li JM, Xiao L, Mou L, Cai Y, Huang H, Luo XG, Yan XX. [(3) H]-L685,458 binding sites are abundant in multiple peripheral organs in rats: implications for safety assessment of putative γ-secretase targeting drugs. Basic Clin Pharmacol Toxicol 2014; 115:518-26. [PMID: 24861611 DOI: 10.1111/bcpt.12271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/08/2014] [Indexed: 11/28/2022]
Abstract
γ-Secretase is a multimeric enzyme complex that carries out proteolytic processing to a variety of cellular proteins. It is currently explored as a therapeutic target for Alzheimer's disease (AD) and cancer. Mechanism-based toxicity needs to be thoroughly evaluated for γ-secretase inhibitory and/or modulatory drugs. This study comparatively assessed putative γ-secretase catalytic sites in rat peripheral tissues relative to brain and explored an effort of its pharmacological inhibition on hair regeneration. Using [(3) H]-labelled L685,458, a potent γ-secretase inhibitor, as probe, we found more abundant presence of γ-secretase binding sites in the liver, gastrointestinal tract, hair follicle, pituitary gland, ovary and testis, as compared to the brain. Local application of L658,458 delayed vibrissal regrowth following whisker removal. These results suggest that γ-secretase may execute important biological functions in many peripheral systems, as in the brain. The development of γ-secretase inhibitors/modulators for AD and cancer therapy should include close monitoring of toxicological panels for hepatic, gastrointestinal, endocrinal and reproductive functions.
Collapse
Affiliation(s)
- Zhi-Ying Yang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China; Department of Pharmacy, Changsha Health Vocational College, Changsha, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Laiterä T, Sarajärvi T, Haapasalo A, Puli L, Kauppinen T, Mäkinen P, Rauramaa T, Tanila H, Jääskeläinen JE, Alafuzoff I, Soininen H, Leinonen V, Hiltunen M. Increased γ-secretase activity in idiopathic normal pressure hydrocephalus patients with β-amyloid pathology. PLoS One 2014; 9:e93717. [PMID: 24699723 PMCID: PMC3974803 DOI: 10.1371/journal.pone.0093717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/05/2014] [Indexed: 01/29/2023] Open
Abstract
The potential similarity between the brain pathology of idiopathic normal pressure hydrocephalus (iNPH) and Alzheimer disease (AD) is intriguing and thus further studies focusing on the underlying molecular mechanisms may offer valuable information for differential diagnostics and the development of treatments for iNPH. Here, we investigated β- and γ-secretase activities in relation to amyloid-β (Aβ) pathology in the brain tissue samples collected from iNPH and AD patients. β- and γ-secretase activities were measured from the frontal cortical biopsies of 26 patients with suspected iNPH as well as post-mortem tissue samples from the inferior temporal cortex of 74 AD patients and eight subjects without neurofibrillary pathology. In iNPH samples with detectable Aβ plaques, γ-secretase activity was significantly increased (∼1.6-fold) when compared to iNPH samples without Aβ plaques (p = 0.009). In the AD samples, statistically significant differences in the γ-secretase activity were not observed with respect to disease severity (mild, moderate and severe AD according to neurofibrillary pathology). Conversely, β-secretase activity was unaltered in iNPH samples with or without Aβ plaques, while it was significantly increased in relation to disease severity in the AD patients. These results show for the first time increased γ-secretase but not β-secretase activity in the biopsy samples from the frontal cortex of iNPH patients with AD-like Aβ pathology. Conversely, the opposite was observed in these secretase activities in AD patients with respect to neurofibrillary pathology. Despite the resemblances in the Aβ pathology, iNPH and AD patients appear to have marked differences in the cellular mechanisms responsible for the production of Aβ.
Collapse
Affiliation(s)
- Tiina Laiterä
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Timo Sarajärvi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Lakshman Puli
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Tarja Kauppinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Institute of Clinical Medicine - Pathology, University of Eastern Finland, Kuopio, Finland
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Juha E. Jääskeläinen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| |
Collapse
|
13
|
Liu F, Xue ZQ, Deng SH, Kun X, Luo XG, Patrylo PR, Rose GM, Cai H, Struble RG, Cai Y, Yan XX. γ-Secretase binding sites in aged and Alzheimer's disease human cerebrum: the choroid plexus as a putative origin of CSF Aβ. Eur J Neurosci 2013. [DOI: 10.1111/ejn.12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|