1
|
Mattioni J, Duriez P, Aïdat S, Lebrun N, Bohlooly-Y M, Gorwood P, Viltart O, Tolle V. Altered circadian pattern of activity in a chronic activity-based anorexia nervosa-like female mouse model deficient for GHSR. Psychoneuroendocrinology 2025; 177:107453. [PMID: 40245654 DOI: 10.1016/j.psyneuen.2025.107453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/27/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025]
Abstract
Anorexia Nervosa (AN) is a psychiatric disorder characterized by voluntary food restriction, resulting in severe undernutrition that has been associated with circadian rhythms alterations. Yet, mechanisms that link circadian rhythm shifts to abnormal eating regulation in AN are poorly understood. Plasma ghrelin concentrations, an orexigenic hormone secreted by the stomach and acting through the GHSR (Growth Hormone Secretagogue Receptor), is elevated in restrictive-type AN. We aimed to test the hypothesis that GHSR signaling contributes to altered circadian pattern observed in AN. For this purpose, we first assessed whether chronotypes (morning, intermediate or evening) were different in patients with AN, bulimia nervosa and healthy controls. We next recorded the pattern of physical activity in young female GHSR deleted (Ghsr-/-) and wild-type (Ghsr+/+) mice housed in cages equipped with running wheels and exposed to quantitative food restriction, mimicking AN metabolic status. We demonstrated that chronotypes were different in the three groups of subjects, a difference mainly driven by an excess of morning chronotype in patients with AN. In mice, the shift toward higher daytime and pre-prandial physical activity and lower night-time and post-prandial physical activity, induced by food restriction, was impaired in Ghsr-/- mice, suggesting a lack of capacity to adapt patterns of circadian activity to chronic food restriction. These data suggest an interaction between altered circadian pattern and AN and indicate that GHSR signaling deficiency may play a critical role in adapting circadian patterns of activity to the undernutrition state in this disorder.
Collapse
Affiliation(s)
- Julia Mattioni
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Vulnerability to Psychiatric and Addictive Disorders", Paris 75014, France
| | - Philibert Duriez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Vulnerability to Psychiatric and Addictive Disorders", Paris 75014, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne (CMME), F-75014 Paris, France
| | - Sana Aïdat
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Vulnerability to Psychiatric and Addictive Disorders", Paris 75014, France; Université de Lille, SCALab - Sciences Cognitives et Sciences Affectives, CNRS UMR 9193, PsySEF Faculty, Villeneuve d'Ascq F-59653, France
| | - Nicolas Lebrun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Vulnerability to Psychiatric and Addictive Disorders", Paris 75014, France
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Philip Gorwood
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Vulnerability to Psychiatric and Addictive Disorders", Paris 75014, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne (CMME), F-75014 Paris, France
| | - Odile Viltart
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Vulnerability to Psychiatric and Addictive Disorders", Paris 75014, France; Université de Lille, SCALab - Sciences Cognitives et Sciences Affectives, CNRS UMR 9193, PsySEF Faculty, Villeneuve d'Ascq F-59653, France
| | - Virginie Tolle
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Vulnerability to Psychiatric and Addictive Disorders", Paris 75014, France.
| |
Collapse
|
2
|
Kulkarni SS, Singh O, Zigman JM. The intersection between ghrelin, metabolism and circadian rhythms. Nat Rev Endocrinol 2024; 20:228-238. [PMID: 38123819 PMCID: PMC11760189 DOI: 10.1038/s41574-023-00927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Despite the growing popular interest in sleep and diet, many gaps exist in our scientific understanding of the interaction between circadian rhythms and metabolism. In this Review, we explore a promising, bidirectional role for ghrelin in mediating this interaction. Ghrelin both influences and is influenced by central and peripheral circadian systems. Specifically, we focus on how ghrelin impacts outputs of circadian rhythm, including neuronal activity, circulating growth hormone levels, locomotor activity and eating behaviour. We also consider the effects of circadian rhythms on ghrelin expression and the consequences of disrupted circadian patterns, such as shift work and jet lag, on ghrelin secretion. Our Review is aimed at both the casual reader interested in gaining more insight into the scientific context surrounding the trending topics of sleep and metabolism, as well as experienced scientists in the fields of ghrelin and circadian biology seeking inspiration and a comprehensive overview of how these fields are related.
Collapse
Affiliation(s)
- Soumya S Kulkarni
- Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Hosseini E, Ammar A, Josephson JK, Gibson DL, Askari G, Bragazzi NL, Trabelsi K, Schöllhorn WI, Mokhtari Z. Fasting diets: what are the impacts on eating behaviors, sleep, mood, and well-being? Front Nutr 2024; 10:1256101. [PMID: 38264193 PMCID: PMC10803520 DOI: 10.3389/fnut.2023.1256101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Fasting diets (FDs) have drawn great attention concerning their contribution to health and disease over the last decade. Despite considerable interest in FDs, the effect of fasting diets on eating behaviors, sleep, and mood-essential components of diet satisfaction and mental health- has not been addressed comprehensively. Understanding the critical role that fasting plays in these elements will open up potential treatment avenues that have not yet been explored. The aim of the present paper was to conduct a comprehensive critical review exploring the effects of fasting on eating behaviors, sleep, and mood. There is currently a lack of clarity regarding which fasting option yields the most advantageous effects, and there is also a scarcity of consistent trials that assess the effects of FDs in a comparable manner. Similarly, the effects and/or treatment options for utilizing FDs to modify eating and sleep behaviors and enhance mood are still poorly understood. Further researches aiming at understanding the impacts of various fasting regimes, providing new insights into the gut-brain axis and offering new treatment avenues for those with resistant anxiety and depression, are warranted. Alteration of eating behaviors can have lasting effects on various physiological parameters. The use of fasting cures can underpin ancient knowledge with scientific evidence to form a new approach to the prevention and treatment of problems associated with co-morbidities or challenges pertaining to eating behaviors. Therefore, a thorough examination of the various fasting regimens and how they impact disease patterns is also warranted.
Collapse
Affiliation(s)
- Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | | | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
- Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nicola L. Bragazzi
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, Parma, Italy
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Engin A. Misalignment of Circadian Rhythms in Diet-Induced Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:27-71. [PMID: 39287848 DOI: 10.1007/978-3-031-63657-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
5
|
Jeczmien-Lazur JS, Sanetra AM, Pradel K, Izowit G, Chrobok L, Palus-Chramiec K, Piggins HD, Lewandowski MH. Metabolic cues impact non-oscillatory intergeniculate leaflet and ventral lateral geniculate nucleus: standard versus high-fat diet comparative study. J Physiol 2023; 601:979-1016. [PMID: 36661095 DOI: 10.1113/jp283757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues. Both receive information about environmental light from photoreceptors, exhibit infra-slow oscillations (ISO) in vivo, and connect to the master circadian clock. Although current evidence demonstrates that the IGL/VLG communicate metabolic information and are crucial for entrainment of circadian rhythms to time-restricted feeding, their sensitivity to food intake-related peptides has not been investigated yet. We examined the effect of metabolically relevant peptides on the spontaneous activity of IGL/VLG neurons. Using ex vivo and in vivo electrophysiological recordings as well as in situ hybridisation, we tested potential sensitivity of the IGL/VLG to anorexigenic and orexigenic peptides, such as cholecystokinin, glucagon-like peptide 1, oxyntomodulin, peptide YY, orexin A and ghrelin. We explored neuronal responses to these drugs during day and night, and in standard vs. high-fat diet conditions. We found that IGL/VLG neurons responded to all the substances tested, except peptide YY. Moreover, more neurons responded to anorexigenic drugs at night, while a high-fat diet affected the IGL/VLG sensitivity to orexigenic peptides. Interestingly, ISO neurons responded to light and orexin A, but did not respond to the other food intake-related peptides. In contrast, non-ISO cells were activated by metabolic peptides, with only some being responsive to light. Our results show for the first time that peptides involved in the body's energy homeostasis stimulate the thalamus and suggest functional separation of the IGL/VLG cells. KEY POINTS: The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) of the rodent thalamus process various signals and participate in circadian entrainment. In both structures, cells exhibiting infra-slow oscillatory activity as well as non-rhythmically firing neurons being observed. Here, we reveal that only one of these two groups of cells responds to anorexigenic (cholecystokinin, glucagon-like peptide 1 and oxyntomodulin) and orexigenic (ghrelin and orexin A) peptides. Neuronal responses vary depending on the time of day (day vs. night) and on the diet (standard vs. high-fat diet). Additionally, we visualised receptors to the tested peptides in the IGL/VLG using in situ hybridisation. Our results suggest that two electrophysiologically different subpopulations of IGL/VLG neurons are involved in two separate functions: one related to the body's energy homeostasis and one associated with the subcortical visual system.
Collapse
Affiliation(s)
- Jagoda S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anna M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
6
|
Prins K, Huisman M, McLuskey A, Mies R, Karels B, Delhanty PJD, Visser JA. Ghrelin deficiency sex-dependently affects food intake, locomotor activity, and adipose and hepatic gene expression in a binge-eating mouse model. Am J Physiol Endocrinol Metab 2022; 322:E494-E507. [PMID: 35403437 DOI: 10.1152/ajpendo.00432.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Binge-eating disorder is the most prevalent eating disorder diagnosed, affecting three times more women than men. Ghrelin stimulates appetite and reward signaling, and loss of its receptor reduces binge-eating behavior in male mice. Here, we examined the influence of ghrelin itself on binge-eating behavior in both male and female mice. Five-wk-old wild-type (WT) and ghrelin-deficient (Ghrl-/-) mice were housed individually in indirect calorimetry cages for 9 wks. Binge-like eating was induced by giving mice ad libitum chow, but time-restricted access to a Western-style diet (WD; 2 h access, 3 days/wk) in the light phase (BE); control groups received ad libitum chow (CO), or ad libitum access to both diets (CW). All groups of BE mice showed binge-eating behavior, eating up to 60% of their 24-h intake during the WD access period. Subsequent dark phase chow intake was decreased in Ghrl-/- mice and remained decreased in Ghrl-/- females on nonbinge days. Also, nonbinge day locomotor activity was lower in Ghrl-/- than in WT BE females. Upon euthanasia, Ghrl-/- BE mice weighed less and had a lower lean body mass percentage than WT BE mice. In BE and CW groups, ghrelin and sex altered the expression of genes involved in lipid processing, thermogenesis, and aging in white adipose tissue and livers. We conclude that, although ghrelin deficiency does not hamper the development of binge-like eating, it sex-dependently alters food intake timing, locomotor activity, and metabolism. These results add to the growing body of evidence that ghrelin signaling is sexually dimorphic.NEW & NOTEWORTHY Ghrelin, a peptide hormone secreted from the gut, is involved in hunger and reward signaling, which are altered in binge-eating disorder. Although sex differences have been described in both binge-eating and ghrelin signaling, this interaction has not been fully elucidated. Here, we show that ghrelin deficiency affects the behavior and metabolism of mice in a binge-like eating paradigm, and that the sex of the mice impacts the magnitude and direction of these effects.
Collapse
Affiliation(s)
- Karina Prins
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martin Huisman
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Anke McLuskey
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rosinda Mies
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bas Karels
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Patric J D Delhanty
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Tacad DKM, Tovar AP, Richardson CE, Horn WF, Keim NL, Krishnan GP, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Central Neuroendocrine Integration. Adv Nutr 2022; 13:758-791. [PMID: 35134815 PMCID: PMC9156369 DOI: 10.1093/advances/nmac011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
This review focuses on summarizing current knowledge on how time-restricted feeding (TRF) and continuous caloric restriction (CR) affect central neuroendocrine systems involved in regulating satiety. Several interconnected regions of the hypothalamus, brainstem, and cortical areas of the brain are involved in the regulation of satiety. Following CR and TRF, the increase in hunger and reduction in satiety signals of the melanocortin system [neuropeptide Y (NPY), proopiomelanocortin (POMC), and agouti-related peptide (AgRP)] appear similar between CR and TRF protocols, as do the dopaminergic responses in the mesocorticolimbic circuit. However, ghrelin and leptin signaling via the melanocortin system appears to improve energy balance signals and reduce hyperphagia following TRF, which has not been reported in CR. In addition to satiety systems, CR and TRF also influence circadian rhythms. CR influences the suprachiasmatic nucleus (SCN) or the primary circadian clock as seen by increased clock gene expression. In contrast, TRF appears to affect both the SCN and the peripheral clocks, as seen by phasic changes in the non-SCN (potentially the elusive food entrainable oscillator) and metabolic clocks. The peripheral clocks are influenced by the primary circadian clock but are also entrained by food timing, sleep timing, and other lifestyle parameters, which can supersede the metabolic processes that are regulated by the primary circadian clock. Taken together, TRF influences hunger/satiety, energy balance systems, and circadian rhythms, suggesting a role for adherence to CR in the long run if implemented using the TRF approach. However, these suggestions are based on only a few studies, and future investigations that use standardized protocols for the evaluation of the effect of these diet patterns (time, duration, meal composition, sufficiently powered) are necessary to verify these preliminary observations.
Collapse
Affiliation(s)
- Debra K M Tacad
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Ashley P Tovar
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | | | - William F Horn
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA
| | - Nancy L Keim
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Giri P Krishnan
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
8
|
TRAPing Ghrelin-Activated Circuits: A Novel Tool to Identify, Target and Control Hormone-Responsive Populations in TRAP2 Mice. Int J Mol Sci 2022; 23:ijms23010559. [PMID: 35008985 PMCID: PMC8745172 DOI: 10.3390/ijms23010559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023] Open
Abstract
The availability of Cre-based mouse lines for visualizing and targeting populations of hormone-sensitive cells has helped identify the neural circuitry driving hormone effects. However, these mice have limitations and may not even be available. For instance, the development of the first ghrelin receptor (Ghsr)-IRES-Cre model paved the way for using the Cre-lox system to identify and selectively manipulate ghrelin-responsive populations. The insertion of the IRES-Cre cassette, however, interfered with Ghsr expression, resulting in defective GHSR signaling and a pronounced phenotype in the homozygotes. As an alternative strategy to target ghrelin-responsive cells, we hereby utilize TRAP2 (targeted recombination in active populations) mice in which it is possible to gain genetic access to ghrelin-activated populations. In TRAP2 mice crossed with a reporter strain, we visualized ghrelin-activated cells and found, as expected, much activation in the arcuate nucleus (Arc). We then stimulated this population using a chemogenetic approach and found that this was sufficient to induce an orexigenic response of similar magnitude to that induced by peripheral ghrelin injection. The stimulation of this population also impacted food choice. Thus, the TRAPing of hormone-activated neurons (here exemplified by ghrelin-activated pathways) provides a complimentary/alternative technique to visualize, access and control discrete pathways, linking hormone action to circuit function.
Collapse
|
9
|
Senesi P, Ferrulli A, Luzi L, Terruzzi I. Chrono-communication and cardiometabolic health: The intrinsic relationship and therapeutic nutritional promises. Front Endocrinol (Lausanne) 2022; 13:975509. [PMID: 36176473 PMCID: PMC9513421 DOI: 10.3389/fendo.2022.975509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythm, an innate 24-h biological clock, regulates several mammalian physiological activities anticipating daily environmental variations and optimizing available energetic resources. The circadian machinery is a complex neuronal and endocrinological network primarily organized into a central clock, suprachiasmatic nucleus (SCN), and peripheral clocks. Several small molecules generate daily circadian fluctuations ensuring inter-organ communication and coordination between external stimuli, i.e., light, food, and exercise, and body metabolism. As an orchestra, this complex network can be out of tone. Circadian disruption is often associated with obesity development and, above all, with diabetes and cardiovascular disease onset. Moreover, accumulating data highlight a bidirectional relationship between circadian misalignment and cardiometabolic disease severity. Food intake abnormalities, especially timing and composition of meal, are crucial cause of circadian disruption, but evidence from preclinical and clinical studies has shown that food could represent a unique therapeutic approach to promote circadian resynchronization. In this review, we briefly summarize the structure of circadian system and discuss the role playing by different molecules [from leptin to ghrelin, incretins, fibroblast growth factor 21 (FGF-21), growth differentiation factor 15 (GDF15)] to guarantee circadian homeostasis. Based on the recent data, we discuss the innovative nutritional interventions aimed at circadian re-synchronization and, consequently, improvement of cardiometabolic health.
Collapse
Affiliation(s)
- Pamela Senesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Anna Ferrulli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
- *Correspondence: Ileana Terruzzi,
| |
Collapse
|
10
|
Peris-Sampedro F, Le May MV, Stoltenborg I, Schéle E, Dickson SL. A skeleton in the cupboard in ghrelin research: Where are the skinny dwarfs? J Neuroendocrinol 2021; 33:e13025. [PMID: 34427011 DOI: 10.1111/jne.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Based on studies delivering ghrelin or ghrelin receptor agonists, we have learned a great deal about the importance of the brain ghrelin signalling system for a wide range of physiological processes that include feeding behaviours, growth hormone secretion and glucose homeostasis. Because these processes can be considered as essential to life, the question arises as to why mouse models of depleted ghrelin signalling are not all skinny dwarfs with a host of behavioural and metabolic problems. Here, we provide a systematic detailed review of the phenotype of mice with deficient ghrelin signalling to help better understand the relevance and importance of the brain ghrelin signalling system, with a particular emphasis on those questions that remain unanswered.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Wasinski F, Klein MO, Bittencourt JC, Metzger M, Donato J. Distribution of growth hormone-responsive cells in the brain of rats and mice. Brain Res 2020; 1751:147189. [PMID: 33152340 DOI: 10.1016/j.brainres.2020.147189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
A growth hormone (GH) injection is able to induce the phosphorylated form of the signal transducer and activator of transcription 5 (pSTAT5) in a large number of cells throughout the mouse brain. The present study had the objective to map the distribution of GH-responsive cells in the brain of rats that received an intracerebroventricular injection of GH and compare it to the pattern found in mice. We observed that rats and mice exhibited a similar distribution of GH-induced pSTAT5 in the majority of areas of the telencephalon, hypothalamus and brainstem. However, rats exhibited a higher density of GH-responsive cells than mice in the horizontal limb of the diagonal band of Broca (HDB), supraoptic and suprachiasmatic nuclei, whereas mice displayed more GH-responsive cells than rats in the hippocampus, lateral hypothalamic area and dorsal motor nucleus of the vagus (DMX). Since both HDB and DMX contain acetylcholine-producing neurons, pSTAT5 was co-localized with choline acetyltransferase in GH-injected animals. We found that 50.0 ± 4.5% of cholinergic neurons in the rat HDB coexpressed GH-induced pSTAT5, whereas very few co-localizations were observed in the mouse HDB. In contrast, rats displayed fewer cholinergic neurons responsive to GH in the DMX at the level of the area postrema. In summary, pSTAT5 can be used as a marker of GH-responsive cells in the rat brain. Although rats and mice exhibit a relatively similar distribution of GH-responsive neurons, some species-specific differences exist, as exemplified for the responsiveness to GH in distinct populations of cholinergic neurons.
Collapse
Affiliation(s)
- Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Marianne O Klein
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Jackson C Bittencourt
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Martin Metzger
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil.
| |
Collapse
|
12
|
Pilorz V, Astiz M, Heinen KO, Rawashdeh O, Oster H. The Concept of Coupling in the Mammalian Circadian Clock Network. J Mol Biol 2020; 432:3618-3638. [PMID: 31926953 DOI: 10.1016/j.jmb.2019.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock network regulates daily rhythms in mammalian physiology and behavior to optimally adapt the organism to the 24-h day/night cycle. A central pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), coordinates subordinate cellular oscillators in the brain, as well as in peripheral organs to align with each other and external time. Stability and coordination of this vast network of cellular oscillators is achieved through different levels of coupling. Although coupling at the molecular level and across the SCN is well established and believed to define its function as pacemaker structure, the notion of coupling in other tissues and across the whole system is less well understood. In this review, we describe the different levels of coupling in the mammalian circadian clock system - from molecules to the whole organism. We highlight recent advances in gaining knowledge of the complex organization and function of circadian network regulation and its significance for the generation of stable but plastic intrinsic 24-h rhythms.
Collapse
Affiliation(s)
- Violetta Pilorz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Mariana Astiz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Keno Ole Heinen
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Oliver Rawashdeh
- The University of Queensland, School of Biomedical Sciences, Faculty of Medicine, St Lucia Qld, 4071, Australia
| | - Henrik Oster
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany.
| |
Collapse
|
13
|
Abizaid A. Stress and obesity: The ghrelin connection. J Neuroendocrinol 2019; 31:e12693. [PMID: 30714236 DOI: 10.1111/jne.12693] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/01/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
Ghrelin is a hormone associated with feeding and energy balance. Not surprisingly, this hormone is secreted in response to acute stressors and it is chronically elevated after exposure to chronic stress in tandem with a number of metabolic changes aimed at attaining homeostatic balance. In the present review, we propose that ghrelin plays a key role in these stress-induced homeostatic processes. Ghrelin targets the hypothalamus and brain stem nuclei that are part of the sympathetic nervous system to increase appetite and energy expenditure and promote the use of carbohydrates as a source of fuel at the same time as sparing fat. Ghrelin also targets mesolimbic brain regions such as the ventral segmental area and the hippocampus to modulate reward processes, to protect against damage associated with chronic stress, as well as to potentially increase resilience to stress. In all, these data support the notion that ghrelin, similar to corticosterone, is a critical metabolic hormone that is essential for the stress response.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Wenthur CJ, Gautam R, Zhou B, Vendruscolo LF, Leggio L, Janda KD. Ghrelin Receptor Influence on Cocaine Reward is Not Directly Dependent on Peripheral Acyl-Ghrelin. Sci Rep 2019; 9:1841. [PMID: 30755699 PMCID: PMC6372697 DOI: 10.1038/s41598-019-38549-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/31/2018] [Indexed: 12/30/2022] Open
Abstract
The peptide hormone acyl-ghrelin and its receptor, GHSR1a, represent intriguing therapeutic targets due to their actions in metabolic homeostasis and reward activity. However, this pleotropic activity makes it difficult to intervene in this system without inducing unwanted effects. Thus, it is desirable to identify passive and active regulatory mechanisms that allow differentiation between functional domains. Anatomical restriction by the blood brain barrier represents one major passive regulatory mechanism. However, it is likely that the ghrelin system is subject to additional passive mechanisms that promote independent regulation of orexigenic behavior and reward processing. By applying acyl-ghrelin sequestering antibodies, it was determined that peripheral sequestration of acyl-ghrelin is sufficient to blunt weight gain, but not cocaine rewarding effects. However, both weight gain and reward-associated behaviors were shown to be blocked by direct antagonism of GHSR1a. Overall, these data indicate that GHSR1a effects on reward are independent from peripheral acyl-ghrelin binding, whereas centrally-mediated alteration of energy storage requires peripheral acyl-ghrelin binding. This demonstration of variable ligand-dependence amongst functionally-distinct GHSR1a populations is used to generate a regulatory model for functional manipulation of specific effects when attempting to therapeutically target the ghrelin system.
Collapse
Affiliation(s)
- Cody J Wenthur
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Pharmacy, University of Wisconsin - Madison, Madison, WI, USA
| | - Ritika Gautam
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bin Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
15
|
Insights into the Role of Circadian Rhythms in Bone Metabolism: A Promising Intervention Target? BIOMED RESEARCH INTERNATIONAL 2018; 2018:9156478. [PMID: 30363685 PMCID: PMC6180976 DOI: 10.1155/2018/9156478] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/09/2018] [Indexed: 11/18/2022]
Abstract
Numerous physiological processes of mammals, including bone metabolism, are regulated by the circadian clock system, which consists of a central regulator, the suprachiasmatic nucleus (SCN), and the peripheral oscillators of the BMAL1/CLOCK-PERs/CRYs system. Various bone turnover markers and bone metabolism-regulating hormones such as melatonin and parathyroid hormone (PTH) display diurnal rhythmicity. According to previous research, disruption of the circadian clock due to shift work, sleep restriction, or clock gene knockout is associated with osteoporosis or other abnormal bone metabolism, showing the importance of the circadian clock system for maintaining homeostasis of bone metabolism. Moreover, common causes of osteoporosis, including postmenopausal status and aging, are associated with changes in the circadian clock. In our previous research, we found that agonism of the circadian regulators REV-ERBs inhibits osteoclast differentiation and ameliorates ovariectomy-induced bone loss in mice, suggesting that clock genes may be promising intervention targets for abnormal bone metabolism. Moreover, osteoporosis interventions at different time points can provide varying degrees of bone protection, showing the importance of accounting for circadian rhythms for optimal curative effects in clinical treatment of osteoporosis. In this review, we summarize current knowledge about circadian rhythms and bone metabolism.
Collapse
|
16
|
Okada T, Waise TZ, Toshinai K, Mita Y, Sakoda H, Nakazato M. Analysis of peripheral ghrelin signaling via the vagus nerve in ghrelin receptor–restored GHSR-null mice. Neurosci Lett 2018; 681:50-55. [DOI: 10.1016/j.neulet.2018.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 12/25/2022]
|
17
|
Pendergast JS, Yamazaki S. The Mysterious Food-Entrainable Oscillator: Insights from Mutant and Engineered Mouse Models. J Biol Rhythms 2018; 33:458-474. [PMID: 30033846 DOI: 10.1177/0748730418789043] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The food-entrainable oscillator (FEO) is a mysterious circadian clock because its anatomical location(s) and molecular timekeeping mechanism are unknown. Food anticipatory activity (FAA), which is defined as the output of the FEO, emerges during temporally restricted feeding. FAA disappears immediately during ad libitum feeding and reappears during subsequent fasting. A free-running FAA rhythm has been observed only in rare circumstances when food was provided with a period outside the range of entrainment. Therefore, it is difficult to study the circadian properties of the FEO. Numerous studies have attempted to identify the critical molecular components of the FEO using mutant and genetically engineered mouse models. Herein we critically review the experimental protocols and findings of these studies in mouse models. Several themes emerge from these studies. First, there is little consistency in restricted feeding protocols between studies. Moreover, the protocols were sometimes not optimal, resulting in erroneous conclusions that FAA was absent in some mouse models. Second, circadian genes are not necessary for FEO timekeeping. Thus, another noncanonical timekeeping mechanism must exist in the FEO. Third, studies of mouse models have shown that signaling pathways involved in circadian timekeeping, reward (dopaminergic), and feeding and energy homeostasis can modulate, but are not necessary for, the expression of FAA. In sum, the approaches to date have been largely unsuccessful in discovering the timekeeping mechanism of the FEO. Moving forward, we propose the use of standardized and optimized experimental protocols that focus on identifying genes that alter the period of FAA in mutant and engineered mouse models. This approach is likely to permit discovery of molecular components of the FEO timekeeping mechanism.
Collapse
Affiliation(s)
| | - Shin Yamazaki
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
18
|
Hsu TM, Noble EE, Reiner DJ, Liu CM, Suarez AN, Konanur VR, Hayes MR, Kanoski SE. Hippocampus ghrelin receptor signaling promotes socially-mediated learned food preference. Neuropharmacology 2017; 131:487-496. [PMID: 29191751 DOI: 10.1016/j.neuropharm.2017.11.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/12/2017] [Accepted: 11/23/2017] [Indexed: 12/24/2022]
Abstract
Social cues are potent regulators of feeding behavior, yet the neurobiological mechanisms through which social cues influence food intake are poorly understood. Here we investigate the hypothesis that the appetite-promoting gut-derived hormone, ghrelin, signals in the hippocampus to promote learned social aspects of feeding behavior. We utilized a procedure known as 'social transmission of food preference' (STFP) in which rats ('Observers') experience a social interaction with another rat ('Demonstrators') that recently consumed flavored/scented chow. STFP learning in Observer rats is indicated by a significant preference for the Demonstrator paired flavor of chow vs. a novel unpaired flavor of chow in a subsequent consumption choice test. Our results show that relative to vehicle treatment, ghrelin targeted to the ventral CA1 subregion of the hippocampus (vHP) enhanced STFP learning in rats. Additionally, STFP was impaired following peripheral injections of l-cysteine that reduce circulating ghrelin levels, suggesting that vHP ghrelin-mediated effects on STFP require peripheral ghrelin release. Finally, the endogenous relevance of vHP ghrelin receptor (GHSR-1A) signaling in STFP is supported by our data showing that STFP learning was eliminated following targeted viral vector RNA interference-mediated knockdown of vHP GHSR-1A mRNA. Control experiments indicate that vHP ghrelin-mediated STFP effects are not secondary to altered social exploration and food intake, nor to altered food preference learning based on nonsocial olfactory cues. Overall these data reveal a novel neurobiological system that promotes conditioned, social aspects of feeding behavior.
Collapse
Affiliation(s)
- Ted M Hsu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Program, University of Southern California, Los Angeles, CA, USA
| | - Emily E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David J Reiner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clarissa M Liu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Program, University of Southern California, Los Angeles, CA, USA
| | - Andrea N Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vaibhav R Konanur
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
20
|
Tsang AH, Astiz M, Friedrichs M, Oster H. Endocrine regulation of circadian physiology. J Endocrinol 2016; 230:R1-R11. [PMID: 27106109 DOI: 10.1530/joe-16-0051] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Endogenous circadian clocks regulate 24-h rhythms of behavior and physiology to align with external time. The endocrine system serves as a major clock output to regulate various biological processes. Recent findings suggest that some of the rhythmic hormones can also provide feedback to the circadian system at various levels, thus contributing to maintaining the robustness of endogenous rhythmicity. This delicate balance of clock-hormone interaction is vulnerable to modern lifestyle factors such as shiftwork or high-calorie diets, altering physiological set points. In this review, we summarize the current knowledge on the communication between the circadian timing and endocrine systems, with a focus on adrenal glucocorticoids and metabolic peptide hormones. We explore the potential role of hormones as systemic feedback signals to adjust clock function and their relevance for the maintenance of physiological and metabolic circadian homeostasis.
Collapse
Affiliation(s)
| | - Mariana Astiz
- Medical Department IUniversity of Lübeck, Lübeck, Germany
| | | | - Henrik Oster
- Medical Department IUniversity of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
Hsu TM, Suarez AN, Kanoski SE. Ghrelin: A link between memory and ingestive behavior. Physiol Behav 2016; 162:10-7. [PMID: 27072509 DOI: 10.1016/j.physbeh.2016.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/25/2023]
Abstract
Feeding is a highly complex behavior that is influenced by learned associations between external and internal cues. The type of excessive feeding behavior contributing to obesity onset and metabolic deficit may be based, in part, on conditioned appetitive and ingestive behaviors that occur in response to environmental and/or interoceptive cues associated with palatable food. Therefore, there is a critical need to understand the neurobiology underlying learned aspects of feeding behavior. The stomach-derived "hunger" hormone, ghrelin, stimulates appetite and food intake and may function as an important biological substrate linking mnemonic processes with feeding control. The current review highlights data supporting a role for ghrelin in mediating the cognitive and neurobiological mechanisms that underlie conditioned feeding behavior. We discuss the role of learning and memory on food intake control (with a particular focus on hippocampal-dependent memory processes) and provide an overview of conditioned cephalic endocrine responses. A neurobiological framework is provided through which conditioned cephalic ghrelin secretion signals in neurons in the hippocampus, which then engage orexigenic neural circuitry in the lateral hypothalamus to express learned feeding behavior.
Collapse
Affiliation(s)
- Ted M Hsu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Program, University of Southern California, Los Angeles, CA, USA
| | - Andrea N Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Yamada C, Saegusa Y, Nahata M, Sadakane C, Hattori T, Takeda H. Influence of Aging and Gender Differences on Feeding Behavior and Ghrelin-Related Factors during Social Isolation in Mice. PLoS One 2015; 10:e0140094. [PMID: 26448274 PMCID: PMC4598162 DOI: 10.1371/journal.pone.0140094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022] Open
Abstract
Psychological stress due to social isolation is known to cause abnormal feeding behaviors, but the influences of gender and aging on subchronic stress-induced changes in feeding behaviors are unknown. Thus, we examined the changes in body weight, food intake, and orexigenic ghrelin-related factors during 2 weeks of isolation stress in young and aged mice. Food intake increased significantly in young mice in the isolation group compared with the group-housed control throughout the experimental period. This isolation-induced increase in food intake was not observed in aged mice. In young mice, there were no significant differences in body weight between the isolated group and group-housed control up to 2 weeks. However, aged male mice exhibited significant weight loss at 2 weeks and a similar tendency was observed in aged female mice. Young male mice, but not female mice, had significantly increased (2.2-fold) plasma acylated ghrelin levels after 1 week of isolation compared with the group-housed control. A significant but lower increase (1.3-fold) was also observed in aged male mice. Hypothalamic preproghrelin gene expression decreased significantly with isolation in young male mice, whereas it increased significantly in female mice. The expression levels of NPY and AGRP in the hypothalamus, which are transmitted by elevated peripheral ghrelin signals, increased significantly in isolated young male mice, whereas the AGRP expression levels decreased significantly in young female mice. Isolation caused no significant differences in the expression levels of these genes in aged mice. In isolation, young female mice exhibited markedly increased dark- and light-phase locomotor activities compared with male mice, whereas male and female aged mice exhibited no obvious increases in activity immediately after the dark phase started. We conclude that the gender-specific homeostatic regulatory mechanisms required to maintain body weight operated during subchronic psychological stress in young mice but not in aged mice.
Collapse
Affiliation(s)
- Chihiro Yamada
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Yayoi Saegusa
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Miwa Nahata
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | | - Tomohisa Hattori
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
- * E-mail:
| | - Hiroshi Takeda
- Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Hokkaido University Hospital Gastroenterological Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
23
|
Grosbellet E, Gourmelen S, Pévet P, Criscuolo F, Challet E. Leptin normalizes photic synchronization in male ob/ob mice, via indirect effects on the suprachiasmatic nucleus. Endocrinology 2015; 156:1080-90. [PMID: 25521581 DOI: 10.1210/en.2014-1570] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mounting evidence indicates a strong link between metabolic diseases and circadian dysfunctions. The metabolic hormone leptin, substantially increased in dietary obesity, displays chronobiotic properties. Here we investigated whether leptin is involved in the alteration of timing associated with obesity, via direct or indirect effects on the suprachiasmatic nucleus (SCN), the site of the master clock. Photic synchronization was studied in obese ob/ob mice (deficient in leptin), either injected or not with high doses of recombinant murine leptin (5 mg/kg). This was performed first at a behavioral level, by shifting the light-dark cycle and inducing phase shifts by 30-minute light pulses and then at molecular levels (c-FOS and P-ERK1/2). Moreover, to characterize the targets mediating the chronomodulatory effects of leptin, we studied the induction of phosphorylated signal transducer and activator of transcription 3 (P-STAT3) in the SCN and in different structures projecting to the SCN, including the medial hypothalamus. Ob/ob mice showed altered photic synchronization, including augmented light-induced phase delays. Acute leptin treatment normalized the photic responses of the SCN at both the behavioral and molecular levels (decrease of light-induced c-FOS). Leptin-induced P-STAT3 was modulated by light in the arcuate nucleus and both the ventromedial and dorsomedial hypothalamic nuclei, whereas its expression was independent of the presence of leptin in the SCN. These results suggest an indirect action of leptin on the SCN, possibly mediated by the medial hypothalamus. Taken together, these results highlight a central role of leptin in the relationship between metabolic disturbances and circadian disruptions.
Collapse
Affiliation(s)
- Edith Grosbellet
- Regulation of Circadian Clocks Team (E.G., S.G., P.P., E.C.), Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique UPR3212, and Evolutionary Ecophysiology Team (E.G., F.C.), Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7178, University of Strasbourg, 67000 Strasbourg, France
| | | | | | | | | |
Collapse
|
24
|
Girardet C, Mavrikaki M, Southern MR, Smith RG, Butler AA. Assessing interactions between Ghsr and Mc3r reveals a role for AgRP in the expression of food anticipatory activity in male mice. Endocrinology 2014; 155:4843-55. [PMID: 25211592 PMCID: PMC4239417 DOI: 10.1210/en.2014-1497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The stomach hormone ghrelin and hypothalamic melanocortin neurons belong to a gut-brain circuit controlling appetite and metabolic homeostasis. Mice lacking melanocortin-3 receptor (Mc3rKO) or growth hormone secretagogue receptor (GhsrKO) genes exhibit attenuated food anticipatory activity (FAA), a rise in locomotor activity anticipating mealtime, suggesting common circuitry regulating anticipatory responses to nutrient loading. To investigate the interaction between Ghsrs and Mc3rs, we compared food anticipatory responses in GhsrKO, Mc3rKO, and double Ghsr;Mc3r knockout (DKO) mice subjected to a hypocaloric restricted feeding (RF) protocol in constant dark or 12-hour light, 12-hour dark settings. DKO are viable, exhibiting no overt behavioral or metabolic phenotypes in ad libitum or fasting conditions. FAA was initially attenuated in all mutant strains in constant darkness. However, GhsrKO eventually exhibited a robust food anticipatory response, suggesting compensation. Mc3rKO and DKO did not compensate, indicating a continued requirement for Mc3rs in maintaining the expression of FAA in situations of RF. Abnormal regulation of hypothalamic agouti-related peptide/neuropeptide Y (AgRP/Npy) neurons previously observed during fasting may contribute to attenuated FAA in Mc3rKO. AgRP and Npy expression measured 1 hour before food presentation correlated positively with FAA. Absence of Mc3rs (but not Ghsrs) was associated with lower AgRP/Npy expression, suggesting attenuated responses to signals of negative energy balance. These observations support the importance of Mc3rs as modulators of anticipatory responses to feeding, with mice able to compensate for loss of Ghsrs. The behavioral deficits of Mc3rKO displayed during RF may be partially explained by reduced hunger sensations owing to abnormal regulation of orexigenic AgRP/Npy neurons.
Collapse
Affiliation(s)
- Clemence Girardet
- Departments of Metabolism and Aging (C.G., M.M., R.G.S., A.A.B.) and Molecular Therapeutics (M.R.S.), The Scripps Research Institute, Jupiter, Florida 33458; and Department of Pharmacological and Physiological Science (C.G., M.M., A.A.B.), Saint Louis University, Saint Louis, Missouri 63104
| | | | | | | | | |
Collapse
|
25
|
Ghrelin: a link between ageing, metabolism and neurodegenerative disorders. Neurobiol Dis 2014; 72 Pt A:72-83. [PMID: 25173805 DOI: 10.1016/j.nbd.2014.08.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/28/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022] Open
Abstract
Along with the increase in life expectancy over the last century comes the increased risk for development of age-related disorders, including metabolic and neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. These chronic disorders share two main characteristics: 1) neuronal loss in motor, sensory or cognitive systems, leading to cognitive and motor decline; and 2) a strong correlation between metabolic changes and neurodegeneration. In order to treat them, a better understanding of their complexity is required: it is necessary to interpret the neuronal damage in light of the metabolic changes, and to find the disrupted link between the peripheral organs governing energy metabolism and the CNS. This review is an attempt to present ghrelin as part of molecular regulatory interface between energy metabolism, neuroendocrine and neurodegenerative processes. Ghrelin takes part in lipid and glucose metabolism, in higher brain functions such as sleep-wake state, learning and memory consolidation; it influences mitochondrial respiration and shows neuroprotective effect. All these make ghrelin an attractive target for development of biomarkers or therapeutics for prevention or treatment of disorders, in which cell protection and recruitment of new neurons or synapses are needed.
Collapse
|