1
|
Huang YT, Yang TJ, Liu KC, Chen MC, Chan PYS, Chen JC. Intranasal α-Synuclein induces progressive behavioral impairments in mice. Behav Brain Res 2025; 485:115517. [PMID: 40024483 DOI: 10.1016/j.bbr.2025.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
α-Synuclein (α-Syn) is implicated in the progression of Parkinson's disease, yet the disease's etiology remains unclear. This study aims to explore how α-Syn affects olfactory, motor, mood and cognitive functions if it initiates from the olfactory bulb. Mice were administered intranasal human AAV-α-Syn and subsequently evaluated for olfactory, motor, mood, and cognitive functions. Immunofluorescence was performed to assess dopaminergic neuronal damage. Results shown that olfactory dysfunction was evident as AAV-α-Syn-treated mice took longer to find buried pellets compared to controls at 3, 9, and 12 months post-instillation. Motor activity remained normal at 6 months but significantly declined at 9 months. Reduced tyrosine hydroxylase expression but increased amount of human α-Syn were observed in the substantia nigra at end of behavioral measurements. AAV-α-Syn mice showed reduced sucrose intake and decreased time in the center zone of the open field at 9 months. Cognitive deficits were observed in recognition function and social memory at 6 and 9 months, with impaired working memory at 12 months. Thus, intranasal AAV-α-Syn instillation in mice leads to progressive olfactory, motor, anxiety, depression-like, and cognitive dysfunctions, reflecting α-Syn pathology propagation.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Jung Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kou-Chen Liu
- Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Min-Chi Chen
- Department of Public Health and Biostatistics Consulting Center, Chang Gung University, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Ying S Chan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Lage L, Rodriguez-Perez AI, Labandeira-Garcia JL, Dominguez-Meijide A. Fasudil inhibits α-synuclein aggregation through ROCK-inhibition-mediated mechanisms. Neurotherapeutics 2025; 22:e00544. [PMID: 39915220 PMCID: PMC12014416 DOI: 10.1016/j.neurot.2025.e00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
ROCK inhibitors such as fasudil protected against dopaminergic degeneration and other neurodegenerative processes in several experimental models through inhibition of neuroinflammation and activation of survival signaling pathways, and clinical trials have been initiated. More recently, fasudil has been suggested to inhibit α-synuclein aggregation. However, this is controversial, particularly if it is a consequence of direct binding of the fasudil molecule to α-synuclein. We studied the mechanisms involved in the effects of fasudil on α-synuclein aggregation using the α-synuclein-T/V5-synphilin-1 model. Molecule-molecule interactions were studied using real time quaking inducing conversion (RT-QuiC). Fasudil decreased the number of cells with inclusions and the size of inclusions in dopaminergic neurons and glial cells, and inhibited α-synuclein aggregation and microglial endocytosis of aggregates. These changes were not due to changes in α-synuclein protein expression or phosphorylation and were related to ROCK inhibition rather than direct interaction with α-synuclein, as confirmed with a second ROCK inhibitor (Y27632) and ROCK gene silencing. We observed that ROCK inhibition downregulates several factors that are known to promote α-synuclein aggregation such as NADPH-oxidase-derived oxidative stress, intracellular calcium increase, and α-synuclein endocytosis, and promotes autophagy. The present results support that fasudil is a useful drug against Parkinson's disease progression. In addition to other reported neuroprotective properties, fasudil inhibits α-synuclein aggregation and microglial endocytosis of aggregates, which enhances the microglial inflammatory response. The effects of fasudil are mostly related to ROCK inhibition, which we have shown using two structurally different ROCK inhibitors and knockdown data, and further supported by using RT-QuiC.
Collapse
Affiliation(s)
- Lucia Lage
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana I Rodriguez-Perez
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose Luis Labandeira-Garcia
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| | - Antonio Dominguez-Meijide
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
3
|
Liu Y, Wu L, Peng W, Mao X. Glial polarization in neurological diseases: Molecular mechanisms and therapeutic opportunities. Ageing Res Rev 2025; 104:102638. [PMID: 39672208 DOI: 10.1016/j.arr.2024.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Glial cell polarization plays a pivotal role in various neurological disorders. In response to distinct stimuli, glial cells undergo polarization to either mitigate neurotoxicity or facilitate neural repair following injury, underscoring the importance of glial phenotypic polarization in modulating central nervous system function. This review presents an overview of glial cell polarization, focusing on astrocytes and microglia. It explores the involvement of glial polarization in neurological diseases such as Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis and meningoencephalitis. Specifically, it emphasizes the role of glial cell polarization in disease pathogenesis through mechanisms including neuroinflammation, neurodegeneration, calcium signaling dysregulation, synaptic dysfunction and immune response. Additionally, it summarizes various therapeutic strategies including pharmacological treatments, dietary supplements and cell-based therapies, aimed at modulating glial cell polarization to ameliorate brain dysfunction. Future research focused on the spatio-temporal manipulation of glial polarization holds promise for advancing precision diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lei Wu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China.
| |
Collapse
|
4
|
Chen R, Zhang Y, Shen Y, Wu K, Mo X, Yang Z. LncRNA NEAT1, an Important Biomarker Involved in the Pathological and Physiological Processes of Parkinson's Disease. J Neuroimmune Pharmacol 2025; 20:7. [PMID: 39808217 DOI: 10.1007/s11481-024-10168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2024] [Indexed: 01/16/2025]
Abstract
Parkinson's disease (PD) is a complex progressive neurodegenerative disorder and the pathogenesis and treatment methods are unknown. This aim is to investigate the effects of long non coding RNA NEAT1 (LncRNA NEAT1) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD). Immunoprecipitation and western blot were used to search for the effects of LncRNA NEAT1 on PD. Tyrosine hydroxylase (TH) and brain derived neurotrophic factor (BDNF) were evaluated in substantia nigra (SN) region of the brain by immunohistochemical staining. Compared with the control group, the relative expression level of LncRNA NEAT1 in the MPTP group was significantly increased. LncRNA NEAT1 is negatively correlated with miR-376b-3p. LncRNA NEAT1 significantly increased oxidative stress, neuroinflammation along with enhanced neurotrophic potential via NLR family Pyrin domain protein 3 (NLRP3) pathway. In conclusion, these results indicated that LncRNA NEAT1 participated in the pathophysiological of PD and its mechanism via the miR-376b-3p/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Runsen Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yuxi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yang Shen
- Animal Core Facility, Nanjing Medical University, Nanjing, 210008, China
| | - Kede Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
5
|
He Q, Zhang S, Wang J, Ma T, Ma D, Wu L, Zhou M, Zhao L, Chen Y, Liu J, Chen W. The Synergistic Effect Study of Lipopolysaccharide (LPS) and A53T-α-Synuclein: Intranasal LPS Exposure on the A53T-α-Synuclein Transgenic Mouse Model of Parkinson's Disease. Mol Neurobiol 2024; 61:7046-7065. [PMID: 38367134 DOI: 10.1007/s12035-024-04020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Aging and interactions between genetic and environmental factors are believed to be involved the chronic development of Parkinson's disease (PD). Among PD patients, abnormally aggregated α-synuclein is a major component of the Lewy body. Generally, the intranasal route is believed to be a gate way to the brain, and it assists environmental neurotoxins in entering the brain and is related to anosmia during early PD. The current study applies the chronic intranasal application of lipopolysaccharides (LPS) in 4-, 8-, 12- and 16-month-old A53T-α-synuclein (A53T-α-Syn) transgenic C57BL/6 mice at 2-day intervals for a 2-month period, for evaluating the behavioral, pathological, and biochemical changes and microglial activation in these animals. According to our results, after intranasal administration of LPS, A53T-α-Syn mice showed severe progressive anosmia, hypokinesia, selective dopaminergic (DAergic) neuronal losses, decreased striatal dopamine (DA) level, and enhanced α-synuclein accumulation within the substantia nigra (SN) in an age-dependent way. In addition, we found obvious NF-кB activation, Nurr1 inhibition, IL-1β, and TNF-α generation within the microglia of the SN. Conversely, the wild-type (WT) mice showed mild, whereas A53T-α-Syn mice had moderate PD-like changes among the old mice. This study demonstrated the synergistic effect of intranasal LPS and α-synuclein burden on PD development. Its underlying mechanism may be associated with Nurr1 inhibition within microglia and the amplification of CNS neuroinflammation. The mice with multiple factors, including aging, neuroinflammation, and α-synuclein mutation, have played a significant role in enhancing our understanding of how inflammation and α-synuclein mutation contribute to the neurodegeneration observed in PD.
Collapse
Affiliation(s)
- Qing He
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzhen Zhang
- Institute of Neuroscience, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jian Wang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tengfei Ma
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ding Ma
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxi Zhou
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajing Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Yang H, Shao ZH, Jin X, Chen JW. The critical role of P2XR/PGC-1α signalling pathway in hypoxia-mediated pyroptosis and M1/M2 phenotypic differentiation of mouse microglia. Eur J Neurosci 2024; 60:3629-3642. [PMID: 38697919 DOI: 10.1111/ejn.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Microglia are endogenous immune cells in the brain, and their pyroptosis and phenotype dichotomy are proved to play roles in neurodegenerative diseases. We investigated whether and how hypoxia affected pyroptosis and phenotype polarization in mouse microglia. Primary mouse microglia and BV2 microglia were exposed to hypoxia. Pyroptosis and M1/M2 phenotype were assessed by measuring gasdermin D truncation and M1/M2 surface marker expression. Mechanisms including purinergic ionotropic receptor (P2XR), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and NOD-like receptor protein 3 (NLRP3) inflammasome were investigated. We reported hypoxia (90% N2, 5% O2 and 5% CO2) induced pyroptosis and promoted M1 phenotype polarization in primary mouse microglia and BV2 microglia, and the effect appeared after 6 h exposure. Although hypoxia (90% N2, 5% O2 and 5% CO2, 6 h) had no effect on P2X1R and P2X7R expression, it increased P2X4R expression and decreased PGC-1α expression. Interestingly, blockade of P2X4R or P2X7R abolished hypoxia-modulated PGC-1α expression, pyroptosis and M1 polarization. PGC-1α overexpression or overactivation alleviated hypoxia-induced pyroptosis and M1 polarization, while PGC-1α knockdown or deactivation promoted pyroptosis and M1 polarization under normoxic situation. Further, hypoxia induced NLRP3 expression and activated caspase-1 and induced the phosphorylation of NF-κB and reduced the phosphorylation of STAT3/6. NLRP3 inhibitor and caspase-1 inhibitor abolished hypoxia-induced pyroptosis, while NF-κB inhibitor and STAT phosphorylation inducer ameliorated hypoxia-induced M1 polarization. In addition, NF-κB activator and STAT3/6 inhibitor caused microglia M1 polarization under normoxic situation. We concluded in cultured mouse microglia, hypoxia may induce pyroptosis via P2XR/PGC-1α/NLRP3/caspase-1 pathway and trigger M1 polarization through P2XR/PGC-1α/NF-κB/STAT3/6 pathway.
Collapse
Affiliation(s)
- Hao Yang
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Zhen-Hua Shao
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Xian Jin
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Jia-Wei Chen
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Wolff AW, Peine J, Höfler J, Zurek G, Hemker C, Lingor P. SAFE-ROCK: A Phase I Trial of an Oral Application of the ROCK Inhibitor Fasudil to Assess Bioavailability, Safety, and Tolerability in Healthy Participants. CNS Drugs 2024; 38:291-302. [PMID: 38416402 PMCID: PMC10980656 DOI: 10.1007/s40263-024-01070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The intravenous (IV) formulation of Rho-kinase (ROCK) inhibitor fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995. Additionally, fasudil has shown promising preclinical results for various chronic diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis, Parkinson's disease, and dementia, in which long-term intravenous (IV) administration might not be suitable. OBJECTIVE The objective of this study was to assess the absolute bioavailability of oral, in comparison to IV, application of the approved formulation of fasudil (ERIL®) and to evaluate the safety and tolerability of the oral application of fasudil. METHODS This was a phase I, single-center, open-label, randomized, two period cross-over clinical trial in healthy women and men. By applying a cross-over design, each subject served as their own control. Two treatments were investigated, separated by a wash out phase of at least 3 days. Oral fasudil was administered once on day 1 to assess pharmacokinetics and three times on day 2, at an interval of 8 ± 1 h, to assess safety and gastrointestinal tolerability. For pharmacometrics of IV fasudil, it was administered once on day 1. Plasma profiles of fasudil and its active metabolite hydroxyfasudil after oral or IV administration were measured by liquid chromatography electrospray tandem mass spectrometry. Tolerability was assessed as proportion of subjects without significant drug intolerance, and safety was assessed by the proportion of subjects without clinical or laboratory treatment-associated serious adverse events. Gastrointestinal safety was assessed by applying the gastrointestinal symptom rating scale (GSRS). RESULTS Fourteen subjects aged 30-70 years were included in this trial. After oral administration, fasudil concentrations in blood were mostly very low [1.4 g/L; coefficient of variation (CV) 41.0%]. After IV application, the peak concentration was 100.6 µg/L (CV 74.2%); however, a high variance in peak concentrations were assessed for both treatments. The maximal concentrations of hydroxyfasudil in blood were similar after oral and IV treatment [111.6 µg/L (CV 24.1%) and 108.4 µg/L (CV 19.7%), respectively]. Exposure of hydroxyfasudil (assessed as AUC0-tz) differed between both treatments, with 449 µg × h/L after IV treatment and 309 µg × h/L after oral treatment. Therefore, the absolute bioavailability of hydroxyfasudil after the oral treatment was approximately 69% of the IV treatment. No serious adverse events (SAEs) occurred during this trial, and good tolerability of oral fasudil (90 mg/day) was documented. CONCLUSIONS Oral fasudil was generally well tolerated in the studied population, and no safety concerns were identified. However, systemic bioavailability of oral hydroxyfasudil corresponded to 69%, and dose adjustments need to considered. The results presented here lay grounds for future trials of fasudil in chronic diseases, which require an oral long-term application. This trial was registered with EudraCT (no. 2019-001805-26).
Collapse
Affiliation(s)
- Andreas W Wolff
- Clinical Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Jörg Peine
- Institute for Clinical Research, AtoZ-CRO GmbH, Overath, Germany
| | | | | | - Claus Hemker
- CTC North GmbH & Co. KG at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Lingor
- Clinical Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
8
|
Wolff AW, Bidner H, Remane Y, Zimmer J, Aarsland D, Rascol O, Wyse RK, Hapfelmeier A, Lingor P. Protocol for a randomized, placebo-controlled, double-blind phase IIa study of the safety, tolerability, and symptomatic efficacy of the ROCK-inhibitor Fasudil in patients with Parkinson's disease (ROCK-PD). Front Aging Neurosci 2024; 16:1308577. [PMID: 38419648 PMCID: PMC10899319 DOI: 10.3389/fnagi.2024.1308577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background The Rho-kinase (ROCK) inhibitor Fasudil has shown symptomatic and disease-modifying effects in Parkinson's disease (PD) models in vitro and in vivo. In Japan, Fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995 and shows a favourable safety profile. Objectives/design To investigate the safety, tolerability, and symptomatic efficacy of ROCK-inhibitor Fasudil in comparison to placebo in a randomized, national, multicenter, double-blind phase IIa study in patients with PD. Methods/analysis We plan to include 75 patients with at least 'probable' PD (MDS criteria), Hoehn and Yahr stages 1-3, and age 30-80 years in 13 German study sites. Patients must be non-fluctuating and their response to PD medication must have been stable for 6 weeks. Patients will be randomly allocated to treatment with the oral investigational medicinal product (IMP) containing either Fasudil in two dosages, or placebo, for a total of 22 days. As primary analysis, non-inferiority of low/high dose of Fasudil on the combined endpoint consisting of occurrence of intolerance and/or treatment-related serious adverse events (SAEs) over 22 days will be assessed in a sequential order, starting with the lower dose. Secondary endpoints will include tolerability alone over 22 days and occurrence of treatment-related SAEs (SARs) over 22 and 50 days and will be compared on group level. Additional secondary endpoints include efficacy on motor and non-motor symptoms, measured on established scales, and will be assessed at several timepoints. Biomaterial will be collected to determine pharmacokinetics of Fasudil and its active metabolite, and to evaluate biomarkers of neurodegeneration. Ethics/registration/discussion After positive evaluation by the competent authority and the ethics committee, patient recruitment started in the 3rd quarter of 2023. ROCK-PD is registered with Eudra-CT (2021-003879-34) and clinicaltrials.gov (NCT05931575). Results of this trial can pave way for conducting extended-duration studies assessing both symptomatic efficacy and disease-modifying properties of Fasudil.
Collapse
Affiliation(s)
- Andreas W Wolff
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Helen Bidner
- Münchner Studienzentrum (MSZ), School of Medicine, Technical University of Munich, Munich, Germany
| | - Yvonne Remane
- Department of Clinical Pharmacy and Drug Safety Center, Leipzig University, Leipzig, Germany
| | - Janine Zimmer
- Department of Clinical Pharmacy and Drug Safety Center, Leipzig University, Leipzig, Germany
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Centre for Age-Related Research, Stavanger University Hospital, Stavanger, Norway
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, University of Toulouse 3, University Hospital of Toulouse, INSERM, Toulouse, France
| | | | - Alexander Hapfelmeier
- Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of General Practice and Health Services Research, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
9
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
10
|
Killick R, Elliott C, Ribe E, Broadstock M, Ballard C, Aarsland D, Williams G. Neurodegenerative Disease Associated Pathways in the Brains of Triple Transgenic Alzheimer's Model Mice Are Reversed Following Two Weeks of Peripheral Administration of Fasudil. Int J Mol Sci 2023; 24:11219. [PMID: 37446396 PMCID: PMC10342807 DOI: 10.3390/ijms241311219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The pan Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor fasudil acts as a vasodilator and has been used as a medication for post-cerebral stroke for the past 29 years in Japan and China. More recently, based on the involvement of ROCK inhibition in synaptic function, neuronal survival, and processes associated with neuroinflammation, it has been suggested that the drug may be repurposed for neurodegenerative diseases. Indeed, fasudil has demonstrated preclinical efficacy in many neurodegenerative disease models. To facilitate an understanding of the wider biological processes at play due to ROCK inhibition in the context of neurodegeneration, we performed a global gene expression analysis on the brains of Alzheimer's disease model mice treated with fasudil via peripheral IP injection. We then performed a comparative analysis of the fasudil-driven transcriptional profile with profiles generated from a meta-analysis of multiple neurodegenerative diseases. Our results show that fasudil tends to drive gene expression in a reverse sense to that seen in brains with post-mortem neurodegenerative disease. The results are most striking in terms of pathway enrichment analysis, where pathways perturbed in Alzheimer's and Parkinson's diseases are overwhelmingly driven in the opposite direction by fasudil treatment. Thus, our results bolster the repurposing potential of fasudil by demonstrating an anti-neurodegenerative phenotype in a disease context and highlight the potential of in vivo transcriptional profiling of drug activity.
Collapse
Affiliation(s)
- Richard Killick
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
- College of Medicine and Health, University of Exeter, Exeter EX1 2UL, UK;
| | - Christina Elliott
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Elena Ribe
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
| | - Martin Broadstock
- Wolfson CARD, King’s College London, London Bridge, London SE1 1UL, UK;
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter EX1 2UL, UK;
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
| | - Gareth Williams
- Wolfson CARD, King’s College London, London Bridge, London SE1 1UL, UK;
| |
Collapse
|
11
|
Glotfelty EJ, Tovar-y-Romo LB, Hsueh SC, Tweedie D, Li Y, Harvey BK, Hoffer BJ, Karlsson TE, Olson L, Greig NH. The RhoA-ROCK1/ROCK2 Pathway Exacerbates Inflammatory Signaling in Immortalized and Primary Microglia. Cells 2023; 12:1367. [PMID: 37408199 PMCID: PMC10216802 DOI: 10.3390/cells12101367] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Neuroinflammation is a unifying factor among all acute central nervous system (CNS) injuries and chronic neurodegenerative disorders. Here, we used immortalized microglial (IMG) cells and primary microglia (PMg) to understand the roles of the GTPase Ras homolog gene family member A (RhoA) and its downstream targets Rho-associated coiled-coil-containing protein kinases 1 and 2 (ROCK1 and ROCK2) in neuroinflammation. We used a pan-kinase inhibitor (Y27632) and a ROCK1- and ROCK2-specific inhibitor (RKI1447) to mitigate a lipopolysaccharide (LPS) challenge. In both the IMG cells and PMg, each drug significantly inhibited pro-inflammatory protein production detected in media (TNF-α, IL-6, KC/GRO, and IL-12p70). In the IMG cells, this resulted from the inhibition of NF-κB nuclear translocation and the blocking of neuroinflammatory gene transcription (iNOS, TNF-α, and IL-6). Additionally, we demonstrated the ability of both compounds to block the dephosphorylation and activation of cofilin. In the IMG cells, RhoA activation with Nogo-P4 or narciclasine (Narc) exacerbated the inflammatory response to the LPS challenge. We utilized a siRNA approach to differentiate ROCK1 and ROCK2 activity during the LPS challenges and showed that the blockade of both proteins may mediate the anti-inflammatory effects of Y27632 and RKI1447. Using previously published data, we show that genes in the RhoA/ROCK signaling cascade are highly upregulated in the neurodegenerative microglia (MGnD) from APP/PS-1 transgenic Alzheimer's disease (AD) mice. In addition to illuminating the specific roles of RhoA/ROCK signaling in neuroinflammation, we demonstrate the utility of using IMG cells as a model for primary microglia in cellular studies.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Luis B. Tovar-y-Romo
- Division of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Shih-Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Brandon K. Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience Department, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tobias E. Karlsson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
12
|
Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T. Microglia Mediated Neuroinflammation in Parkinson’s Disease. Cells 2023; 12:cells12071012. [PMID: 37048085 PMCID: PMC10093562 DOI: 10.3390/cells12071012] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Parkinson’s Disease (PD) is the second most common neurodegenerative disorder seen, especially in the elderly. Tremor, shaking, movement problems, and difficulty with balance and coordination are among the hallmarks, and dopaminergic neuronal loss in substantia nigra pars compacta of the brain and aggregation of intracellular protein α-synuclein are the pathological characterizations. Neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. It is a complex network of interactions comprising immune and non-immune cells in addition to mediators of the immune response. Microglia, the resident macrophages in the CNS, take on the leading role in regulating neuroinflammation and maintaining homeostasis. Under normal physiological conditions, they exist as “homeostatic” but upon pathological stimuli, they switch to the “reactive state”. Pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes are used to classify microglial activity with each phenotype having its own markers and released mediators. When M1 microglia are persistent, they will contribute to various inflammatory diseases, including neurodegenerative diseases, such as PD. In this review, we focus on the role of microglia mediated neuroinflammation in PD and also signaling pathways, receptors, and mediators involved in the process, presenting the studies that associate microglia-mediated inflammation with PD. A better understanding of this complex network and interactions is important in seeking new therapies for PD and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sevim Isik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Uskudar, Istanbul 34662, Turkey
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Correspondence: ; Tel.: +90-216-400-2222 (ext. 2462)
| | - Bercem Yeman Kiyak
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Medicine, Institute of Hamidiye Health Sciences, University of Health Sciences, Uskudar, Istanbul 34668, Turkey
| | - Rumeysa Akbayir
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Rama Seyhali
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Tahire Arpaci
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| |
Collapse
|
13
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
14
|
Neha, Parvez S. Emerging therapeutics agents and recent advances in drug repurposing for Alzheimer's disease. Ageing Res Rev 2023; 85:101815. [PMID: 36529440 DOI: 10.1016/j.arr.2022.101815] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a multivariate and diversified disease and affects the most sensitive areas of the brain, the cerebral cortex, and the hippocampus. AD is a progressive age-related neurodegenerative disease most often associated with memory deficits and cognition that get more worsen over time. The central theory on the pathophysiological hallmark features of AD is characterized by the accumulation of amyloid β (Aβ) peptides, also associated with tau proteins (τ) dysfunctioning which leads to distorted microtubular structure, affects the cholinergic system, and mitochondrial biogenesis. This review emphasizes how simple it is to find novel treatments for AD and focuses on several recently developed medications through repurposing that can speed up traditional drug development.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
15
|
Fujimura M. Fasudil, a ROCK inhibitor, prevents neuropathic pain in Minamata disease model rats. Toxicol Lett 2022; 371:38-45. [PMID: 36244566 DOI: 10.1016/j.toxlet.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 02/13/2023]
Abstract
Methylmercury (MeHg), an environmental toxicant, is known to cause sensory impairment by inducing neurodegeneration of sensory nervous systems. However, in recent years, it has been revealed that neuropathic pain occurs in the chronic phase of MeHg poisoning, that is, in current Minamata disease patients. Our recent study using Minamata disease model rats demonstrated that MeHg-mediated neurodegeneration in the sensory nervous system may induce inflammatory microglia production in the dorsal horn of the spinal cord and subsequent somatosensory cortical rewiring, leading to neuropathic pain. We hypothesized that inhibition of the Rho-associated coiled coil-forming protein kinase (ROCK) pathway could prevent MeHg-induced neuropathic pain because the ROCK pathway is known to be involved in inducing the production of inflammatory microglia. Here, we showed for the first time that Fasudil, a ROCK inhibitor, can prevent neuropathic pain in Minamata disease model rats. In this model, Fasudil significantly suppressed nerve injury-induced inflammatory microglia production in the dorsal horn of the spinal cord and prevented subsequent somatosensory cortical rewiring. These results suggest that the ROCK pathway is involved in the onset and development of neuropathic pain in the chronic phase of Minamata disease, and that its inhibition is effective in pain prevention.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan.
| |
Collapse
|
16
|
O'Brien JT, Chouliaras L, Sultana J, Taylor JP, Ballard C. RENEWAL: REpurposing study to find NEW compounds with Activity for Lewy body dementia-an international Delphi consensus. Alzheimers Res Ther 2022; 14:169. [PMID: 36369100 PMCID: PMC9650797 DOI: 10.1186/s13195-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Drug repositioning and repurposing has proved useful in identifying new treatments for many diseases, which can then rapidly be brought into clinical practice. Currently, there are few effective pharmacological treatments for Lewy body dementia (which includes both dementia with Lewy bodies and Parkinson's disease dementia) apart from cholinesterase inhibitors. We reviewed several promising compounds that might potentially be disease-modifying agents for Lewy body dementia and then undertook an International Delphi consensus study to prioritise compounds. We identified ambroxol as the top ranked agent for repurposing and identified a further six agents from the classes of tyrosine kinase inhibitors, GLP-1 receptor agonists, and angiotensin receptor blockers that were rated by the majority of our expert panel as justifying a clinical trial. It would now be timely to take forward all these compounds to Phase II or III clinical trials in Lewy body dementia.
Collapse
Affiliation(s)
- John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Janet Sultana
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
17
|
Deng I, Bobrovskaya L. Lipopolysaccharide mouse models for Parkinson's disease research: a critical appraisal. Neural Regen Res 2022; 17:2413-2417. [PMID: 35535880 PMCID: PMC9120679 DOI: 10.4103/1673-5374.331866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Parkinson's disease, the most common movement disorder, has a strong neuroinflammatory aspect. This is evident by increased pro-inflammatory cytokines in the serum, and the presence of activated microglial cells, and inflammatory cytokines in the substantia nigra of post-mortem brains as well as cerebrospinal fluid of Parkinson's disease patients. The central and peripheral neuroinflammatory aspects of Parkinson's disease can be investigated in vivo via administration of the inflammagen lipopolysaccharide, a component of the cell wall of gram-negative bacteria. In this mini-review, we will critically evaluate different routes of lipopolysaccharide administration (including intranasal systemic and stereotasic), their relevance to clinical Parkinson's disease as well as the recent findings in lipopolysaccharide mouse models. We will also share our own experiences with systemic and intrastriatal lipopolysaccharide models in C57BL/6 mice and will discuss the usefulness of lipopolysaccharide mouse models for future research in the field.
Collapse
Affiliation(s)
- Isaac Deng
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
18
|
Cunha DMG, Becegato M, Meurer YSR, Lima AC, Gonçalves N, Bioni VS, Engi SA, Bianchi PC, Cruz FC, Santos JR, Silva RH. Neuroinflammation in early, late and recovery stages in a progressive parkinsonism model in rats. Front Neurosci 2022; 16:923957. [PMID: 36090265 PMCID: PMC9459164 DOI: 10.3389/fnins.2022.923957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by motor and non-motor signs, which are accompanied by progressive degeneration of dopaminergic neurons in the substantia nigra. Although the exact causes are unknown, evidence links this neuronal loss with neuroinflammation and oxidative stress. Repeated treatment with a low dose of reserpine—inhibitor of VMAT2—has been proposed as a progressive pharmacological model of PD. The aim of this study was to investigate whether this model replicates the neuroinflammation characteristic of this disease. Six-month-old Wistar rats received repeated subcutaneous injections of reserpine (0.1 mg/kg) or vehicle on alternate days. Animals were euthanized after 5, 10, or 15 injections, or 20 days after the 15th injection. Catalepsy tests (motor assessment) were conducted across treatment. Brains were collected at the end of each treatment period for immunohistochemical and RT-PCR analyzes. Reserpine induced a significant progressive increase in catalepsy duration. We also found decreased immunostaining for tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNpc) and increased GFAP + cells in the SNpc and dorsal striatum after 10 and 15 reserpine injections. Phenotyping microglial M1 and M2 markers showed increased number of CD11b + cells and percentage of CD11b + /iNOS + cells in reserpine-treated animals after 15 injections, which is compatible with tissue damage and production of cytotoxic factors. In addition, increased CD11b + /ArgI + cells were found 20 days after the last reserpine injection, together with an increment in IL-10 gene expression in the dorsal striatum, which is indicative of tissue repair or regeneration. Reserpine also induced increases in striatal interleukin TNF-alpha mRNA levels in early stages. In view of these results, we conclude that reserpine-induced progressive parkinsonism model leads to neuroinflammation in regions involved in the pathophysiology of PD, which is reversed 20 days after the last injection. These findings reveal that withdrawal period, together with the shift of microglial phenotypes from the pro-inflammatory to the anti-inflammatory stage, may be important for the study of the mechanisms involved in reversing this condition, with potential clinical applicability.
Collapse
Affiliation(s)
- Debora M. G. Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ywlliane S. R. Meurer
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alvaro C. Lima
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Narriman Gonçalves
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vinícius S. Bioni
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sheila A. Engi
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula C. Bianchi
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fabio C. Cruz
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jose R. Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Bioscience, Universidade Federal do Sergipe, Itabaiana, Brazil
| | - Regina H. Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Regina H. Silva,
| |
Collapse
|
19
|
RhoA Signaling in Neurodegenerative Diseases. Cells 2022; 11:cells11091520. [PMID: 35563826 PMCID: PMC9103838 DOI: 10.3390/cells11091520] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the nervous system, implying an important role for RhoA signaling in neurons and glial cells. Indeed, emerging evidence points toward a role of aberrant RhoA signaling in neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. In this review, we summarize the current knowledge of RhoA regulation and downstream cellular functions with an emphasis on the role of RhoA signaling in neurodegenerative diseases and the therapeutic potential of RhoA inhibition in neurodegeneration.
Collapse
|
20
|
Yang YJ, Bu LL, Shen C, Ge JJ, He SJ, Yu HL, Tang YL, Jue Z, Sun YM, Yu WB, Zuo CT, Wu JJ, Wang J, Liu FT. Fasudil Promotes α-Synuclein Clearance in an AAV-Mediated α-Synuclein Rat Model of Parkinson's Disease by Autophagy Activation. JOURNAL OF PARKINSONS DISEASE 2021; 10:969-979. [PMID: 32568105 DOI: 10.3233/jpd-191909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder, but the disease-modifying therapies focusing on the core pathological changes are still unavailable. Rho-associated protein kinase (ROCK) has been suggested as a promising target for developing neuroprotective therapies in PD. OBJECTIVE We aimed to explore the promotion of α-synuclein (α-syn) clearance in a rat model. METHODS In a rat model induced by unilateral injection of adeno-associated virus of serotype 9 (AAV9) expressing A53T α-syn (AAV9-A53T-α-syn) into the right substantia nigra, we aimed to investigate whether Fasudil could promote α-syn clearance and thereby attenuate motor impairments and dopaminergic deficits. RESULTS In our study, treatment with Fasudil (5 mg/kg rat weight/day) for 8 weeks significantly improved the motor deficits in the Cylinder and Rotarod tests. In the in vivo positron emission tomography imaging with the ligand 18F-dihydrotetrabenazine, Fasudil significantly enhanced the dopaminergic imaging in the injected striatum of the rat model (p < 0.05 vs. vehicle group, p < 0.01 vs. left striatum in Fasudil group). The following mechanistic study confirmed that Fasudil could promote the autophagic clearance of α-syn by Becline 1 and Akt/mTOR pathways. CONCLUSION Our study suggested that Fasudil, the ROCK2 inhibitor, could attenuate the anatomical and behavioral lesions in the Parkinsonian rat model by autophagy activation. Our results identify Fasudil as a drug with high translational potential as disease-modifying treatment for PD and other synucleinopathies.
Collapse
Affiliation(s)
- Yu-Jie Yang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Lu-Lu Bu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cong Shen
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-Jie Ge
- PET Center, Fudan University, Shanghai, China
| | - Shu-Jin He
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui-Ling Yu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Lin Tang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhao Jue
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen-Bo Yu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Jian-Jun Wu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Deng I, Corrigan F, Garg S, Zhou XF, Bobrovskaya L. Further Characterization of Intrastriatal Lipopolysaccharide Model of Parkinson's Disease in C57BL/6 Mice. Int J Mol Sci 2021; 22:7380. [PMID: 34299000 PMCID: PMC8304722 DOI: 10.3390/ijms22147380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder, characterized by progressive degeneration of the nigrostriatal pathway, which consists of dopaminergic cell bodies in substantia nigra and their neuronal projections to the striatum. Moreover, PD is associated with an array of non-motor symptoms such as olfactory dysfunction, gastrointestinal dysfunction, impaired regulation of the sleep-wake cycle, anxiety, depression, and cognitive impairment. Inflammation and concomitant oxidative stress are crucial in the pathogenesis of PD. Thus, this study aimed to model PD via intrastriatal injection of the inflammagen lipopolysaccharide (LPS)to investigate if the lesion causes olfactory and motor impairments, inflammation, oxidative stress, and alteration in synaptic proteins in the olfactory bulb, striatum, and colon. Ten µg of LPS was injected unilaterally into the striatum of 27 male C57BL/6 mice, and behavioural assessment was conducted at 4 and 8 weeks post-treatment, followed by tissue collection. Intrastriatal LPS induced motor impairment in C57BL/6 mice at 8 weeks post-treatment evidenced by reduced latency time in the rotarod test. LPS also induced inflammation in the striatum characterized by increased expression of microglial marker Iba-1 and astrocytic marker GFAP, with degeneration of dopaminergic neuronal fibres (reduced tyrosine hydroxylase immunoreactivity), and reduction of synaptic proteins and DJ-1 protein. Additionally, intrastriatal LPS induced inflammation, oxidative stress and alterations in synaptic proteins within the olfactory bulb, although this did not induce a significant impairment in olfactory function. Intrastriatal LPS induced mild inflammatory changes in the distal colon, accompanied by increased protein expression of 3-nitrotyrosine-modified proteins. This model recapitulated the major features of PD such as motor impairment and degeneration of dopaminergic neuronal fibres in the striatum, as well as some pathological changes in the olfactory bulb and colon; thus, this model could be suitable for understanding clinical PD and testing neuroprotective strategies.
Collapse
Affiliation(s)
- Isaac Deng
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Frances Corrigan
- Medical Sciences, University of Adelaide, Adelaide 5000, Australia;
| | - Sanjay Garg
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| |
Collapse
|
22
|
Deng I, Wiese MD, Zhou XF, Bobrovskaya L. The efficacy of systemic administration of lipopolysaccharide in modelling pre-motor Parkinson's disease in C57BL/6 mice. Neurotoxicology 2021; 85:254-264. [PMID: 34097939 DOI: 10.1016/j.neuro.2021.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/03/2021] [Accepted: 05/28/2021] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterised by the loss of dopaminergic neurons in the substantia nigra. Mounting evidence indicates a crucial role of inflammation and concomitant oxidative stress in the disease progression. Therefore, the aim of this study was to investigate the ability of systemically administered lipopolysaccharide (LPS) to induce motor and non-motor symptoms of PD, inflammation, oxidative stress and major neuropathological hallmarks of the disease in regions postulated to be affected, including the olfactory bulb, hippocampus, midbrain and cerebellum. Twenty-one male C57BL/6 mice, approximately 20 weeks old, received a dose of 0.3 mg/kg/day of LPS systemically on 4 consecutive days and behavioural testing was conducted on days 14-18 post-treatment, followed by tissue collection. Systemically administered LPS increased latency time in the buried food seeking test (indicative of olfactory impairment), and decreased time spent in central zone of the open field (anxiety-like behaviour). However, there was no change in latency time in the rotarod test or the expression of tyrosine hydroxylase (TH) in the midbrain. Systemically administered LPS induced increased glial markers GFAP and Iba-1 and oxidative stress marker 3-nitrotyrosine (3-NT) in the olfactory bulb, hippocampus, midbrain and cerebellum, and there were region specific changes in the expression of NFκB, IL-1β, α-synuclein, TH and BDNF proteins. The model could be useful to further elucidate early non-motor aspects of PD and the possible mechanisms contributing to the non-motor deficits.
Collapse
Affiliation(s)
- Isaac Deng
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Michael D Wiese
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
23
|
Huang W, Lan Q, Jiang L, Yan W, Tang F, Shen C, Huang H, Zhong H, Lv J, Zeng S, Li M, Mo Z, Hu B, Liang N, Chen Q, Zhang M, Xu F, Cui L. Fasudil attenuates glial cell-mediated neuroinflammation via ERK1/2 and AKT signaling pathways after optic nerve crush. Mol Biol Rep 2020; 47:8963-8973. [PMID: 33161529 DOI: 10.1007/s11033-020-05953-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
To investigate the functional role of fasudil in optic nerve crush (ONC), and further explore its possible molecular mechanism. After ONC injury, the rats were injected intraperitoneally either with fasudil or normal saline once a day until euthanized. RGCs survival was assessed by retrograde labeling with FluoroGold. Retinal glial cells activation and population changes (GFAP, iba-1) were measured by immunofluorescence. The expressions of cleaved caspase 3 and 9, p-ERK1/2 and p-AKT were detected by western blot. The levels of the pro-inflammatory cytokines were determined using real-time polymerase chain reaction. Fasudil treatment inhibited RGCs apoptosis and reduced RGCs loss demonstrated by the decreased apoptosis-associated proteins expression and the increased fluorogold labeling of RGCs after ONC, respectively. In addition, the ONC + fasudil group compared had a significantly lower expression of GFAP and iba1 compared with the ONC group. The levels of pro-inflammatory cytokines were significantly reduced in the ONC + fasudil group than in the ONC group. Furthermore, the phosphorylation levels of ERK1/2 and AKT (p-ERK1/2 and p-AKT) were obviously elevated by the fasudil treatment. Our study demonstrated that fasudil attenuated glial cell-mediated neuroinflammation by up-regulating the ERK1/2 and AKT signaling pathways in rats ONC models. We conclude that fasudil may be a novel treatment for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Wei Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.,Guangxi Medical University, Nanning, 530021, China
| | - Qianqian Lan
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Wenya Yan
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Fen Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Haibin Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jian Lv
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Ning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Qi Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Ling Cui
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
24
|
Guo MF, Zhang HY, Li YH, Gu QF, Wei WY, Wang YY, Zhang XJ, Liu XQ, Song LJ, Chai Z, Yu JZ, Ma CG. Fasudil inhibits the activation of microglia and astrocytes of transgenic Alzheimer's disease mice via the downregulation of TLR4/Myd88/NF-κB pathway. J Neuroimmunol 2020; 346:577284. [PMID: 32652366 DOI: 10.1016/j.jneuroim.2020.577284] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests an association of Alzheimer's Disease (AD) with microglial and astrocytic dysregulation. Recent studies have proposed that activated microglia can transform astrocytes to a neurotoxic A1 phenotype, which has been shown to be involved in the promotion of neuronal damage in several neurodegenerative diseases, including AD. In the present study, we observed an obvious microglial activation and A1-specific astrocyte response in the brain tissue of APP/PS1 Tg mice. Fasudil treatment improved the cognitive deficits of APP/PS1 Tg mice, inhibited microglial activation and promoted their transformation to an anti-inflammatory phenotype, and further shifted astrocytes from an A1 to an A2 phenotype. Our experiments suggest Fasudil exerted these functions by inhibing the expression of TLR4, MyD88, and NF-κB, which are key mediators of inflammation. Using in vitro experiments, we further validated in vivo findings. Our cell experiments indicated that Fasudil induces a shift of inflammatory microglia towards an anti-inflammatory phenotype. LPS-induced microglia-conditioned medium promotes A1 astrocytic polarization, but Fasudil treatment resulted in a direct transformation of A1 astrocytes to A2. To summarize, our results show that Fasudil inhibits the neurotoxic activation of microglia and shifts astrocytes towards a neuroprotective A2 phenotype, representing a promising candidate for AD treatment.
Collapse
Affiliation(s)
- Min-Fang Guo
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China
| | - Hui-Yu Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China
| | - Yan-Hua Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China
| | - Qing-Fang Gu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China
| | - Wen-Yue Wei
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China; Dept. of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yu-Yin Wang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China; Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Xiao-Juan Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China; Dept. of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Qin Liu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China
| | - Li-Juan Song
- Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Dept. of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Zhi Chai
- Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China; Dept. of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China; Dept. of Neurology, Datong Fifth People's Hospital, Datong 037009, China.
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China; Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Dept. of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
25
|
Peng F, Lu L, Wei F, Wu D, Wang K, Tang J. The onjisaponin B metabolite tenuifolin ameliorates dopaminergic neurodegeneration in a mouse model of Parkinson's disease. Neuroreport 2020; 31:456-465. [PMID: 32168102 DOI: 10.1097/wnr.0000000000001428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Onjisaponin B (OB) is the main active ingredient of the traditional Chinese medicinal herb polygala, which is effective against neurodegenerative disorders. However, the target of OB is currently unknown. Neuroinflammation and oxidative stress are both risk factors for the pathogenesis and progression of Parkinson's disease (PD). Here, we used a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD to explore the efficacy and neuroprotective mechanism of OB in PD. Immunohistochemistry was used to mark dopaminergic (DA) neurons and microglia in the substantia nigra pars compact. Administration of OB (20 and 40 mg/kg) prevented the degeneration of DA neurons and improved motor impairment in the rotarod test. Furthermore, OB attenuated microglia over-activation and reduced the secretion of inflammatory factors including tumor necrosis factor-alpha, interleukin-1 beta (IL-1β) and interleukin-6 (IL-6), as determined by ELISA. Meanwhile, the activities of superoxide dismutase and malondialdehyde were used to measure the level of oxidative stress in brain homogenates and suppression of excessive lipid epoxidation and increased antioxidant enzyme activity were found in OB-treated PD mice. Finally, OB inhibits the expression of the p65 subunit of NF-κB in the nucleus and attenuated expression of the RhoA and ROCK2 proteins in PD mice. Consequently, our results show that OB ameliorates DA neurodegeneration in a MPTP-induced mouse model of PD through anti-oxidant and anti-inflammatory activities mediated via the RhoA/ROCK2 signaling pathway. This finding demonstrates that OB may be a promising drug for DA neuron degeneration, which may provide a new therapeutic agent for future discovery of drugs for PD.See video abstract: http://links.lww.com/WNR/A580.
Collapse
Affiliation(s)
- Fang Peng
- Guangling College, Yangzhou University, Yangzhou
| | - Linyu Lu
- Department of physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Wei
- Department of physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Die Wu
- Department of physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kai Wang
- Department of physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juanjuan Tang
- Department of physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
26
|
Deng I, Corrigan F, Zhai G, Zhou XF, Bobrovskaya L. Lipopolysaccharide animal models of Parkinson's disease: Recent progress and relevance to clinical disease. Brain Behav Immun Health 2020; 4:100060. [PMID: 34589845 PMCID: PMC8474547 DOI: 10.1016/j.bbih.2020.100060] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative movement disorders which is characterised neuropathologically by progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of Lewy bodies (made predominately of α-synuclein) in the surviving neurons. Animal models of PD have improved our understanding of the disease and have played a critical role in the development of neuroprotective agents. Neuroinflammation has been strongly implicated in the pathogenesis of PD, and recent studies have used lipopolysaccharide (LPS), a component of gram-negative bacteria and a potent activator of microglia cells, to mimic the inflammatory events in clinical PD. Modulating the inflammatory response could ameliorate PD associated complications and thus, it is essential to understand the extent to which LPS models reflect human PD. This review will outline the routes of administration of LPS such as stereotaxic, systemic and intranasal, their ability to recapitulate neuropathological markers of PD, and mechanisms of LPS induced toxicity. We will also discuss the ability of the models to replicate motor symptoms and non-motor symptoms of PD such as gastrointestinal dysfunction, olfactory dysfunction, anxiety, depression and cognitive dysfunction.
Collapse
Affiliation(s)
- Isaac Deng
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Frances Corrigan
- School of Health Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, 250012, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Fujimura M, Usuki F, Nakamura A. Fasudil, a Rho-Associated Coiled Coil-Forming Protein Kinase Inhibitor, Recovers Methylmercury-Induced Axonal Degeneration by Changing Microglial Phenotype in Rats. Toxicol Sci 2020; 168:126-136. [PMID: 30462329 DOI: 10.1093/toxsci/kfy281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg) is an environmental neurotoxicant that induces neuropathological changes. In this study, we established chronic MeHg-intoxicated rats. These rats survived, and sustained MeHg-induced axonal degeneration, including the dorsal root nerve and the dorsal column of the spinal cord; these changes persisted 12 weeks after MeHg withdrawal. We demonstrated for the first time the restorative effect of Fasudil, a specific inhibitor of Rho-associated coiled coil-forming protein kinase, on axonal degeneration and corresponding neural dysfunction in the established chronic MeHg-intoxicated rats. To investigate the mechanism of this restorative effect, we focused on the expression of Rho protein families. This was supported by our previous study, which demonstrated that cotreatment with Fasudil prevented axonal degeneration by mitigating neurite extension/retraction incoordination caused by MeHg-induced suppression of Rac1 in vitro and in subacute MeHg-intoxicated rats. However, the mechanism of the restorative effect of Fasudil on axonal degeneration in chronic MeHg-intoxicated rats differed from MeHg-mediated neuritic extension/retraction incoordination. We found that the restorative effect of Fasudil was caused by the Fasudil-induced change of microglial phenotype, from proinflammatory to anti-inflammatory; moreover, Fasudil suppressed Rho-associated coiled coil-forming protein kinase activity. Treatment with Fasudil decreased the expression of proinflammatory factors, including tumor necrosis factor-α, inducible nitric oxide synthase, interleukin-1β, and interleukin-6; furthermore, it inactivated the nuclear factor kappa-light-chain-enhancer of activated B cells pathway. Additionally, Fasudil treatment was associated with increased levels of anti-inflammatory factors arginase-1 and interleukin-10. These results suggest that Rho-associated coiled coil-forming protein kinase inhibition may recover MeHg-mediated axonal degeneration and neural dysfunction in chronic MeHg intoxication.
Collapse
Affiliation(s)
| | - Fusako Usuki
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto 867-0008, Japan
| | - Atsushi Nakamura
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto 867-0008, Japan
| |
Collapse
|
28
|
Zhang X, Huang W, Shao Q, Yang Y, Xu Z, Chen J, Zhang X, Ge X. Drp1, a potential therapeutic target for Parkinson's disease, is involved in olfactory bulb pathological alteration in the Rotenone-induced rat model. Toxicol Lett 2020; 325:1-13. [PMID: 32088201 DOI: 10.1016/j.toxlet.2020.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
Olfaction is often affected in parkinsonian patients and its disturbances precede the classical cognitive and locomotor dysfunction. The olfactory bulb might be the region of onset in Parkinson's disease (PD) pathogenesis, evidenced by the presence of disease-related protein aggregates and disturbed olfactory information processing. However, the underlying molecular mechanism that governs the olfactory bulb impairments remains unclear. This study was designed to investigate the relationship between olfactory bulb and inflammatory pathological alterations and the potential mechanisms. Here we found that rotenone led to typical parkinsonian symptoms and decreased tyrosine hydroxylase (TH)-positive neurons in the olfactory bulb. Additionally, increased NF-κB nuclear translocation and NLRP3 inflammasome components expressions caused by rotenone injection were observed accompanied by the activation of microglia and astrocytes in the olfactory bulb. Rotenone also triggered Drp1-mediated mitochondrial fission and this in turn caused mitochondrial damage. Furthermore, Mdivi-1(a selective Drp1 inhibitor) markedly ameliorated the morphologic disruptions of mitochondria and Drp1 translocation, inhibited the nuclear translocation of NF-κB, eventually blocked the downstream pathway of the NLRP3/caspase-1/IL-1β axis and expression of iNOS. Overall, these findings suggest that Drp1-dependent mitochondrial fission induces NF-κB nuclear translocation and NLRP3 inflammasome activation that may further contribute to olfactory bulb disturbances.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China.
| | - Wenmin Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Qianhang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, PR China
| | - Yuan Yang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, PR China
| | - Zhengxin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Xiaoyan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Xiaoqun Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China.
| |
Collapse
|
29
|
Zhang Q, Hu C, Huang J, Liu W, Lai W, Leng F, Tang Q, Liu Y, Wang Q, Zhou M, Sheng F, Li G, Zhang R. ROCK1 induces dopaminergic nerve cell apoptosis via the activation of Drp1-mediated aberrant mitochondrial fission in Parkinson's disease. Exp Mol Med 2019; 51:1-13. [PMID: 31578315 PMCID: PMC6802738 DOI: 10.1038/s12276-019-0318-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Dopamine deficiency is mainly caused by apoptosis of dopaminergic nerve cells in the substantia nigra of the midbrain and the striatum and is an important pathologic basis of Parkinson’s disease (PD). Recent research has shown that dynamin-related protein 1 (Drp1)-mediated aberrant mitochondrial fission plays a crucial role in dopaminergic nerve cell apoptosis. However, the upstream regulatory mechanism remains unclear. Our study showed that Drp1 knockdown inhibited aberrant mitochondrial fission and apoptosis. Importantly, we found that ROCK1 was activated in an MPP+-induced PD cell model and that ROCK1 knockdown and the specific ROCK1 activation inhibitor Y-27632 blocked Drp1-mediated aberrant mitochondrial fission and apoptosis of dopaminergic nerve cells by suppressing Drp1 dephosphorylation/activation. Our in vivo study confirmed that Y-27632 significantly improved symptoms in a PD mouse model by inhibiting Drp1-mediated aberrant mitochondrial fission and apoptosis. Collectively, our findings suggest an important molecular mechanism of PD pathogenesis involving ROCK1-regulated dopaminergic nerve cell apoptosis via the activation of Drp1-induced aberrant mitochondrial fission. Researchers in China have revealed how a protein molecule plays an early part in the molecular steps that can lead to Parkinson’s disease, which is caused by the death of nerve cells that make the neurotransmitter dopamine. Disruption of mitochondria, the energy-generating bodies inside cells, was already known to lead to the death of dopamine-producing cells. Rong Zhang, Guobing Li and colleagues at The Second Affiliated Hospital of Army Medical University in Chongqing, China traced the chain of cause and effect back to a protein called ROCK-1. Using a mouse model of Parkinson’s disease, they found that ROCK-1 activates another protein previously shown to trigger the disruption of mitochondria. ROCK-1’s early role in the sequence might make it a suitable target for treatment using drugs that inhibit its activity.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Faning Leng
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Qing Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Fangfang Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China.
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China.
| |
Collapse
|
30
|
Okuyama S, Kanzaki T, Kotani Y, Katoh M, Sawamoto A, Nakajima M, Furukawa Y. Continual Treatment with the Peels of Citrus kawachiensis (Kawachi Bankan) Protects against Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson's Disease. J Nutr Sci Vitaminol (Tokyo) 2019; 65:205-208. [PMID: 31061292 DOI: 10.3177/jnsv.65.205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our previous study showed that the subcutaneous administration of auraptene (AUR) suppresses inflammatory responses including the hyperactivation of microglia in the substantia nigra (SN) of the midbrain of lipopolysaccharide-induced Parkinson's disease (PD)-like mice, as well as inhibits dopaminergic neuronal cell death in this region. We also showed that the oral administration of the dried peel powder of Citrus kawachiensis, which contains relatively high amounts of AUR, suppresses inflammatory responses including the hyperactivation of microglia in the systemically inflamed brain. In the present study we showed that the oral administration of this dried peel powder successfully suppressed microglial activation and protected against dopaminergic neuronal cell death in the SN, suggesting its potential as a neuroprotective agent for the treatment of patients with PD.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Tomoko Kanzaki
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshimi Kotani
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mako Katoh
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
31
|
Meneses G, Cárdenas G, Espinosa A, Rassy D, Pérez-Osorio IN, Bárcena B, Fleury A, Besedovsky H, Fragoso G, Sciutto E. Sepsis: developing new alternatives to reduce neuroinflammation and attenuate brain injury. Ann N Y Acad Sci 2018; 1437:43-56. [DOI: 10.1111/nyas.13985] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Gabriela Meneses
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Graciela Cárdenas
- Instituto Nacional de Neurología y Neurocirugía; SSA; Mexico City Mexico
| | - Alejandro Espinosa
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Dunia Rassy
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Ivan Nicolás Pérez-Osorio
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Brandon Bárcena
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Agnes Fleury
- Instituto Nacional de Neurología y Neurocirugía; SSA; Mexico City Mexico
| | - Hugo Besedovsky
- The Institute of Physiology and Pathophysiology, Medical Faculty; Philipps University; Marburg Germany
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Edda Sciutto
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| |
Collapse
|
32
|
Zhao YF, Qiong-Zhang, Zhang JF, Lou ZY, Zu HB, Wang ZG, Zeng WC, Kai-Yao, Xiao BG. The Synergy of Aging and LPS Exposure in a Mouse Model of Parkinson's Disease. Aging Dis 2018; 9:785-797. [PMID: 30271656 PMCID: PMC6147589 DOI: 10.14336/ad.2017.1028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022] Open
Abstract
Aging is an inevitable physiological challenge occurring in organisms over time, and is also the most important risk factor of neurodegenerative diseases. In this study, we observed cellular and molecular changes of different age mice and LPS-induced Parkinson disease (PD) model. The results showed that behavioral performance and dopaminergic (DA) neurons were declined, accompanied by increased expression of pro-inflammatory factors (TLR2, p-NF-kB-p65, IL-1β and TNF-α), as well as pro-oxidative stress factor gp91phox in aged mice compared with young mice. Aging exaggerated inflammatory M1 microglia, and destroyed the balance between oxidation and anti-oxidation. The intranasal LPS instillation induced PD model in both young and aged mice. The poor behavioral performance and the loss of DA neurons as well as TLR2, p-NF-kB-p65, IL-1β, TNF-α, iNOS and gp91phox were further aggravated in LPS-aged mice. Interestingly, the expression of Nrf2 and HO-1 was up-regulated by LPS only in young LPS-PD mice, but not in aged mice. The results indicate that the synergy of aging process and LPS exposure may prominently aggravate the DA neurons loss caused by more serious neuroinflammation and oxidative stress in the brain.
Collapse
Affiliation(s)
- Yong-Fei Zhao
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Qiong-Zhang
- 2Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jian-Feng Zhang
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Yin Lou
- 3Department of Neurology, Xinhua Hospital, Medical College, Shanghai Jiaotong University, Shanghai, China
| | - Hen-Bing Zu
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zi-Gao Wang
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wei-Cheng Zeng
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Kai-Yao
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Bao-Guo Xiao
- 2Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Jiang DQ, Xu LC, Jiang LL, Li MX, Wang Y. Fasudil combined with methylcobalamin or lipoic acid can improve the nerve conduction velocity in patients with diabetic peripheral neuropathy: A meta-analysis. Medicine (Baltimore) 2018; 97:e11390. [PMID: 29979431 PMCID: PMC6076121 DOI: 10.1097/md.0000000000011390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Fasudil (F) plus methylcobalamin (M) or lipoic acid (L) treatment has been suggested as a therapeutic approach for diabetic peripheral neuropathy (DPN) in numerous studies. However, the effect of the combined use still remains dubious. OBJECTIVE The aim of this report was to evaluate the efficacy of F plus M or L (F + M or F + L) for the treatment of DPN compared with that of M or L monotherapy, respectively, in order to provide the basis and reference for clinical rational drug use. METHODS Randomized controlled trials (RCTs) of F for DPN published up to September 2017 were searched. Relative risk (RR), mean difference (MD), and 95% confidence interval (CI) were calculated and heterogeneity was assessed with the I test. Sensitivity analyses were also performed. The outcomes measured were as follows: the clinical efficacy, median motor nerve conduction velocities (NCVs) (MNCVs), median sensory NCV (SNCV), peroneal MNCV, peroneal SNCV, and adverse effects. RESULTS Thirteen RCTs with 1148 participants were included. Clinical efficacy of F + M combination therapy was significantly better than M monotherapy (8 trials; RR 1.26, 95% CI 1.17-1.35, P < .00001, I = 0%), the efficacy of F + L combination therapy was also obviously better than L monotherapy (4 trials; RR 1.27, 95% CI 1.16-1.39, P < .00001, I = 0%). Compared with monotherapy, the pooled effects of combination therapy on NCV were (MD 6.69, 95% CI 4.74-8.64, P < .00001, I = 92%) for median MNCV, (MD 6.71, 95% CI 1.77-11.65, P = .008, I = 99%) for median SNCV, (MD 4.18, 95% CI 2.37-5.99, P < .00001, I = 94%) for peroneal MNCV, (MD 5.89, 95% CI 3.57-8.20, P < .00001, I = 95%) for peroneal SNCV. Furthermore, there were no serious adverse events associated with drug intervention. CONCLUSION Combination therapy with F plus M or L was superior to M or L monotherapy for improvement of neuropathic symptoms and NCVs in DPN patients, respectively. Moreover, no serious adverse events occur in combination therapy.
Collapse
Affiliation(s)
- De-Qi Jiang
- College of Biology and Pharmacy, Yulin Normal University
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin
| | - Lan-Cheng Xu
- College of Biology and Pharmacy, Yulin Normal University
| | - Li-Lin Jiang
- College of Biology and Pharmacy, Yulin Normal University
| | - Ming-Xing Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Fu PC, Tang RH, Yu ZY, Xie MJ, Wang W, Luo X. The Rho-associated kinase inhibitors Y27632 and fasudil promote microglial migration in the spinal cord via the ERK signaling pathway. Neural Regen Res 2018; 13:677-683. [PMID: 29722320 PMCID: PMC5950678 DOI: 10.4103/1673-5374.230294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rho-associated kinase (ROCK) is a key regulatory protein involved in inflammatory secretion in microglia in the central nervous system. Our previous studies showed that ROCK inhibition enhances phagocytic activity in microglia through the extracellular signal-regulated kinase (ERK) signaling pathway, but its effect on microglial migration was unknown. Therefore, in this study, we investigated the effects of the ROCK inhibitors Y27632 and fasudil on the migratory activity of primary cultured microglia isolated from the spinal cord, and we examined the underlying mechanisms. The microglia were treated with Y27632, fasudil and/or the ERK inhibitor U0126. Cellular morphology was observed by immunofluorescence. Transwell chambers were used to assess cell migration. ERK levels were measured by in-cell western blot assay. Y27632 and fasudil increased microglial migration, and the microglia were irregularly shaped and had many small processes. These inhibitors also upregulated the levels of phosphorylated ERK protein. The ERK inhibitor U0126 suppressed these effects of Y27632 and fasudil. These findings suggest that the ROCK inhibitors Y27632 and fasudil promote microglial migration in the spinal cord through the ERK signaling pathway.
Collapse
Affiliation(s)
- Pei-Cai Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Rong-Hua Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhi-Yuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Neurological Diseases (Huazhong University of Science and Technology), Ministry of Education of China, Wuhan, Hubei Province, China
| | - Min-Jie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Neurological Diseases (Huazhong University of Science and Technology), Ministry of Education of China, Wuhan, Hubei Province, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Neurological Diseases (Huazhong University of Science and Technology), Ministry of Education of China, Wuhan, Hubei Province, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
35
|
Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 2017; 96:379-390. [DOI: 10.1002/jnr.24185] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Neeraj Joshi
- Department of Biochemistry and Biophysics; Helen Diller Comprehensive Cancer Center; San Francisco California
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
36
|
Tien LT, Lee YJ, Pang Y, Lu S, Lee JW, Tseng CH, Bhatt AJ, Savich RD, Fan LW. Neuroprotective Effects of Intranasal IGF-1 against Neonatal Lipopolysaccharide-Induced Neurobehavioral Deficits and Neuronal Inflammation in the Substantia Nigra and Locus Coeruleus of Juvenile Rats. Dev Neurosci 2017; 39:443-459. [PMID: 28787734 PMCID: PMC5799046 DOI: 10.1159/000477898] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/30/2017] [Indexed: 01/29/2023] Open
Abstract
Neonatal lipopolysaccharide (LPS) exposure-induced brain inflammation resulted in motor dysfunction and brain dopaminergic neuronal injury, and increased the risks of neurodegenerative disorders in adult rats. Our previous studies showed that intranasal administration of insulin-like growth factor-1 (IGF-1) protects against LPS-induced white matter injury in the developing rat brain. To further examine whether IGF-1 protects against LPS-induced brain neuronal injury and neurobehavioral dysfunction, recombinant human IGF-1 (rhIGF-1) at a dose of 50 µg/pup was administered intranasally 1 h following intracerebral injection of LPS (1 mg/kg) in postnatal day 5 (P5) Sprague-Dawley rat pups. Neurobehavioral tests were carried out from P7 to P21, and brain neuronal injury was examined at P21. Our results showed that LPS exposure resulted in disturbances of motor behaviors in juvenile rats. Moreover, LPS exposure caused injury to central catecholaminergic neurons, as indicated by a reduction of tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra (SN), ventral tegmental area (VTA) and olfactory bulb (OB), and brain noradrenergic neurons, as indicated by a reduction of TH immunoreactivity in the locus coeruleus (LC) of the P21 rat brain. The LPS-induced reduction of TH+ cells was observed at a greater degree in the SN and LC of the P21 rat brain. Intranasal rhIGF-1 treatment attenuated LPS-induced central catecholaminergic neuronal injury and motor behavioral disturbances, including locomotion, beam walking test and gait analysis. Intranasal rhIGF-1 administration also attenuated LPS-induced elevation of IL-1β levels and numbers of activated microglia, and cyclooxygenase-2+ cells, which were double labeled with TH+ cells in the SN, VTA, OB and LC of the P21 rat brain. These results suggest that IGF-1 may provide protection against neonatal LPS exposure-induced central catecholaminergic neuronal injury and motor behavioral disturbances, and that the protective effects are associated with the inhibition of microglia activation and the reduction of neuronal oxidative stress by the suppression of the neuronal cyclooxygenase-2 expression.
Collapse
Affiliation(s)
- Lu-Tai Tien
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan
| | - Yih-Jing Lee
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan
| | - Yi Pang
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Silu Lu
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jonathan W Lee
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Chih-Hsueh Tseng
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan
| | - Abhay J Bhatt
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Renate D Savich
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
37
|
Kata D, Földesi I, Feher LZ, Hackler L, Puskas LG, Gulya K. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells. Brain Res Bull 2017; 132:61-74. [PMID: 28528204 DOI: 10.1016/j.brainresbull.2017.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain.
Collapse
Affiliation(s)
- Diana Kata
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| | - Imre Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary.
| | | | | | | | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
38
|
Roser AE, Tönges L, Lingor P. Modulation of Microglial Activity by Rho-Kinase (ROCK) Inhibition as Therapeutic Strategy in Parkinson's Disease and Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2017; 9:94. [PMID: 28420986 PMCID: PMC5378706 DOI: 10.3389/fnagi.2017.00094] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are characterized by the progressive degeneration of neurons in the central and peripheral nervous system (CNS, PNS), resulting in a reduced innervation of target structures and a loss of function. A shared characteristic of many neurodegenerative diseases is the infiltration of microglial cells into affected brain regions. During early disease stages microglial cells often display a rather neuroprotective phenotype, but switch to a more pro-inflammatory neurotoxic phenotype in later stages of the disease, contributing to the neurodegeneration. Activation of the Rho kinase (ROCK) pathway appears to be instrumental for the modulation of the microglial phenotype: increased ROCK activity in microglia mediates mechanisms of the inflammatory response and is associated with improved motility, increased production of reactive oxygen species (ROS) and release of inflammatory cytokines. Recently, several studies suggested inhibition of ROCK signaling as a promising treatment option for neurodegenerative diseases. In this review article, we discuss the contribution of microglial activity and phenotype switch to the pathophysiology of Parkinson’s disease (PD) and Amyotrophic lateral sclerosis (ALS), two devastating neurodegenerative diseases without disease-modifying treatment options. Furthermore, we describe how ROCK inhibition can influence the microglial phenotype in disease models and explore ROCK inhibition as a future treatment option for PD and ALS.
Collapse
Affiliation(s)
- Anna-Elisa Roser
- Department of Neurology, University Medicine GöttingenGöttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medicine GöttingenGöttingen, Germany
| | - Lars Tönges
- Department of Neurology, Ruhr-Universität BochumBochum, Germany
| | - Paul Lingor
- Department of Neurology, University Medicine GöttingenGöttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medicine GöttingenGöttingen, Germany
| |
Collapse
|
39
|
Reeta KH, Singh D, Gupta YK. Edaravone attenuates intracerebroventricular streptozotocin-induced cognitive impairment in rats. Eur J Neurosci 2017; 45:987-997. [DOI: 10.1111/ejn.13543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- K. H. Reeta
- Department of Pharmacology; All India Institute of Medical Sciences; Ansari Nagar, New Delhi 110029 India
| | - Devendra Singh
- Department of Pharmacology; All India Institute of Medical Sciences; Ansari Nagar, New Delhi 110029 India
| | - Yogendra K. Gupta
- Department of Pharmacology; All India Institute of Medical Sciences; Ansari Nagar, New Delhi 110029 India
| |
Collapse
|
40
|
Chunhua M, Long H, Zhu W, Liu Z, Jie R, Zhang Y, Wang Y. Betulin inhibited cigarette smoke-induced COPD in mice. Biomed Pharmacother 2016; 85:679-686. [PMID: 27899253 DOI: 10.1016/j.biopha.2016.11.079] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 01/03/2023] Open
Abstract
The purpose of the present study was to evaluate the protective effect of betulin (BE) on CS (cigarette smoke)-induced COPD in mice and explore its underlying mechanisms. 60 male ICR mice were randomly assigned to five groups: control group, model group, dexamethasone (2mg/kg) group, BE (20mg/kg) group and BE (40mg/kg) group. The COPD mice were induced by cigarette smoke exposure for 8 weeks. The result of H&E staining demonstrated that BE inhibited CS-induced pathological injury in lung tissue. Besides, BE could restore the activities of superoxide dismutase (SOD) in serum and in lung, catalase (CAT) in serum and reduce the content of malondialdehyde (MDA) in serum and in lung. BE also inhibited the overproductions of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Furthermore, the administration of BE significantly inhibited the protein expression of ROCK/NF-κB pathway in CS-induced mice. Our findings suggested that BE might effectively ameliorate the progression of COPD via ROCK/NF-κB pathway in mice.
Collapse
Affiliation(s)
- Ma Chunhua
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001,China
| | - Hongyan Long
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001,China.
| | - Weina Zhu
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001,China
| | - Zheng Liu
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001,China
| | - Ruan Jie
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001,China
| | - Yajie Zhang
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001,China
| | - Yarui Wang
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001,China
| |
Collapse
|
41
|
Synergistic and Superimposed Effect of Bone Marrow-Derived Mesenchymal Stem Cells Combined with Fasudil in Experimental Autoimmune Encephalomyelitis. J Mol Neurosci 2016; 60:486-497. [PMID: 27573128 DOI: 10.1007/s12031-016-0819-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 12/23/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are the ideal transplanted cells of cellular therapy for promoting neuroprotection and neurorestoration. However, the optimization of transplanted cells and the improvement of microenvironment around implanted cells are still two critical challenges for enhancing therapeutic effect. In the current study, we observed the therapeutic potential of MSCs combined with Fasudil in mouse model of experimental autoimmune encephalomyelitis (EAE) and explored possible mechanisms of action. The results clearly show that combined intervention of MSCs and Fasudil further reduced the severity of EAE compared with MSCs or Fasudil alone, indicating a synergistic and superimposed effect in treating EAE. The addition of Fasudil inhibited MSC-induced inflammatory signaling TLR-4/MyD88 and inflammatory molecule IFN-γ, IL-1β, and TNF-α but did not convert M1 microglia to M2 phenotype. The delivery of MSCs enhanced the expression of glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) compared with that of Fasudil. Importantly, combined intervention of MSCs and Fasudil further increased the expression of BDNF and GDNF compared with the delivery of MSCs alone, indicating that combined intervention of MSCs and Fasudil synergistically contributes to the expression of neurotrophic factors which should be related to the expression of increased galactocerebroside (GalC) compared with mice treated with Fasudil and MSCs alone. However, a lot of investigation is warranted to further elucidate the cross talk of MSCs and Fasudil in the therapeutic potential of EAE/multiple sclerosis.
Collapse
|