1
|
Geonczy SE, Hillary LS, Santos-Medellín C, Sorensen JW, Emerson JB. Patchy burn severity explains heterogeneous soil viral and prokaryotic responses to fire in a mixed conifer forest. mSystems 2025:e0174924. [PMID: 40366158 DOI: 10.1128/msystems.01749-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/12/2025] [Indexed: 05/15/2025] Open
Abstract
Effects of fire on soil viruses and virus-host dynamics are largely unexplored, despite known microbial contributions to biogeochemical processes and ecosystem recovery. Here, we assessed how viral and prokaryotic communities responded to a prescribed burn in a mixed conifer forest. We sequenced 91 viral-size fraction metagenomes (viromes) and 115 16S rRNA gene amplicon libraries from 120 samples: four samples at five timepoints (two before fire and three after fire) at six sites (four treatment, two control). We hypothesized that compositional differences would be most significant between burned and unburned soils, but instead, plot location best distinguished viral communities, more than treatment (burned or not), depth (0-3 or 3-6 cm), or timepoint. For both viruses and prokaryotes, some burned communities resembled unburned controls, while others were significantly different, revealing heterogeneous responses to fire. These patterns were explained by burn severity, here defined by soil chemistry. Viral but not prokaryotic richness decreased significantly with burn severity, and low viromic DNA yields indicated substantial loss of viral biomass at higher severity. The relative abundances of Firmicutes, Actinobacteriota, and the viruses predicted to infect them increased significantly with burn severity, suggesting survival and viral infection of these fire-responsive and potentially spore-forming taxa. The degree of burn severity experienced by each patch of soil, rather than burn status alone, differed over mere meters in the same fire. Therefore, our analyses highlight the importance of high-resolution, paired biogeochemical data to explain soil community responses to fire. IMPORTANCE The impact of fire on the soil microbiome, particularly on understudied soil viral communities, warrants investigation, given known microbial contributions to biogeochemical processes and ecosystem recovery. Here, we collected 120 soil samples before and after a prescribed burn in a mixed conifer forest to assess the impacts of this disturbance on soil viral and prokaryotic communities. We show that simple categorical comparisons of burned and unburned areas were insufficient to reveal the underlying community response patterns. The patchy nature of the fire (indicated by soil chemistry data) led to significant changes in viral and prokaryotic community composition in areas of high burn severity, while communities that experienced lower burn severity were indistinguishable from those in unburned controls. Our results highlight the importance of considering highly resolved burn severity and biogeochemical measurements, even in nearby soils after the same fire, in order to understand soil microbial responses to prescribed burns.
Collapse
Affiliation(s)
- Sara E Geonczy
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | - Luke S Hillary
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | | | - Jess W Sorensen
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| |
Collapse
|
2
|
Hopkins JR, Bennett AE, McKenna TP. Fire Frequency Driven Increases in Burn Heterogeneity Promote Microbial Beta Diversity: A Test of the Pyrodiversity-Biodiversity Hypothesis. Mol Ecol 2025; 34:e17756. [PMID: 40186548 PMCID: PMC12051778 DOI: 10.1111/mec.17756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Fire is a common ecological disturbance that structures terrestrial ecosystems and biological communities. The ability of fires to contribute to ecosystem heterogeneity has been termed pyrodiversity and has been directly linked to biodiversity (i.e., the pyrodiversity-biodiversity hypothesis). Since climate change models predict increases in fire frequency, understanding how fire pyrodiversity influences soil microbes is important for predicting how ecosystems will respond to fire regime changes. Here we tested how fire frequency-driven changes in burn patterns (i.e., pyrodiversity) influenced soil microbial communities and diversity. We assessed pyrodiversity effects on soil microbes by manipulating fire frequency (annual vs. biennial fires) in a tallgrass prairie restoration and evaluating how changes in burn patterns influenced microbial communities (bacteria and fungi). Annual burns produced more heterogeneous burn patterns (higher pyrodiversity) that were linked to shifts in fungal and bacterial community composition. While fire frequency did not influence microbial (bacteria and fungi) alpha diversity, beta diversity did increase with pyrodiversity. Changes in fungal community composition were not linked to burn patterns, suggesting that pyrodiversity effects on other ecosystem components (e.g., plants and soil characteristics) influenced fungal community dynamics and the greater beta diversity observed in the annually burned plots. Shifts in bacterial community composition were linked to variation in higher severity burn pattern components (grey and white ash), suggesting that thermotolerance contributed to the observed changes in bacterial community composition and lower beta diversity in the biennially burned plots. This demonstrates that fire frequency-driven increases in pyrodiversity augment biodiversity and may influence productivity in fire-prone ecosystems.
Collapse
Affiliation(s)
- Jacob R. Hopkins
- Evolution, Ecology, & Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Alison E. Bennett
- Evolution, Ecology, & Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Thomas P. McKenna
- Kansas Biological Survey and Center for Ecological ResearchUniversity of KansasLawrenceKansasUSA
| |
Collapse
|
3
|
Shen H, Huang Y, Lin X, Dai Z, Zhao H, Su WQ, Dahlgren RA, Xu J. Recoupling of Soil Carbon, Nitrogen, and Phosphorus Cycles along a 30 Year Fire Chronosequence in Boreal Forests of China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4432-4443. [PMID: 39973244 DOI: 10.1021/acs.est.4c08790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The biogeochemical coupling of soil carbon, nitrogen, and phosphorus (C-N-P) cycles is crucial for maintaining the ecological balance of boreal forests. Yet, the current understanding of wildfire disturbance is only based on changes in elemental contents, thereby lacking any within-ecosystem corroboration of biogeochemical coupling. Here, we conducted a field survey of microbial functional associations for 53 genes related to soil C-N-P cycling from 17 locations spanning a 30 year succession period after high-severity forest fires in the Greater Khingan Mountains (Inner Mongolia-China). We found that bacteria proliferated and dominated the competition with fungi by encoding genes for recalcitrant C decomposition, N fixation, and inorganic N cycling during the postfire early succession. Wildfire prominently decoupled the microbial functional associations of soil C-N-P cycling, particularly in organic-inorganic N turnover. However, over the 30 year succession period, these functional associations recoupled in both soil organic and mineral horizons. Notably, the decoupling of microbial functional associations recovered from a wildfire disturbance faster than the soil C-N-P imbalance. This strong resilience of the microbiome will aid in the recovery of the soil elemental balance and ecosystem stability from the increased intensity of wildfires projected for the boreal forests of China.
Collapse
Affiliation(s)
- Haojie Shen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yu Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xin Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Haochun Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Qin Su
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
4
|
Zhou G, Eisenhauer N, Du Z, Lucas-Borja ME, Zhai K, Berdugo M, Duan H, Wu H, Liu S, Revillini D, Sáez-Sandino T, Chai H, Zhou X, Delgado-Baquerizo M. Fire-driven disruptions of global soil biochemical relationships. Nat Commun 2025; 16:1190. [PMID: 39885173 PMCID: PMC11782626 DOI: 10.1038/s41467-025-56598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Fires alter the stability of organic matter and promote soil erosion which threatens the fundamental coupling of soil biogeochemical cycles. Yet, how soil biogeochemistry and its environmental drivers respond to fire remain virtually unknown globally. Here, we integrate experimental observations and random forest model, and reveal significant divergence in the responses of soil biogeochemical attributes to fire, including soil carbon (C), nitrogen (N), and phosphorus (P) contents worldwide. Fire generally decreases soil C, has non-significant impacts on total N, while it increases the contents of inorganic N and P, with some effects persisting for decades. The impacts of fire are most strongly negative in cold climates, conifer forests, and under wildfires with high intensity and frequency. Our work provides evidence that fire decouples soil biogeochemistry globally and helps to identify high-priority ecosystems where critical components of soil biogeochemistry are especially unbalanced by fire, which is fundamental for the management of ecosystems in a world subjected to more severe, recurrent, and further-reaching wildfires.
Collapse
Affiliation(s)
- Guiyao Zhou
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS). Consejo Superior de Investigaciones Científicas (CSIC). Av. Reina Mercedes 10, E-41012, Sevilla, Spain.
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Zhenggang Du
- Institute of Carbon Neutrality, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Manuel Esteban Lucas-Borja
- Higher Technical School of Agronomic and Forestry Engineering and Biotechnology, Castilla-La Mancha University, Albacete, Spain
| | - Kaiyan Zhai
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS). Consejo Superior de Investigaciones Científicas (CSIC). Av. Reina Mercedes 10, E-41012, Sevilla, Spain
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Acedemy of Science, Shenyang, 110016, China
| | - Miguel Berdugo
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense de Madrid, 28040, Madrid, España
| | - Huimin Duan
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
| | - Han Wu
- Institute of Carbon Neutrality, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Shengen Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daniel Revillini
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Tadeo Sáez-Sandino
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Hua Chai
- Institute of Carbon Neutrality, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Xuhui Zhou
- Institute of Carbon Neutrality, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS). Consejo Superior de Investigaciones Científicas (CSIC). Av. Reina Mercedes 10, E-41012, Sevilla, Spain.
| |
Collapse
|
5
|
Hopkins JR, Semenova-Nelsen TA, Huffman JM, Jones NJ, Robertson KM, Platt WJ, Sikes BA. Fuel accumulation shapes post-fire fuel decomposition through soil heating effects on plants, fungi, and soil chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178386. [PMID: 39793143 DOI: 10.1016/j.scitotenv.2025.178386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Forty percent of terrestrial ecosystems require recurrent fires driven by feedbacks between fire and plant fuels. The accumulation of fine fuels in these ecosystems play a key role in fire intensity, which alters soil nutrients and shapes soil microbial and plant community responses to fire. Changes to post-fire plant fuel production are well known to feed back to future fires, but post-fire decomposition of new fuels is poorly understood. Our study sought to quantify how pre-fire fuel loading influenced post-fire fuel decomposition through soil abiotic properties, as well as plant and soil fungal communities. Prior to spring prescribed burns, we manipulated fine fuel loads in plots, both near (<10 m) and away (>10 m) from overstory pines, to modify soil heating in an old-growth longleaf pine savanna. We then assessed how fuel load and soil heating influenced post-fire plant fuel decomposition through changes to soil chemistry, vegetation, and fungi. Burning larger fuel loads made fires hotter, burn longer, and more completely combusted fuels. In these plots, decomposition of newly deposited fine fuels was slower in the eight months following fire. Decomposition changes from greater soil heating were mediated by greater shifts to postfire plant (2 and 4 months postfire) and fungal communities (4 and 6 months postfire). Soil properties (C: N ratios, soil pH, and P) controlled postfire decomposition throughout the year, but weakly responded to soil heating differences from fuels. Since the mechanisms for fuel effects on decomposition change over time, fire timing may be a future target for understanding fire feedbacks to fuel decomposition. Integrating these feedbacks with fuel production responses across fire-dependent ecosystems can help managers better set prescribed fire intervals and predict responses to reintroducing burning in fire-suppressed ecosystems.
Collapse
Affiliation(s)
- Jacob R Hopkins
- The Ohio State University, Evolution, Ecology & Organismal Biology, 318 W 12th Ave Aronoff Laboratory, Columbus, OH 43210, USA.
| | - Tatiana A Semenova-Nelsen
- University of Kansas, Kansas Biological Survey, 2101 Constant Avenue, Takeru Higuchi Hall, Lawrence, KS 66047, USA
| | - Jean M Huffman
- Tall Timbers Research Station, 13093 Henry Beadel Rd., Tallahassee, FL, USA
| | - Neil J Jones
- Tall Timbers Research Station, 13093 Henry Beadel Rd., Tallahassee, FL, USA
| | - Kevin M Robertson
- Tall Timbers Research Station, 13093 Henry Beadel Rd., Tallahassee, FL, USA
| | - William J Platt
- Louisiana State University, Department of Biological Sciences, 202 Life Science Bldg., Baton Rouge, LA 70803, USA
| | - Benjamin A Sikes
- University of Kansas, Kansas Biological Survey, 2101 Constant Avenue, Takeru Higuchi Hall, Lawrence, KS 66047, USA; University of Kansas, Ecology & Evolutionary Biology, 1200 Sunnyside Avenue Haworth Hall, Lawrence, KS 66045, USA
| |
Collapse
|
6
|
Zhu Q, Liu J, Liu L, El-Tarabily KA, Uwiragiye Y, Dan X, Tang S, Wu Y, Zhu T, Meng L, Zhang J, Müller C, Elrys AS. Fire Reduces Soil Nitrate Retention While Increasing Soil Nitrogen Production and Loss Globally. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23004-23017. [PMID: 39680856 DOI: 10.1021/acs.est.4c06208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Elucidating the response of soil gross nitrogen (N) transformations to fires could improve our understanding of how fire affects N availability and loss. Yet, how internal soil gross N transformation rates respond to fires remains unexplored globally. Here, we investigate the general response of gross soil N transformations to fire and its consequences for N availability and loss. The results showed that fire increased gross N mineralization rate (GNM; +38%) and ammonium concentration (+47%) as a result of decreased soil C/N ratio but decreased microbial nitrate immobilization (INO3; -56%), resulting in increased nitrous oxide (N2O; +50%) and nitric oxide (+121%) emissions and N leaching (+308%). Time since fire affected soil N cycling and loss. Fire increased GNM, ammonium concentration, and N2O emission, and decreased INO3 only when time since fire was less than one year, while increased N leaching in the short (one year) terms. Thus, the consequences of fire were a short-lived increase in N availability and N2O emissions (lasting less than one year) but with persistent risks of N loss by leaching over time. Overall, fire increased the potential risks of N loss by stimulating N production and inhibiting nitrate retention.
Collapse
Affiliation(s)
- Qilin Zhu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Juan Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lijun Liu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Yves Uwiragiye
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Department of Agriculture, Faculty of Agriculture, Environmental Management and Renewable Energy, University of Technology and Arts of Byumba, Byumba 25, Rwanda
| | - Xiaoqian Dan
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Shuirong Tang
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yanzheng Wu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Tongbin Zhu
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Karst Dynamics Laboratory, MLR and Guangxi, Guilin 541004, China
| | - Lei Meng
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jinbo Zhang
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Christoph Müller
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Institute of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin D4, Ireland
| | - Ahmed S Elrys
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
7
|
Lun J, Zhou W, Sun M, Li N, Shi W, Gao Z, Li M. Meta-analysis: Global patterns and drivers of denitrification, anammox and DNRA rates in wetland and marine ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176694. [PMID: 39366563 DOI: 10.1016/j.scitotenv.2024.176694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Nitrogen cycling is one of the most important biogeochemical processes on Earth, and denitrification, anammox and DNRA processes are important nitrogen cycling processes in estuarine ecosystems. However, due to the large input of anthropogenic nitrogen sources, a large number of environmental problems have now occurred in the estuary. But the global patterns and controlling factors of denitrification, anammox and DNRA rates in wetland marine ecosystems are not yet known. We reached our conclusions through a global synthesis of 546 observation sites from 78 peer-reviewed papers: The three rates were generally higher in areas near wetlands than in coastal areas. The rate of denitrification was highest in the subtropical region the seasonal variability was not significant; and TOC was the main factor controlling denitrification. The rate of anammox was significantly higher in the subtropical region than in the tropical and boreal zones, and the seasonal variability was significant; and at the same time, TN was the main driver of the anammox rate of the wetland ocean. DNRA rates were significantly higher in the tropics than in the subtropics and temperate zones; and the main driver of DNRA rates was temperature. Nitrogen cycle functional genes also had an indirect effect on their rates. With NH4 + -N significantly affecting nirK abundance and TN significantly affecting the gene abundance of nirS; TOC and TN had a greater effect on hzo abundance, which indirectly affected anammox rates; for DNRA, C/N significantly affects the gene abundance of nrfA, which indirectly affects the DNRA rate. Therefore, the findings of this study indicate that physicochemical indicators about N and climatic characteristics have a profound effect on the nitrogen cycling process, which provides a good feedback for studying the role of denitrification and provides a positive impact on global climate and environmental governance.
Collapse
Affiliation(s)
- Jiaqi Lun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Wenxi Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Mengyue Sun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Na Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Wenchong Shi
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China.
| | - Mingcong Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
8
|
Huang R, Nicholas S, Wei Z. Thermochemical Transformation of Calcium during Biomass Burning and the Effects on Postfire Aqueous Dissolution of Macronutrients. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17304-17312. [PMID: 39350656 PMCID: PMC11447901 DOI: 10.1021/acs.est.4c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Calcium is commonly the most abundant element in fire residues and its speciation largely determines the geochemical properties of fire residues and their effects on postfire soil chemistry. To explore the effects of biomass composition and fire conditions on ash Ca speciation, this study characterizes the speciation of Ca in charcoal and ash samples that were derived from different plant compartments and thermal conditions, using Ca K-edge X-ray absorption near edge spectroscopy. Results showed that biomass contains abundant organic Ca complexes, which were mineralized into fairchildite and calcite after heating at 450 to 600 °C and then CaO, as temperature increased to 750 °C. Apatite could be an abundant Ca species in fire residues if the Ca/P molar ratio of the biomass is small (<2). The mineralization of organic Ca to the identified Ca minerals during burning was negligibly affected by the oxygen level. Calcium speciation in prescribed fire residues resembled that of biomass ash burned at 550 °C with similar Ca/P molar ratios. Batch experiments showed that macronutrients (Ca, Mg, K, and P) were differentially released, as a result of different solubility of minerals in ashes and reprecipitation of minerals. The aqueous solubility of Ca, Mg, and P decreased as pH increased from 5 to 9, while K showed no pH dependency and was almost completely soluble. Results from this study improve our understanding of the chemistry of fire residues and their geochemical behaviors, which can help evaluate the impact of fire on postfire soil properties and macronutrient cycling.
Collapse
Affiliation(s)
- Rixiang Huang
- Department
of Environmental and Sustainable Engineering, University at Albany, 1400 Washington Ave, Albany, New York 12222, United States
| | - Sarah Nicholas
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11793, United States
| | - Zheng Wei
- Department
of Chemistry, University at Albany, 1400 Washington Ave, Albany, New York 12222, United States
| |
Collapse
|
9
|
Souza-Alonso P, Prats SA, Merino A, Guiomar N, Guijarro M, Madrigal J. Fire enhances changes in phosphorus (P) dynamics determining potential post-fire soil recovery in Mediterranean woodlands. Sci Rep 2024; 14:21718. [PMID: 39289427 PMCID: PMC11408694 DOI: 10.1038/s41598-024-72361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Soil phosphorus (P), which is essential for ecosystem functioning, undergoes notable changes after fire. However, the extent to which fire characteristics affect P dynamics remains largely unknown. This study investigated the impact of type of fire (prescribed burning and natural wildfires) of different levels of severity on P dynamics in Mediterranean soils. Soil P concentrations in the organic layers were strongly affected by fire severity but not fire type. Low severity fire did not have any observable effect, while moderate fire increased soil P levels by 62% and high severity decreased soil P concentration by 19%. After one year, the soil P concentration remained unchanged in the low severity fires, while rather complex recovery was observed after moderate and high severity fires. In the mineral layers, P concentration was reduced (by 25%) immediately after the fires and maintained for one year (at 42%). 31P-NMR spectroscopy revealed almost complete post-fire mineralization of organic P forms (mono- and diesters), large increases in inorganic orthophosphate and a decrease in the organic:inorganic P ratio (Po:Pi). After one year, di-esters and orthophosphate recovered to pre-fire levels at all sites, except those where parent material composition (high pH and Fe concentration) had an enduring effect on orthophosphate retention, and thus, on the total soil P. We showed that fire severity and soil pH (and hence, soil mineralogy) played an essential role in soil P dynamics. These findings are important for reliable assessment of the effects of fire on soil P conservation and for improving the understanding the impact of prescribed burning.
Collapse
Affiliation(s)
- P Souza-Alonso
- Department of Soil Science and Agricultural Chemistry, Higher Polytechnic Engineering School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - S A Prats
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
- Misión Biológica de Galicia - Consejo Superior de Investigaciones Científicas (MBG-CSIC), Salcedo, Pontevedra, España
| | - A Merino
- Department of Soil Science and Agricultural Chemistry, Higher Polytechnic Engineering School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - N Guiomar
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
- CHANGE - Global Change and Sustainability Institute, IIFA - Institute for Advanced Studies and Research, EaRSLab - Earth Remote Sensing Laboratory, Universidade de Évora, Évora, Portugal
| | - M Guijarro
- Instituto de Ciencias Forestales, ICIFOR-INIA (CSIC), Ctra. Coruña Km 7.5, 28040, Madrid, Spain
| | - J Madrigal
- Instituto de Ciencias Forestales, ICIFOR-INIA (CSIC), Ctra. Coruña Km 7.5, 28040, Madrid, Spain.
- ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid (UPM), Ramiro de Maeztu s/n, 28040, Madrid, Spain.
| |
Collapse
|
10
|
Rogers EIE, Mehnaz KR, Ellsworth DS. Stimulated photosynthesis of regrowth after fire in coastal scrub vegetation: increased water or nutrient availability? TREE PHYSIOLOGY 2024; 44:tpae079. [PMID: 38959858 PMCID: PMC11299026 DOI: 10.1093/treephys/tpae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Fire-prone landscapes experience frequent fires, disrupting above-ground biomass and altering below-ground soil nutrient availability. Augmentation of leaf nutrients or leaf water balance can both reduce limitations to photosynthesis and facilitate post-fire recovery in plants. These modes of fire responses are often studied separately and hence are rarely compared. We hypothesized that under severe burning, woody plants of a coastal scrub ecosystem would have higher rates of photosynthesis (Anet) than in unburned areas due to a transient release from leaf nutrient and water limitations, facilitating biomass recovery post-burn. To compare these fire recovery mechanisms in regrowing plants, we measured leaf gas exchange, leaf and soil N and P concentrations, and plant stomatal limitations in Australian native coastal scrub species across a burn sequence of sites at 1 year after severe fire, 7 years following a light controlled fire, and decades after any fire at North Head, Sydney, Australia. Recent burning stimulated increases in Anet by 20% over unburned trees and across three tree species. These species showed increases in total leaf N and P as a result of burning of 28% and 50% for these macronutrients, respectively, across the three species. The boost in leaf nutrients and stimulated leaf biochemical capacity for photosynthesis, alongside species-specific stomatal conductance (gs) increases, together contributed to increased photosynthetic rates after burning compared with the long-unburned area. Photosynthetic stimulation after burning occurred due to increases in nutrient concentrations in leaves, particularly N, as well as stomatal opening for some species. The findings suggest that changes in species photosynthesis and growth with increased future fire intensity or frequency may be facilitated by changes in leaf physiology after burning. On this basis, species dominance during regrowth depends on nutrient and water availability during post-fire recovery.
Collapse
Affiliation(s)
- Erin I E Rogers
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Kazi R Mehnaz
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
11
|
Li C, Chen X, Jia Z, Zhai L, Zhang B, Grüters U, Ma S, Qian J, Liu X, Zhang J, Müller C. Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities. Nat Ecol Evol 2024; 8:1270-1284. [PMID: 38849504 DOI: 10.1038/s41559-024-02437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024]
Abstract
Microbial inoculation involves transplanting microorganisms from their natural habitat to new plants or soils to improve plant performance, and it is being increasingly used in agriculture and ecological restoration. However, microbial inoculants can invade and alter the composition of native microbial communities; thus, a comprehensive analysis is urgently needed to understand the overall impact of microbial inoculants on the biomass, diversity, structure and network complexity of native communities. Here we provide a meta-analysis of 335 studies revealing a positive effect of microbial inoculants on soil microbial biomass. This positive effect was weakened by environmental stress and enhanced by the use of fertilizers and native inoculants. Although microbial inoculants did not alter microbial diversity, they induced major changes in the structure and bacterial composition of soil microbial communities, reducing the complexity of bacterial networks and increasing network stability. Finally, higher initial levels of soil nutrients amplified the positive impact of microbial inoculants on fungal biomass, actinobacterial biomass, microbial biomass carbon and microbial biomass nitrogen. Together, our results highlight the positive effects of microbial inoculants on soil microbial biomass, emphasizing the benefits of native inoculants and the important regulatory roles of soil nutrient levels and environmental stress.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
| | - Xinli Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA
| | - Bo Zhang
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Uwe Grüters
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
| | - Shilin Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Jing Qian
- Yangzhou China Grand Canal Museum, Yangzhou, China
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China.
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China.
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
12
|
Zhao J, Qiu Y, Yi F, Li J, Wang X, Fu Q, Fu X, Yao Z, Dai Z, Qiu Y, Chen H. Biochar dose-dependent impacts on soil bacterial and fungal diversity across the globe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172509. [PMID: 38642749 DOI: 10.1016/j.scitotenv.2024.172509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
Biochar, a widely used material for soil amendment, has been found to offer numerous advantages in improving soil properties and the habitats for soil microorganisms. However, there is still a lack of global perspectives on the influence of various levels of biochar addition on soil microbial diversity and primary components. Thus, in our study, we performed a global meta-analysis of studies to determine how different doses of biochar affect soil total carbon (C), nitrogen (N), pH, alpha- and beta-diversity, and the major phyla of both bacterial and fungal communities. Our results revealed that biochar significantly increased soil pH by 4 %, soil total C and N by 68 % and 22 %, respectively, in which the positive effects increased with biochar doses. Moreover, biochar promoted soil bacterial richness and evenness by 3-8 % at the biochar concentrations of 1-5 % (w/w), while dramatically shifting bacterial beta-diversity at the doses of >2 % (w/w). Specifically, biochar exhibited significantly positive effects on bacterial phyla of Acidobacteria, Bacteroidetes, Gemmatimonadetes, and Proteobacteria, especially Deltaproteobacteria and Gammaproteobacteria, by 4-10 % depending on the concentrations. On the contrary, the bacterial phylum of Verrucomicrobia and fungal phylum of Basidiomycota showed significant negative responses to biochar by -8 % and -24 %, respectively. Therefore, our meta-analysis provides theoretical support for the development of optimized agricultural management practices by emphasizing biochar application dosing.
Collapse
Affiliation(s)
- Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Fan Yi
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xueying Wang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
13
|
Shen H, Dai Z, Zhang Q, Tong D, Su WQ, Dahlgren RA, Xu J. Postfire Phosphorus Enrichment Mitigates Nitrogen Loss in Boreal Forests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10611-10622. [PMID: 38836563 DOI: 10.1021/acs.est.4c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Net nitrogen mineralization (Nmin) and nitrification regulate soil N availability and loss after severe wildfires in boreal forests experiencing slow vegetation recovery. Yet, how microorganisms respond to postfire phosphorus (P) enrichment to alter soil N transformations remains unclear in N-limited boreal forests. Here, we investigated postfire N-P interactions using an intensive regional-scale sampling of 17 boreal forests in the Greater Khingan Mountains (Inner Mongolia-China), a laboratory P-addition incubation, and a continental-scale meta-analysis. We found that postfire soils had an increased risk of N loss by accelerated Nmin and nitrification along with low plant N demand, especially during the early vegetation recovery period. The postfire N/P imbalance created by P enrichment acts as a "N retention" strategy by inhibiting Nmin but not nitrification in boreal forests. This strategy is attributed to enhanced microbial N-use efficiency and N immobilization. Importantly, our meta-analysis found that there was a greater risk of N loss in boreal forest soils after fires than in other climatic zones, which was consistent with our results from the 17 soils in the Greater Khingan Mountains. These findings demonstrate that postfire N-P interactions play an essential role in mitigating N limitation and maintaining nutrient balance in boreal forests.
Collapse
Affiliation(s)
- Haojie Shen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Qianqian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Di Tong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wei-Qin Su
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
14
|
Brant RA, Edwards CE, Reid JL, Bassüner B, Delfeld B, Dell N, Mangan SA, de la Paz Bernasconi Torres V, Albrecht MA. Restoration age affects microbial-herbaceous plant interactions in an oak woodland. Ecol Evol 2024; 14:e11360. [PMID: 38706936 PMCID: PMC11066493 DOI: 10.1002/ece3.11360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
In degraded ecosystems, soil microbial communities (SMCs) may influence the outcomes of ecological restoration. Restoration practices can affect SMCs, though it is unclear how variation in the onset of restoration activities in woodlands affects SMCs, how those SMCs influence the performance of hard-to-establish woodland forbs, and how different woodland forbs shape SMCs. In this study, we quantified soil properties and species abundances in an oak woodland restoration chronosequence (young, intermediate, and old restorations). We measured the growth of three woodland forb species when inoculated with live whole-soil from young, intermediate, or old restorations. We used DNA metabarcoding to characterize SMCs of each inoculum treatment and the soil after conditioning by each plant species. Our goals were to (1) understand how time since the onset of restoration affected soil abiotic properties, plant communities, and SMCs in a restoration chronosequence, (2) test growth responses of three forb species to whole-soil inoculum from restoration sites, and (3) characterize changes in SMCs before and after conditioning by each forb species. Younger restored woodlands had greater fire-sensitive tree species and lower concentrations of soil phosphorous than intermediate or older restored woodlands. Bacterial and fungal soil communities varied significantly among sites. Forbs exhibited the greatest growth in soil from the young restoration. Each forb species developed a unique soil microbial community. Our results highlight how restoration practices affect SMCs, which can in turn affect the growth of hard-to-establish forb species. Our results also highlight that the choice of forb species can alter SMCs, which could have long-term potential consequences for restoration success.
Collapse
Affiliation(s)
| | | | - John Leighton Reid
- Missouri Botanical GardenSt. LouisMissouriUSA
- Present address:
School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| | | | | | - Noah Dell
- Missouri Botanical GardenSt. LouisMissouriUSA
| | - Scott A. Mangan
- Department of Biological SciencesArkansas State UniversityJonesboroArkansasUSA
| | | | | |
Collapse
|
15
|
Shen Q, Ranathunge K, Lambers H, Finnegan PM. Adenanthos species (Proteaceae) in phosphorus-impoverished environments use a variety of phosphorus-acquisition strategies and achieve high-phosphorus-use efficiency. ANNALS OF BOTANY 2024; 133:483-494. [PMID: 38198749 PMCID: PMC11006540 DOI: 10.1093/aob/mcae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND AND AIMS Soils in south-western Australia are severely phosphorus (P) impoverished, and plants in this region have evolved a variety of P-acquisition strategies. Phosphorus acquisition by Adenanthos cygnorum (Proteaceae) is facilitated by P-mobilizing neighbours which allows it to extend its range of habitats. However, we do not know if other Adenanthos species also exhibit a strategy based on facilitation for P acquisition in P-impoverished environments. METHODS We collected leaf and soil samples of Adenanthosbarbiger, A. cuneatus, A.meisneri,A. obovatus, A. sericeus and Adenanthos sp. Whicher Range (G.J. Keighery 9736) growing in their natural habitats at different locations within the severely P-limited megadiverse environment of south-western Australia. Hydroponic experiments were conducted to collect the carboxylates exuded by cluster roots. Pot experiments in soil were carried out to measure rhizosheath phosphatase activity. KEY RESULTS We found no evidence for facilitation of P uptake in any of the studied Adenanthos species. Like most Proteaceae, A. cuneatus, A. meisneri, A. obovatus, A. sericeus and Adenanthos sp. Whicher Range (G.J. Keighery 9736) expressed P-mining strategies, including the formation of cluster roots. Cluster roots of A. obovatus were less effective than those of the other four Adenanthos species. In contrast to what is known for most Proteaceae, we found no cluster roots for A. barbiger. This species probably expressed a post-fire P-acquisition strategy. All Adenanthos species used P highly efficiently for photosynthesis, like other Proteaceae in similar natural habitats. CONCLUSIONS Adenanthos is the first genus of Proteaceae found to express multiple P-acquisition strategies. The diversity of P-acquisition strategies in these Proteaceae, coupled with similarly diverse strategies in Fabaceae and Myrtaceae, demonstrates that caution is needed in making family- or genus-wide extrapolations about the strategies exhibited in severely P-impoverished megadiverse ecosystems.
Collapse
Affiliation(s)
- Qi Shen
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
16
|
Beck JJ, McKone MJ, Wagenius S. Masting, fire-stimulated flowering, and the evolutionary ecology of synchronized reproduction. Ecology 2024; 105:e4261. [PMID: 38363004 DOI: 10.1002/ecy.4261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
Synchronized episodic reproduction among long-lived plants shapes ecological interactions, ecosystem dynamics, and evolutionary processes worldwide. Two active scientific fields investigate the causes and consequences of such synchronized reproduction: the fields of masting and fire-stimulated flowering. While parallels between masting and fire-stimulated flowering have been previously noted, there has been little dialogue between these historically independent fields. We predict that the synthesis of these fields will facilitate new insight into the causes and consequences of synchronized reproduction. Here we briefly review parallels between masting and fire-stimulated flowering, using two case studies and a database of 1870 plant species to facilitate methodological, conceptual, geographical, taxonomic, and phylogenetic comparisons. We identify avenues for future research and describe three key opportunities associated with synthesis. First, the taxonomic and geographic complementarity of empirical studies from these historically independent fields highlights the potential to derive more general inferences about global patterns and consequences of synchronized reproduction in perennial plants. Second, masting's well developed conceptual framework for evaluating adaptive hypotheses can help guide empirical studies of fire-stimulated species and enable stronger inferences about the evolutionary ecology of fire-stimulated flowering. Third, experimental manipulation of reproductive variation in fire-stimulated species presents unique opportunities to empirically investigate foundational questions about ecological and evolutionary processes underlying synchronized reproduction. Synthesis of these fields and their complementary insights offers a unique opportunity to advance our understanding of the evolutionary ecology of synchronized reproduction in perennial plants.
Collapse
Affiliation(s)
- Jared J Beck
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois, USA
| | - Mark J McKone
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - Stuart Wagenius
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois, USA
| |
Collapse
|
17
|
Zhu Z, Ma Y, Tigabu M, Wang G, Yi Z, Guo F. Effects of forest fire smoke deposition on soil physico-chemical properties and bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168592. [PMID: 37972773 DOI: 10.1016/j.scitotenv.2023.168592] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The number of forest fires has increased globally, together with considerable smoke emission that significantly impacts the atmospheric environment and associated ecosystems. Most current studies have focused on the in situ effects of fire on the forest ecosystem. However, the mechanisms by which smoke particles affect adjacent ecosystems are largely unexplored. In this study, a simulated forest fire combustion system was developed to evaluate the effect of different smoke concentrations (control, low and high) on soil physico-chemical properties of adjacent farmland at two soil depths. The abundance and diversity of bacterial community were also determined. The results showed that smoke deposition increased the contents of total carbon (TC), total nitrogen (TN), and total phosphorus (TP) in the 0-10 cm soil layer; however, no significant changes in soil water content (SWC) and pH values was observed. The ACE(Abundance Coverage-based Fastimator) and Chao1 diversity indices of bacterial community generally showed a downward trend whereas the PD_whole_ tree diversity index increased after 180 d of smoke deposition. The relative abundance of Proteobacteria remained stable, while abundance of Firmicutes in soil decreased after 180 d of smoke deposition. Smoke deposition slightly affected the physical and chemical properties of the 10-20 cm soil, but the range of variation of the relative abundance and diversity dominant bacteria exceeded that of the 0-10 cm soil. A significant positive correlation was found between the soil properties and the alpha diversity indices during the first 30 d after smoke deposition; the correlation then decreased gradually. Redundancy analysis revealed that Proteobacteria, Firmicutes, and Actinobacteria were generally positively correlated with TC, TN, and SWC. As a whole, the study reveals that the effects of smoke deposition on soil physico-chemical properties and bacterial community depends on smoke concentration where relatively low concentration appears to be beneficial to soil bacterial community.
Collapse
Affiliation(s)
- Zhongpan Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation of Red Soil Region in Southern China, Fuzhou 350002, China
| | - Yuanfan Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation of Red Soil Region in Southern China, Fuzhou 350002, China
| | - Mulualem Tigabu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangyu Wang
- Department of Forest Resources Management, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zhigang Yi
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Futao Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation of Red Soil Region in Southern China, Fuzhou 350002, China.
| |
Collapse
|
18
|
Meng L, Chen Y, Tang L, Sun X, Huo H, He Y, Huang Y, Shao Q, Pan S, Li Z. Effects of temperature-related changes on charred bone in soil: From P release to microbial community. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100221. [PMID: 38292865 PMCID: PMC10825478 DOI: 10.1016/j.crmicr.2024.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Phosphorus (P) is one of the most common limited nutrients in terrestrial ecosystems. Animal bones, with abundant bioapatite, are considerable P sources in terrestrial ecosystems. Heating significantly promotes P release from bone bioapatite, which may alleviate P limitation in soil. This study aimed to explore P release from charred bone (CB) under heating at various temperatures (based on common natural heating). It showed that heating at ∼300 °C significantly increased the P release (up to ∼30 mg/kg) from CB compared with other heating temperatures. Then, the subsequent changes of available P and pH induced evident alternation of soil microbial community composition. For instance, CB heated at ∼300 °C caused elevation of phosphate-solubilizing fungi (PSF) abundance. This further stimulated P mobility in the soil. Meanwhile, the fungal community assembly process was shifted from stochastic to deterministic, whereas the bacterial community was relatively stable. This indicated that the bacterial community showed fewer sensitive responses to the CB addition. This study hence elucidated the significant contribution of heated bone materials on P supply. Moreover, functional fungi might assist CB treated by natural heating (e.g., fire) to construct P "Hot Spots".
Collapse
Affiliation(s)
- Lingzi Meng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
| | - Yunhui Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Hongxun Huo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuxin He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yinan Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shang Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan 430074, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Lou H, Cai H, Fu R, Guo C, Fan B, Hu H, Zhang J, Sun L. Effects of wildfire disturbance on forest soil microbes and colonization of ericoid mycorrhizal fungi in northern China. ENVIRONMENTAL RESEARCH 2023; 231:116220. [PMID: 37224947 DOI: 10.1016/j.envres.2023.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Wildfires affect forest succession and restoration by changing the community structure of soil microorganisms. Mycorrhizal formation is essential for plant growth and development. However, the driving mechanism of their natural succession after wildfire is still unclear. In this study, we examined the community structure of soil bacteria and fungi along a time series of natural recovery after wildfires in the Greater Khingan Range of China (2020 fires, 2017 fires, 2012 fires, 2004 fires, 1991 fires, and unburned). By exploring the effects of wildfire on plant traits, fruit nutrition, colonization of mycorrhizal fungi and its influencing mechanism. The results show that natural succession after wildfires significantly changed the community composition of bacteria and fungi, with β diversity having a greater impact but less impact on the α diversity of microorganisms. Wildfires significantly changed plant traits and fruit nutrient content. The changes in colonization rate and customization intensity of mycorrhizal fungi were caused by increased MDA content and soluble sugar content and increased MADS-box gene and DREB1 gene expression in lingonberry (Vaccinium vitis-idaea L.). Our results showed that the soil bacterial and fungal communities in the boreal forest ecosystem changed significantly during wildfire recovery and changed the colonization rate of lingonberry mycorrhizal fungi. This study provides a theoretical basis for the restoration of forest ecosystems after wildfires.
Collapse
Affiliation(s)
- Hu Lou
- College of Life Science, Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China; School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Huiying Cai
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Rao Fu
- College of Life Science, Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Chao Guo
- College of Life Science, Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Baozhen Fan
- College of Life Science, Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Haiqing Hu
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Jie Zhang
- College of Life Science, Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Long Sun
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
20
|
Jílková V, Adámek M, Angst G, Tůmová M, Devetter M. Post-fire forest floor succession in a Central European temperate forest depends on organic matter input from recovering vegetation rather than on pyrogenic carbon input from fire. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160659. [PMID: 36473654 DOI: 10.1016/j.scitotenv.2022.160659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The predicted global increase in the frequency, severity, and intensity of forest fires includes Central Europe, which is not currently considered as a wildfire hotspot. Because of this, a detailed knowledge of long-term post-fire forest floor succession is essential for understanding the role of wildfires in Central European temperate forests. In this study, we used a space-for-time substitution approach and exploited a unique opportunity to observe successional changes in the physical, chemical, and microbial properties of the forest floor in coniferous forest stands on a chronosequence up to 110 years after fire. In addition, we assessed whether the depletion of organic matter (OM) and input of pyrogenic carbon (pyC) have significant effects on the post-fire forest floor succession. The bulk density (+174 %), pH (+4 %), and dissolved phosphorus content (+500 %) increased, whereas the water holding capacity (-51 %), content of total organic carbon and total nitrogen (-50 %), total phosphorus (-40 %), dissolved organic carbon (-23 %), microbial respiration and biomass (-60 %), and the abundance of fungi (-65 %) and bacteria (-45 %) decreased shortly after the fire event and then gradually decreased or increased, respectively, relative to the pre-disturbance state. The post-fire forest floor succession was largely dependent on changes in the OM content rather than the pyC content, and thus was dependent on vegetation recovery. The time needed to recover to the pre-disturbance state was <110 years for physical and chemical properties and < 45 years for microbial properties. These times closely correspond to previous studies focusing on the recovery of forest floor properties in different climate zones, suggesting that the times needed for forest vegetation and forest floor properties to recover to the pre-disturbance state are similar across climate zones.
Collapse
Affiliation(s)
- Veronika Jílková
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and SoWa RI, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic.
| | - Martin Adámek
- Charles University, Faculty of Science, Department of Botany, Benátská 2, Praha 2 CZ-12801, Czech Republic
| | - Gerrit Angst
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and SoWa RI, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstaße 4, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Michala Tůmová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and SoWa RI, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and SoWa RI, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic
| |
Collapse
|
21
|
Ghosh A, Singh AK, Das B, Modak K, Kumar RV, Kumar S, Gautam K, Biswas DR, Roy AK. Resiliencies of soil phosphorus fractions after natural summer fire are governed by microbial activity and cation availability in a semi-arid Inceptisol. ENVIRONMENTAL RESEARCH 2023; 216:114583. [PMID: 36265602 DOI: 10.1016/j.envres.2022.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The unintended impact of natural summer fire on soil is complicated and rather less studied than its above-ground impact. Recognising the impact of a fire on silvopastoral soils and their resilience can aid in improving the management of silvopastoral systems. We studied the immediate (after 1 week (W)) and short-term (after 3 months (M)) recovery of different soil biological and chemical properties after the natural fire, with specific emphasis on phosphorus (P) dynamics. Soil samples were collected from four different layers (0-15, 15-30, 30-45, and 45-60 cm) of Morus alba, Leucaena leucocephala, and Ficus infectoria based silvopastoral systems. In the 0-15 cm soil layer, soil organic carbon (SOC) declined by ∼37, 42, and 30% after the fire in Morus-, Leucaena-, and Ficus-based systems, respectively within 1W of fire. However, after 3M of fire, Morus and Leucaena regained ∼6 and 11.5% SOC as compared to their status after 1W in the 0-15 cm soil layer. After 1W of the fire, soil nitrogen (N), sulfur (S), and potassium availability declined significantly at 0-15 cm soil layer in all systems. Iron and manganese availability improved significantly after 1W of the fire. Saloid bound P and aluminium bound P declined significantly immediately after the fire, increasing availability in all systems. However, calcium bound P did not change significantly after the fire. Dehydrogenase and alkaline phosphatase activity declined significantly after the fire, however, phenol oxidase and peroxidase activity were unaltered. Resiliencies of these soil properties were significantly impacted by soil depth and time. Path analysis indicated microbial activity and cationic micronutrients majorly governed the resilience of soil P fractions and P availability. Pasture yield was not significantly improved after the fire, so natural summer fire must be prevented to avoid loss of SOC, N, and S.
Collapse
Affiliation(s)
- Avijit Ghosh
- ICAR-IGFRI, Jhansi, 284003, India; ICAR-IARI, New Delhi, 110012, India.
| | | | | | | | | | | | | | | | - A K Roy
- ICAR-IGFRI, Jhansi, 284003, India
| |
Collapse
|
22
|
Holloway JC, Stephen Brewer J. Growth and tissue nutrient responses of adults of Sarracenia alata to prey exclusion, nutrient addition, and neighbor reduction. AMERICAN JOURNAL OF BOTANY 2022; 109:2006-2017. [PMID: 36468545 DOI: 10.1002/ajb2.16107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
PREMISE Carnivorous plants are often associated with nutrient-poor soils and fires. Fire can decrease available soil nitrogen (N) and increase light availability, thus potentially favoring carnivory if prey provide N. Prey can also be a source of phosphorus (P), however, and soil P-availability often increases and competition for prey can decrease following fire. Carnivory thus might be more advantageous before fire when prey and/or soil P are more limiting. METHODS We examined nutrient limitation of growth in a carnivorous plant, Sarracenia alata, in a wet pine savanna in southeastern Mississippi, USA. We measured growth and N:P tissue concentration responses of adult plants to a factorial arrangement of prey capture, neighbor reduction, and addition of N, P, and ash to the soil. We tested two hypotheses: (1) Prey provide N, and neighbor reduction and ash addition increase light and soil P and thus the benefit of carnivory; and (2) Prey provide P, neighbor reduction increases prey and/or P, and prey exclusion reduces growth the most when neighbors are not reduced. RESULTS The exclusion of prey reduced growth more when neighbors were not reduced, an effect that was ameliorated slightly by the addition of P to the soil (the P-limitation hypothesis). Prey exclusion caused a decrease in tissue P when N was added to the soil. CONCLUSIONS The results of this study with adult plants differed from those of a previous study using small juvenile plants, suggesting a shift from light limitation to P and prey limitation with increasing size.
Collapse
Affiliation(s)
- Jalen C Holloway
- Department of Biology, University of Mississippi, University, Mississippi, 38677-1848, USA
| | - J Stephen Brewer
- Department of Biology, University of Mississippi, University, Mississippi, 38677-1848, USA
| |
Collapse
|
23
|
Nocentini A, Kominoski JS, O'Brien JJ, Redwine J. Fire intensity and ecosystem oligotrophic status drive relative phosphorus release and retention in freshwater marshes. Ecosphere 2022. [DOI: 10.1002/ecs2.4263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Andrea Nocentini
- Institute of Environment and Department of Biological Sciences Florida International University Miami Florida USA
- South Florida Natural Resources Center Everglades National Park Homestead Florida USA
| | - John S. Kominoski
- Institute of Environment and Department of Biological Sciences Florida International University Miami Florida USA
| | - Joseph J. O'Brien
- U.S. Department of Agriculture U.S. Forest Service Athens Georgia USA
| | - Jed Redwine
- South Florida Natural Resources Center Everglades National Park Homestead Florida USA
| |
Collapse
|
24
|
Mora JL, Badía-Villas D, Gómez D. Fire does not transform shrublands of Echinospartum horridum (Vahl) Rothm. into grasslands in the Pyrenees: Development of community structure and nutritive value after single prescribed burns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115125. [PMID: 35487163 DOI: 10.1016/j.jenvman.2022.115125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Prescribed fire has been extensively used in recent years to control woody encroachment into mountain and other grassland-dominated landscapes. In the Aragon Pyrenees, prescribed burns have been mainly used to remove the native thorny shrub Echinospartum horridum (Vahl) Rothm., whose populations are spreading to the detriment of grasslands. To study the effectiveness of the burning of E. horridum to preserve grasslands for livestock grazing, the vegetation of six sites burned 0.5, 2, 3, 6, 15 and 35 years ago was sampled and compared with that of nearby unburned shrubland (control) and grassland (reference). In addition, the nutritional quality of E. horridum was examined and compared to that of the reference grassland to evaluate to what extent shrub growth can be controlled by herbivores after burning. Initial shrub cover recovered as early as 15 years after fire, with E. horridum being dominant. Plant diversity was greatest at intermediate number of years after fire. Initial floristic composition and life-form spectrum were restored 15-35 years after burning. Echinospartum horridum exhibited early lignification that restricts its availability as a palatable forage for the first two years after burning and makes it unlikely to be consumed thereafter, highlighting the difficulty in controlling the expansion of this species by livestock herbivory. The analysis of the nutrient levels suggested an increased shortage of limiting elements, such as phosphorus or sulfur, in the mid-term after burning due to substantial nutrient losses and exports during and after the burn. Our results question the suitability and sustainability of a single prescribed burn as management tool alone to control the expansion of E. horridum and call for caution in its application for fighting shrub encroachment in the Central Pyrenees.
Collapse
Affiliation(s)
- Juan Luis Mora
- Grupo GEOFOREST - Instituto de Investigación en Ciencias Ambientales (IUCA), Departamento de Ciencias Agrarias y del Medio Natural, Facultad de Veterinaria, Universidad de Zaragoza, C/. Miguel Servet 177, 50013, Zaragoza, Spain.
| | - David Badía-Villas
- Grupo GEOFOREST - Instituto de Investigación en Ciencias Ambientales (IUCA), Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte s/n, 22071, Huesca, Spain
| | - Daniel Gómez
- Instituto Pirenaico de Ecología (CSIC), Av. Ntra. Sra. de la Victoria, s/n, 22700, Jaca, Huesca, Spain
| |
Collapse
|
25
|
Zhou Y, Biro A, Wong MY, Batterman SA, Staver AC. Fire decreases soil enzyme activities and reorganizes microbially-mediated nutrient cycles: A meta-analysis. Ecology 2022; 103:e3807. [PMID: 35811475 DOI: 10.1002/ecy.3807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/29/2022] [Accepted: 05/31/2022] [Indexed: 11/07/2022]
Abstract
The biogeochemical signature of fire shapes the functioning of many ecosystems. Fire changes nutrient cycles not only by volatilizing plant material, but also by altering organic matter decomposition-a process regulated by soil extracellular enzyme activities (EEAs). However, our understanding of fire effects on EEAs and their feedbacks to nutrient cycles is incomplete. We conducted a meta-analysis with 301 field studies and found that fire significantly decreased EEAs by ~20-40%. Fire decreased EEAs by reducing soil microbial biomass and organic matter substrates. Soil nitrogen-acquiring EEA declined alongside decreasing available nitrogen, likely from fire-driven volatilization of nitrogen and decreased microbial activity. Fire decreased soil phosphorus-acquiring EEA but increased available phosphorus, likely from pyro-mineralization of organic phosphorus. These findings suggest that fire suppresses soil microbes and consumes their substrates, thereby slowing microbially-mediated nutrient cycles (especially phosphorus) via decreased EEAs. These changes can become increasingly important as fire frequency and severity in many ecosystems continue to shift in response to global change.
Collapse
Affiliation(s)
- Yong Zhou
- Yale Institute for Biospheric Studies, Yale University, New Haven, CT, USA.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Arielle Biro
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - Sarah A Batterman
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA.,School of Geography and Priestley International Centre for Climate, University of Leeds, Leeds, United Kingdom
| | - A Carla Staver
- Yale Institute for Biospheric Studies, Yale University, New Haven, CT, USA.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
26
|
Substantial Organic and Particulate Nitrogen and Phosphorus Export from Geomorphologically Stable African Tropical Forest Landscapes. Ecosystems 2022. [DOI: 10.1007/s10021-022-00773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Muster C, Leiva D, Morales C, Grafe M, Schloter M, Carú M, Orlando J. Peltigera frigida Lichens and Their Substrates Reduce the Influence of Forest Cover Change on Phosphate Solubilizing Bacteria. Front Microbiol 2022; 13:843490. [PMID: 35836424 PMCID: PMC9275751 DOI: 10.3389/fmicb.2022.843490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphorus (P) is one of the most critical macronutrients in forest ecosystems. More than 70 years ago, some Chilean Patagonian temperate forests suffered wildfires and the subsequent afforestation with foreign tree species such as pines. Since soil P turnover is interlinked with the tree cover, this could influence soil P content and bioavailability. Next to soil microorganisms, which are key players in P transformation processes, a vital component of Patagonian temperate forest are lichens, which represent microbial hotspots for bacterial diversity. In the present study, we explored the impact of forest cover on the abundance of phosphate solubilizing bacteria (PSB) from three microenvironments of the forest floor: Peltigera frigida lichen thallus, their underlying substrates, and the forest soil without lichen cover. We expected that the abundance of PSB in the forest soil would be strongly affected by the tree cover composition since the aboveground vegetation influences the edaphic properties; but, as P. frigida has a specific bacterial community, lichens would mitigate this impact. Our study includes five sites representing a gradient in tree cover types, from a mature forest dominated by the native species Nothofagus pumilio, to native second-growth forests with a gradual increase in the presence of Pinus contorta in the last sites. In each site, we measured edaphic parameters, P fractions, and the bacterial potential to solubilize phosphate by quantifying five specific marker genes by qPCR. The results show higher soluble P, labile mineral P, and organic matter in the soils of the sites with a higher abundance of P. contorta, while most of the molecular markers were less abundant in the soils of these sites. Contrarily, the abundance of the molecular markers in lichens and substrates was less affected by the tree cover type. Therefore, the bacterial potential to solubilize phosphate is more affected by the edaphic factors and tree cover type in soils than in substrates and thalli of P. frigida lichens. Altogether, these results indicate that the microenvironments of lichens and their substrates could act as an environmental buffer reducing the influence of forest cover composition on bacteria involved in P turnover.
Collapse
Affiliation(s)
- Cecilia Muster
- Laboratory of Microbial Ecology, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Leiva
- Institute of Biology, University of Graz, Graz, Austria
| | - Camila Morales
- Laboratory of Microbial Ecology, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Martin Grafe
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Margarita Carú
- Laboratory of Microbial Ecology, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Julieta Orlando
- Laboratory of Microbial Ecology, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- *Correspondence: Julieta Orlando,
| |
Collapse
|
28
|
Song Z, Wang X, Liu Y, Luo Y, Li Z. Allocation Strategies of Carbon, Nitrogen, and Phosphorus at Species and Community Levels With Recovery After Wildfire. FRONTIERS IN PLANT SCIENCE 2022; 13:850353. [PMID: 35481138 PMCID: PMC9037545 DOI: 10.3389/fpls.2022.850353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Plant stoichiometry and nutrient allocation can reflect a plant's adaptation to environmental nutrient changes. However, the allocation strategies of carbon (C), nitrogen (N), and phosphorus (P) between leaf and fine root in response to wildfire have been poorly studied. Our primary objective was to elucidate the trade-off of elemental allocation between above- and belowground parts in response to the soil nutrient changes after a wildfire. We explored the allocation sloping exponents of C, N, and P between leaf and fine root at the species and community levels at four recovery periods (year 2, 10, 20, and 30) after moderately severe wildfire and one unburned treatment in boreal forests in Great Xing'an Mountains, northeast China. Compared with the unburned treatment, leaf C concentration decreased and fine root C increased at year 2 after recovery. The leaf N concentration at year 10 after recovery was higher than that of unburned treatment. Plant growth tended to be limited by P concentration at year 10 after recovery. Nutrient allocation between leaf and fine root differed between species and community levels, especially in the early recovery periods (i.e., 2 and 10 years). At the community level, the nutrient concentrations of the leaf changed more as compared to that of the fine root at year 2 after recovery when the fine root nutrients changed more than those of the leaf. The different C, N, and P allocation strategies advanced the understanding of plant adaptation to soil nutrient changes during the postfire ecosystem restoration.
Collapse
Affiliation(s)
- Zhaopeng Song
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- College of Urban and Environmental Sciences, and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Xuemei Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yanhong Liu
- College of Urban and Environmental Sciences, and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Zhaolei Li
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
29
|
Su WQ, Tang C, Lin J, Yu M, Dai Z, Luo Y, Li Y, Xu J. Recovery patterns of soil bacterial and fungal communities in Chinese boreal forests along a fire chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150372. [PMID: 34818758 DOI: 10.1016/j.scitotenv.2021.150372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 05/17/2023]
Abstract
Wildfire has profound and pervasive consequences for forest ecosystems via directly altering soil physicochemical properties and modulating microbial community. In this study, we examined the changes in soil properties and microbial community composition and structure at different periods after highly severe wildfire events (44 plots, 113 samples) in the Chinese Great Khingan Mountains. We also separated charcoal from burnt soils to establish the relationship between microbial community structures in soils and charcoal. We found that wildfire only significantly altered bacterial and fungal β-diversity, but had no effect on microbial α-diversity across a 29-year chronosequence. The network analysis revealed that the complexity and connectivity of bacterial and fungal communities were significantly increased from 17 years after fire, compared with either unburnt soils or soils with recent fires (0-4 years after fire). Differential abundance analysis suggested that bacterial and fungal OTUs were enriched or depleted only during 0-4 years after fire compared with the unburnt soils. In addition, soil pH, dissolved organic C and dissolved organic N were key determinants of soil bacterial and fungal communities during 17-29 years after fire. The fire-derived charcoal provided a new niche for microbial colonization, and microbes colonized in the charcoal had a significantly different community structure from those of burnt soils. Our data suggest that soil bacterial and fungal communities changed significantly during the recovery from fire events in terms of the abundance and co-occurrence networks in the boreal forest ecosystems.
Collapse
Affiliation(s)
- Wei-Qin Su
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia
| | - Jiahui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Mengjie Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhongmin Dai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yu Luo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yong Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Shao X, Hao W, Konhauser KO, Gao Y, Tang L, Su M, Li Z. The dissolution of fluorapatite by phosphate-solubilizing fungi: a balance between enhanced phosphorous supply and fluorine toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:69393-69400. [PMID: 34302245 DOI: 10.1007/s11356-021-15551-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Fluorapatite (FAp) is the largest phosphorous (P) reservoir on Earth. However, due to its low solubility, dissolved P is severely deficient in the pedosphere. Fungi play a significant role in P dissolution via excretion of organic acids, and in this regard, it is important to understand their impact on P cycling. The object of this study was to elucidate the balance between P release and F toxicity during FAp dissolution. The bioweathering of FAp was assisted by a typical phosphate-solubilizing fungus, Aspergillus niger. The release of elements and microbial activities were monitored during 5-day incubation. We found that the release of fluorine (F) was activated after day 1 (~90 mg/L), which significantly lowered the phosphate-solubilizing process by day 2. Despite P release from FAp being enhanced over the following 3 days, decreases in both the amount of biomass (52% decline) and the respiration rate (81% decline) suggest the strong inhibitory effect of F on the fungus. We thus concluded that F toxicity outweighs P supply, which in turn inhibits fungi growth and prevents further dissolution of FAp. This mechanism might reflect an underappreciated cause for P deficiency in soils.
Collapse
Affiliation(s)
- Xiaoqing Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Weiduo Hao
- Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Kurt O Konhauser
- Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Yanan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Jiangsu Key Laboratory for Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
31
|
Li J, Pei J, Liu J, Wu J, Li B, Fang C, Nie M. Spatiotemporal variability of fire effects on soil carbon and nitrogen: A global meta-analysis. GLOBAL CHANGE BIOLOGY 2021; 27:4196-4206. [PMID: 34101948 DOI: 10.1111/gcb.15742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
A consensus about the fire-related soil carbon (C) and nitrogen (N) impacts that determine soil health and ecosystem services at the global scale remains elusive. Here, we conducted a global meta-analysis of 3173 observations with 1444, 1334, 228, and 167 observations for soil C, N, pyrogenic C (PyC), and the percent of PyC to total organic C (PyC/TOC) from 296 field studies. Results showed that fire significantly decreased soil C (-15.2%) and N (-14.6%) but increased soil PyC (40.6%) and PyC/TOC (30.3%). Stronger negative fire impacts on soil C and N were found in tropical and temperate climates than in Mediterranean and subtropical climates; stronger effects were found in forest ecosystems than in non-forest ecosystems. Wildfire and high-severity fire led to greater soil C and N losses than prescribed and low-severity fires, respectively, while they promoted greater increases in soil PyC and PyC/TOC than prescribed and low-severity fires, respectively. However, soil C and N recovered to control levels approximately 10 years after fire, which is a shorter period than previously determined. These results suggest that fire-induced PyC production should be accounted for in the C budget under global change. These results will improve our knowledge of the spatiotemporal variability of fire effects on soil C and N storage and have implications for fire management and ecosystem recovery.
Collapse
Affiliation(s)
- Jinquan Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Junmin Pei
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajia Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jihua Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
- Tibet University - Fudan University Joint Laboratory for Biodiversity and Global Change, Research Center for Ecology, College of Science, Tibet University, Lhasa, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Changming Fang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Butler OM, Lewis T, Maunsell SC, Rezaei Rashti M, Elser JJ, Mackey B, Chen C. The stoichiometric signature of high‐frequency fire in forest floor food webs. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Orpheus M. Butler
- Australian Rivers Institute and Griffith School of Environment and Science Griffith University Nathan Queensland Australia
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
| | - Tom Lewis
- Department of Agriculture and Fisheries Agri‐Science Queensland University of the Sunshine Coast Maroochydore DC Queensland Australia
| | - Sarah C. Maunsell
- Department of Organismic and Evolutionary Biology Harvard University Boston Massachusetts USA
| | - Mehran Rezaei Rashti
- Australian Rivers Institute and Griffith School of Environment and Science Griffith University Nathan Queensland Australia
| | - James J. Elser
- Flathead Lake Biological Station University of Montana Polson Montana USA
| | - Brendan Mackey
- Griffith Climate Change Response Program Griffith University Gold Coast City Queensland Australia
| | - Chengrong Chen
- Australian Rivers Institute and Griffith School of Environment and Science Griffith University Nathan Queensland Australia
| |
Collapse
|
33
|
Fire Severity and Post-fire Hydrology Drive Nutrient Cycling and Plant Community Recovery in Intermittent Wetlands. Ecosystems 2021. [DOI: 10.1007/s10021-021-00653-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Soil phosphorus variation regulated by changes in land use spatial patterns during urbanization in western Chengdu, China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Wapongnungsang, Ovung E, Upadhyay KK, Tripathi SK. Soil fertility and rice productivity in shifting cultivation: impact of fallow lengths and soil amendments in Lengpui, Mizoram northeast India. Heliyon 2021; 7:e06834. [PMID: 33981893 PMCID: PMC8082545 DOI: 10.1016/j.heliyon.2021.e06834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/17/2020] [Accepted: 04/14/2021] [Indexed: 12/02/2022] Open
Abstract
An exponential increase in the human population has drastically reduced the length of fallow period (<5 years) in widely spread shifting cultivation (Jhum). This has increased the invasion of weeds and decreased soil fertility and crop productivity, and consequently raised concern of food security for the local farming communities. The present study was conducted in two jhum fallows (FL-10 and FL-15) to understand the response of fallow length and applications of indigenous soil microbes and rock phosphate on the levels of soil fertility and crop productivity. The results showed greater soil physicochemical properties in FL-15 compared to FL-10. Burning significantly increased the levels of soil pH, avail P, avail N in the soil, whereas, the same decreased the levels of soil C, MBC and SM in both the sites. Among treatments, the synergistic effect of rock phosphate and microbial inocula showed greater improvement in soil biochemical properties, and showed a climactic increase over control in crop productivity and rice yield in all sites. Maximum rice grain yield and productivity was recorded in FL-15 followed by FL-10. This study concludes that a mixture of rock phosphate and microbial inocula from the rhizosphere soil of early regenerating plant is effective in increasing soil fertility and crop productivity, and can be used as an important tool to sustain crop productivity and food security in the region.
Collapse
Affiliation(s)
- Wapongnungsang
- Department of Forestry, Mizoram University, Aizawl, 796004, India
| | | | | | - S K Tripathi
- Department of Forestry, Mizoram University, Aizawl, 796004, India
| |
Collapse
|
36
|
Pellegrini AFA, Refsland T, Averill C, Terrer C, Staver AC, Brockway DG, Caprio A, Clatterbuck W, Coetsee C, Haywood JD, Hobbie SE, Hoffmann WA, Kush J, Lewis T, Moser WK, Overby ST, Patterson WA, Peay KG, Reich PB, Ryan C, Sayer MAS, Scharenbroch BC, Schoennagel T, Smith GR, Stephan K, Swanston C, Turner MG, Varner JM, Jackson RB. Decadal changes in fire frequencies shift tree communities and functional traits. Nat Ecol Evol 2021; 5:504-512. [PMID: 33633371 DOI: 10.1038/s41559-021-01401-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/25/2021] [Indexed: 11/10/2022]
Abstract
Global change has resulted in chronic shifts in fire regimes. Variability in the sensitivity of tree communities to multi-decadal changes in fire regimes is critical to anticipating shifts in ecosystem structure and function, yet remains poorly understood. Here, we address the overall effects of fire on tree communities and the factors controlling their sensitivity in 29 sites that experienced multi-decadal alterations in fire frequencies in savanna and forest ecosystems across tropical and temperate regions. Fire had a strong overall effect on tree communities, with an average fire frequency (one fire every three years) reducing stem density by 48% and basal area by 53% after 50 years, relative to unburned plots. The largest changes occurred in savanna ecosystems and in sites with strong wet seasons or strong dry seasons, pointing to fire characteristics and species composition as important. Analyses of functional traits highlighted the impact of fire-driven changes in soil nutrients because frequent burning favoured trees with low biomass nitrogen and phosphorus content, and with more efficient nitrogen acquisition through ectomycorrhizal symbioses. Taken together, the response of trees to altered fire frequencies depends both on climatic and vegetation determinants of fire behaviour and tree growth, and the coupling between fire-driven nutrient losses and plant traits.
Collapse
Affiliation(s)
- Adam F A Pellegrini
- Department of Earth System Science, Stanford University, Stanford, CA, USA. .,Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| | - Tyler Refsland
- Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, USA
| | - Colin Averill
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - César Terrer
- Department of Earth System Science, Stanford University, Stanford, CA, USA.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - A Carla Staver
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Dale G Brockway
- Southern Research Station, USDA Forest Service, Auburn, AL, USA
| | - Anthony Caprio
- National Parks Service, Sequoia & Kings Canyon National Parks, Three Rivers, CA, USA
| | - Wayne Clatterbuck
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, TN, USA
| | - Corli Coetsee
- Scientific Services, South African National Parks, Kruger National Park, Skukuza, South Africa.,School of Natural Resource Management, Nelson Mandela University, Port Elizabeth, South Africa
| | - James D Haywood
- Southern Research Station, USDA Forest Service, Pineville, LA, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - William A Hoffmann
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - John Kush
- School of Forestry & Wildlife Sciences, Auburn University, Auburn, AL, USA
| | - Tom Lewis
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, Queensland, Australia
| | - W Keith Moser
- Rocky Mountain Research Station, USDA Forest Service, Flagstaff, AZ, USA
| | - Steven T Overby
- Rocky Mountain Research Station, USDA Forest Service, Flagstaff, AZ, USA
| | - William A Patterson
- Forestry Program, Holdsworth Natural Resources Center, University of Massachusetts, Amherst, MA, USA
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Casey Ryan
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | | | - Bryant C Scharenbroch
- College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, WI, USA
| | - Tania Schoennagel
- Department of Geography, University of Colorado-Boulder, Boulder, CO, USA
| | - Gabriel Reuben Smith
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Kirsten Stephan
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | - Chris Swanston
- Northern Research Station, USDA Forest Service, Houghton, MI, USA
| | - Monica G Turner
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | | | - Robert B Jackson
- Department of Earth System Science, Stanford University, Stanford, CA, USA.,Woods Institute for the Environment, Stanford University, Stanford, CA, USA.,Precourt Institute for Energy, Stanford University, Stanford, CA, USA
| |
Collapse
|
37
|
Nocentini A, Kominoski JS, Sah J. Interactive effects of hydrology and fire drive differential biogeochemical legacies in subtropical wetlands. Ecosphere 2021. [DOI: 10.1002/ecs2.3408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Andrea Nocentini
- Department of Biological Sciences Florida International University Miami Florida33199USA
- Institute of Environment Florida International University Miami Florida33199USA
| | - John S. Kominoski
- Department of Biological Sciences Florida International University Miami Florida33199USA
- Institute of Environment Florida International University Miami Florida33199USA
| | - Jay Sah
- Institute of Environment Florida International University Miami Florida33199USA
| |
Collapse
|
38
|
Hopkins JR, Semenova-Nelsen T, Sikes BA. Fungal community structure and seasonal trajectories respond similarly to fire across pyrophilic ecosystems. FEMS Microbiol Ecol 2020; 97:5956485. [PMID: 33150937 DOI: 10.1093/femsec/fiaa219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
Fire alters microbial community composition, and is expected to increase in frequency due to climate change. Testing whether microbes in different ecosystems will respond similarly to increased fire disturbance is difficult though, because fires are often unpredictable and hard to manage. Fire recurrent or pyrophilic ecosystems, however, may be useful models for testing the effects of frequent disturbance on microbes. We hypothesized that across pyrophilic ecosystems, fire would drive similar alterations to fungal communities, including altering seasonal community dynamics. We tested fire's effects on fungal communities in two pyrophilic ecosystems, a longleaf pine savanna and tallgrass prairie. Fire caused similar fungal community shifts, including (i) driving immediate changes that favored taxa able to survive fire and take advantage of post-fire environments and (ii) altering seasonal trajectories due to fire-associated changes to soil nutrient availability. This suggests that fire has predictable effects on fungal community structure and intra-annual community dynamics in pyrophilic ecosystems, and that these changes could significantly alter fungal function. Parallel fire responses in these key microbes may also suggest that recurrent fires drive convergent changes across ecosystems, including less fire-frequented systems that may start burning more often due to climate change.
Collapse
Affiliation(s)
- Jacob R Hopkins
- University of Kansas, Ecology & Evolutionary Biology, 1200 Sunnyside Avenue, 2041 Haworth Hall, Lawrence, KS 66045, USA.,University of Kansas, Kansas Biological Survey, 2101 Constant Avenue, Takeru Higuchi Hall, Lawrence, KS 66047, USA
| | - Tatiana Semenova-Nelsen
- University of Kansas, Kansas Biological Survey, 2101 Constant Avenue, Takeru Higuchi Hall, Lawrence, KS 66047, USA
| | - Benjamin A Sikes
- University of Kansas, Ecology & Evolutionary Biology, 1200 Sunnyside Avenue, 2041 Haworth Hall, Lawrence, KS 66045, USA.,University of Kansas, Kansas Biological Survey, 2101 Constant Avenue, Takeru Higuchi Hall, Lawrence, KS 66047, USA
| |
Collapse
|
39
|
Dai Z, Yu M, Chen H, Zhao H, Huang Y, Su W, Xia F, Chang SX, Brookes PC, Dahlgren RA, Xu J. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. GLOBAL CHANGE BIOLOGY 2020; 26:5267-5276. [PMID: 32614503 DOI: 10.1111/gcb.15211] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 05/07/2023]
Abstract
We assessed the response of soil microbial nitrogen (N) cycling and associated functional genes to elevated temperature at the global scale. A meta-analysis of 1,270 observations from 134 publications indicated that elevated temperature decreased soil microbial biomass N and increased N mineralization rates, both in the presence and absence of plants. These findings infer that elevated temperature drives microbially mediated N cycling processes from dominance by anabolic to catabolic reaction processes. Elevated temperature increased soil nitrification and denitrification rates, leading to an increase in N2 O emissions of up to 227%, whether plants were present or not. Rates of N mineralization, denitrification and N2 O emission demonstrated significant positive relationships with rates of CO2 emissions under elevated temperatures, suggesting that microbial N cycling processes were associated with enhanced microbial carbon (C) metabolism due to soil warming. The response in the abundance of relevant genes to elevated temperature was not always consistent with changes in N cycling processes. While elevated temperature increased the abundances of the nirS gene with plants and nosZ genes without plants, there was no effect on the abundances of the ammonia-oxidizing archaea amoA gene, ammonia-oxidizing bacteria amoA and nirK genes. This study provides the first global-scale assessment demonstrating that elevated temperature shifts N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification in terrestrial ecosystems. These findings infer that elevated temperatures have a profound impact on global N cycling processes with implications of a positive feedback to global climate and emphasize the close linkage between soil microbial C and N cycling.
Collapse
Affiliation(s)
- Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| | - Mengjie Yu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Huaihai Chen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Yanlan Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Weiqin Su
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Fang Xia
- Southern Zhejiang Water Research Institute, Key Laboratory of Watershed Environmental Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Hopkins JR, Huffman JM, Platt WJ, Sikes BA. Frequent fire slows microbial decomposition of newly deposited fine fuels in a pyrophilic ecosystem. Oecologia 2020; 193:631-643. [PMID: 32699992 DOI: 10.1007/s00442-020-04699-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/25/2020] [Indexed: 11/25/2022]
Abstract
Frequent fires maintain nearly 50% of terrestrial ecosystems, and drive ecosystem changes that govern future fires. Since fires are dependent on available plant or fine fuels, ecosystem processes that alter fine fuel loads like microbial decomposition are particularly important and could modify future fires. We hypothesized that variation in short-term fire history would influence fuel dynamics in such ecosystems. We predicted that frequent fires within a short-time period would slow microbial decomposition of new fine fuels. We expected that fire effects would differ based on dominant substrates and that fire history would also alter soil nutrient availability, indirectly slowing decomposition. We measured decomposition of newly deposited fine fuels in a Longleaf pine savanna, comparing plots that burned 0, 1, 2, or 3 times between 2014 and 2016, and which were located in either close proximity to or away from overstory pines (Longleaf pine, Pinus palustris). Microbial decomposition was slower in plots near longleaf pines and, as the numbers of fires increased, decomposition slowed. We then used structural equation modeling to assess pathways for these effects (number of fires, 2016 fuel/fire characteristics, and soil chemistry). Increased fire frequency was directly associated with decreased microbial decomposition. While increased fires decreased nutrient availability, changes in nutrients were not associated with decomposition. Our findings indicate that increasing numbers of fires over short-time intervals can slow microbial decomposition of newly deposited fine fuels. This could favor fine fuel accumulation and drive positive feedbacks on future fires.
Collapse
Affiliation(s)
- Jacob R Hopkins
- Ecology and Evolutionary Biology, University of Kansas, 2101 Constant Avenue Takeru Higuchi Hall, Lawrence, KS, 66047, USA.
| | - Jean M Huffman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, USA
| | - William J Platt
- Department of Biological Sciences, Louisiana State University, Baton Rouge, USA
| | | |
Collapse
|
41
|
Dove NC, Safford HD, Bohlman GN, Estes BL, Hart SC. High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02072. [PMID: 31925848 DOI: 10.1002/eap.2072] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/09/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
During the past century, systematic wildfire suppression has decreased fire frequency and increased fire severity in the western United States of America. While this has resulted in large ecological changes aboveground such as altered tree species composition and increased forest density, little is known about the long-term, belowground implications of altered, ecologically novel, fire regimes, especially on soil biological processes. To better understand the long-term implications of ecologically novel, high-severity fire, we used a 44-yr high-severity fire chronosequence in the Sierra Nevada where forests were historically adapted to frequent, low-severity fire, but were fire suppressed for at least 70 yr. High-severity fire in the Sierra Nevada resulted in a long-term (44 +yr) decrease (>50%, P < 0.05) in soil extracellular enzyme activities, basal microbial respiration (56-72%, P < 0.05), and organic carbon (>50%, P < 0.05) in the upper 5 cm compared to sites that had not been burned for at least 115 yr. However, nitrogen (N) processes were only affected in the most recent fire site (4 yr post-fire). Net nitrification increased by over 600% in the most recent fire site (P < 0.001), but returned to similar levels as the unburned control in the 13-yr site. Contrary to previous studies, we did not find a consistent effect of plant cover type on soil biogeochemical processes in mid-successional (10-50 yr) forest soils. Rather, the 44-yr reduction in soil organic carbon (C) quantity correlated positively with dampened C cycling processes. Our results show the drastic and long-term implication of ecologically novel, high-severity fire on soil biogeochemistry and underscore the need for long-term fire ecological experiments.
Collapse
Affiliation(s)
- Nicholas C Dove
- Environmental Systems Graduate Group, University of California, Merced, California, 95343, USA
| | - Hugh D Safford
- Department of Evolution and Ecology, University of California, Davis, California, 95616, USA
- USDA-Forest Service, Pacific Southwest Region, Vallejo, California, 94592, USA
| | | | - Becky L Estes
- USDA-Forest Service, Pacific Southwest Research Station, Redding, California, 96002, USA
| | - Stephen C Hart
- Department of Life & Environmental Sciences and Sierra Nevada Research Institute, University of California, Merced, California, 95343, USA
| |
Collapse
|
42
|
Li L, Zheng Z, Wang W, Biederman JA, Xu X, Ran Q, Qian R, Xu C, Zhang B, Wang F, Zhou S, Cui L, Che R, Hao Y, Cui X, Xu Z, Wang Y. Terrestrial N 2 O emissions and related functional genes under climate change: A global meta-analysis. GLOBAL CHANGE BIOLOGY 2020; 26:931-943. [PMID: 31554024 DOI: 10.1111/gcb.14847] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 05/18/2023]
Abstract
Nitrous oxide (N2 O) emissions from soil contribute to global warming and are in turn substantially affected by climate change. However, climate change impacts on N2 O production across terrestrial ecosystems remain poorly understood. Here, we synthesized 46 published studies of N2 O fluxes and relevant soil functional genes (SFGs, that is, archaeal amoA, bacterial amoA, nosZ, narG, nirK and nirS) to assess their responses to increased temperature, increased or decreased precipitation amounts, and prolonged drought (no change in total precipitation but increase in precipitation intervals) in terrestrial ecosystem (i.e. grasslands, forests, shrublands, tundra and croplands). Across the data set, temperature increased N2 O emissions by 33%. However, the effects were highly variable across biomes, with strongest temperature responses in shrublands, variable responses in forests and negative responses in tundra. The warming methods employed also influenced the effects of temperature on N2 O emissions (most effectively induced by open-top chambers). Whole-day or whole-year warming treatment significantly enhanced N2 O emissions, but daytime, nighttime or short-season warming did not have significant effects. Regardless of biome, treatment method and season, increased precipitation promoted N2 O emission by an average of 55%, while decreased precipitation suppressed N2 O emission by 31%, predominantly driven by changes in soil moisture. The effect size of precipitation changes on nirS and nosZ showed a U-shape relationship with soil moisture; further insight into biotic mechanisms underlying N2 O emission response to climate change remain limited by data availability, underlying a need for studies that report SFG. Our findings indicate that climate change substantially affects N2 O emission and highlights the urgent need to incorporate this strong feedback into most climate models for convincing projection of future climate change.
Collapse
Affiliation(s)
- Linfeng Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Zhenzhen Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weijin Wang
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
- Department of Environment and Science, Brisbane, Qld, Australia
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Joel A Biederman
- Southwest Watershed Research Center, Agricultural Research Service, Tucson, AZ, USA
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qinwei Ran
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruyan Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Biao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Shutong Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lizhen Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Yanfen Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
43
|
Kominoski JS, Gaiser EE, Castañeda-Moya E, Davis SE, Dessu SB, Julian P, Lee DY, Marazzi L, Rivera-Monroy VH, Sola A, Stingl U, Stumpf S, Surratt D, Travieso R, Troxler TG. Disturbance legacies increase and synchronize nutrient concentrations and bacterial productivity in coastal ecosystems. Ecology 2020; 101:e02988. [PMID: 31958144 PMCID: PMC7317527 DOI: 10.1002/ecy.2988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 11/27/2019] [Accepted: 12/20/2019] [Indexed: 11/12/2022]
Abstract
Long‐term ecological research can resolve effects of disturbance on ecosystem dynamics by capturing the scale of disturbance and interactions with environmental changes. To quantify how disturbances interact with long‐term directional changes (sea‐level rise, freshwater restoration), we studied 17 yr of monthly dissolved organic carbon (DOC), total nitrogen (TN), and phosphorus (TP) concentrations and bacterioplankton productivity across freshwater‐to‐marine estuary gradients exposed to multiple disturbance events (e.g., droughts, fire, hurricanes, and low‐temperature anomalies) and long‐term increases in water levels. By studying two neighboring drainages that differ in hydrologic connectivity, we additionally tested how disturbance legacies are shaped by hydrologic connectivity. We predicted that disturbance events would interact with long‐term increases in water levels in freshwater and marine ecosystems to increase spatiotemporal similarity (i.e., synchrony) of organic matter, nutrients, and microbial activities. Wetlands along the larger, deeper, and tidally influenced Shark River Slough (SRS) drainage had higher and more variable DOC, TN, and TP concentrations than wetlands along the smaller, shallower, tidally restricted Taylor River Slough/Panhandle (TS/Ph) drainage. Along SRS, DOC concentrations declined with proximity to coast, and increased in magnitude and variability following drought and flooding in 2015 and a hurricane in 2017. Along TS/Ph, DOC concentrations varied by site (higher in marine than freshwater wetlands) but not year. In both drainages, increases in TN from upstream freshwater marshes occurred following fire in 2008 and droughts in 2010 and 2015, whereas downstream increases in TP occurred with coastal storm surge from hurricanes in 2005 and 2017. Decreases in DOC:TN and DOC:TP were explained by increased TN and TP. Increases in bacterioplankton productivity occurred throughout both drainages following low‐temperature events (2010 and 2011) and a hurricane (2017). Long‐term TN and TP concentrations and bacterioplankton productivity were correlated (r > 0.5) across a range of sampling distances (1–50 km), indicating spatiotemporal synchrony. DOC concentrations were not synchronized across space or time. Our study advances disturbance ecology theory by illustrating how disturbance events interact with long‐term environmental changes and hydrologic connectivity to determine the magnitude and extent of disturbance legacies. Understanding disturbance legacies will enhance prediction and enable more effective management of rapidly changing ecosystems.
Collapse
Affiliation(s)
- John S Kominoski
- Department of Biological Sciences & Institute of Environment/Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| | - Evelyn E Gaiser
- Department of Biological Sciences & Institute of Environment/Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| | - Edward Castañeda-Moya
- Department of Biological Sciences & Institute of Environment/Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| | | | - Shimelis B Dessu
- Department of Earth and Environment & Institute of Environment/Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| | - Paul Julian
- Whitney Laboratory for Marine Bioscience, University of Florida, Gainesville, Florida, 32611, USA
| | - Dong Yoon Lee
- Department of Biological Sciences & Institute of Environment/Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| | - Luca Marazzi
- Department of Biological Sciences & Institute of Environment/Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| | - Victor H Rivera-Monroy
- Department of Oceanography and Coastal Sciences, College of the Coast and the Environment, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Andres Sola
- Department of Biological Sciences & Institute of Environment/Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| | - Ulrich Stingl
- Institute of Food and Agricultural Sciences, University of Florida, Davie, Florida, 33314, USA
| | - Sandro Stumpf
- Department of Biological Sciences & Institute of Environment/Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| | | | - Rafael Travieso
- Department of Biological Sciences & Institute of Environment/Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| | - Tiffany G Troxler
- Department of Biological Sciences & Institute of Environment/Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| |
Collapse
|
44
|
Pellegrini AF, Jackson RB. The long and short of it: A review of the timescales of how fire affects soils using the pulse-press framework. ADV ECOL RES 2020. [DOI: 10.1016/bs.aecr.2020.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Tang L, Shen Z, Duan X, Wang Z, Wu Y, Shao X, Song X, Hu S, Li Z. Evaluating the potential of charred bone as P hotspot assisted by phosphate-solubilizing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133965. [PMID: 31461692 DOI: 10.1016/j.scitotenv.2019.133965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
The enhanced phosphorus (P) release from charred bone by microorganisms results in hotspots to alleviate P limitation in agricultural and natural systems. This study compared P release, assisted by phosphate-solubilizing bacteria (PSB), from charred bone (CB) produced at various temperatures (100-300 °C). In the absence of PSB, soluble P from CB in water was observed with fluctuation between 100 and 300 °C, with a maximum value of 8.66 mg/L at 200 °C. Similarly, kinetics of dissolution indicated that CB produced at 250 °C owned the highest solubility and dissolution rate. After the addition of PSB, soluble P from all the CB samples were all elevated. The CB produced at 100 °C incredibly showed the most significant enhancement (from 3.51 to 77.37 mg /L). ATR-IR and XPS confirmed the loss of organic matter (primarily collagen), but no significant mineralogical alternation of bioapatite in bone. Meanwhile, it demonstrated that collagen itself cannot provide soluble P. However, the collagen contributed to the substantial sorption of bacteria, which improved the efficiency of P release from CB surface. This study clarified the P release via the interaction between CB and PSB, and hence provided a new perspective on understanding P biogeochemical cycle in ecosystem.
Collapse
Affiliation(s)
- Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengtao Shen
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada
| | - Xiaofang Duan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanyi Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoqing Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinwei Song
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Butler OM, Lewis T, Rezaei Rashti M, Maunsell SC, Elser JJ, Chen C. The stoichiometric legacy of fire regime regulates the roles of micro‐organisms and invertebrates in decomposition. Ecology 2019; 100:e02732. [DOI: 10.1002/ecy.2732] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Orpheus M. Butler
- Griffith School of Environment and Science and the Australian Rivers Institute Griffith University Nathan Queensland Australia
| | - Tom Lewis
- Department of Agriculture and Fisheries and University of the Sunshine Coast Sippy Downs Queensland Australia
| | - Mehran Rezaei Rashti
- Griffith School of Environment and Science and the Australian Rivers Institute Griffith University Nathan Queensland Australia
| | - Sarah C. Maunsell
- Department of Organismic and Evolutionary Biology Harvard University Boston Massachusetts USA
| | - James J. Elser
- Flathead Lake Biological Station University of Montana Polson Montana USA
| | - Chengrong Chen
- Griffith School of Environment and Science and the Australian Rivers Institute Griffith University Nathan Queensland Australia
| |
Collapse
|
47
|
Merino A, Jiménez E, Fernández C, Fontúrbel MT, Campo J, Vega JA. Soil organic matter and phosphorus dynamics after low intensity prescribed burning in forests and shrubland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 234:214-225. [PMID: 30622019 DOI: 10.1016/j.jenvman.2018.12.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Various different factors have led to the accumulation of biomass in forest soils in the Mediterranean-climate region in the last few decades, thus exacerbating the effects of wildfires. Although prescribed burning is used to decrease the fuel load and reduce the currency of mega-wildfires, the impacts on soil organic matter (SOM) and nutrient cycling, and therefore on forest ecosystem sustainability, are uncertain. The present study was designed to cover a range of conditions and therefore to assess the variability in the responses in similar geographical areas. Three prescribed burning treatments producing different levels of soil burn severity were conducted in two different types of forests (Pinus nigra and Pinus pinaster) and one (previously treated by prescribed burning) shrubland ecosystem (Cytisus oromediterraneus), all characterized by different fuel loads and depths of soil organic layer, in Central Spain. After the treatments, the SOM content, its thermal properties, and the distribution of Phosphorus (P) forms (31P NMR spectroscopy) were measured in the soil organic layer and mineral soils (0-2 cm depth), and the results were related to the temperatures reached. The prescribed burning les to low-moderate perturbations in SOM quality and Carbon (C) and P dynamics. The organic P, which in the unburnt plots represented 70% of the extractable P, was greatly depleted (by 56 and 95% with respect the initials values). This effect was concurrent with decreases in the most thermolabile SOM fractions, suggesting that organic P is readily mineralized, even at relatively low temperatures. Release of large amounts of soluble orthophosphate may occur when the prescribed burning leads to a high level of soil burn severity. The findings show that prescribed burning treatments should be planned carefully in order to prevent long-term perturbation of C and P cycling.
Collapse
Affiliation(s)
- Agustín Merino
- University of Santiago de Compostela, Escuela Politécnica Superior, Soil Science and Agricultural Chemistry, Lugo, Spain.
| | - Enrique Jiménez
- Centro de Investigación Forestal, Lourizán, Consellería de Medio Rural, Xunta de Galicia, P.O.Box 127, 36080 Pontevedra, Spain
| | - Cristina Fernández
- Centro de Investigación Forestal, Lourizán, Consellería de Medio Rural, Xunta de Galicia, P.O.Box 127, 36080 Pontevedra, Spain
| | - Maria T Fontúrbel
- Centro de Investigación Forestal, Lourizán, Consellería de Medio Rural, Xunta de Galicia, P.O.Box 127, 36080 Pontevedra, Spain
| | - Julio Campo
- Instituto de Ecología, Universidad Nacional Autónoma de México, P.O.Box 70-275, 04510 Mexico City, Mexico
| | - Jose A Vega
- Centro de Investigación Forestal, Lourizán, Consellería de Medio Rural, Xunta de Galicia, P.O.Box 127, 36080 Pontevedra, Spain
| |
Collapse
|
48
|
Eliott M, Lawson S, Hayes A, Debuse V, York A, Lewis T. The response of cerambycid beetles (Coleoptera: Cerambycidae) to long-term fire frequency regimes in subtropical eucalypt forest. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martyn Eliott
- School of Science; Faculty of Science, Health, Education & Engineering; University of the Sunshine Coast; 90 Sippy Downs Dr Sippy Downs Queensland 4556 Australia
| | - Simon Lawson
- Forest Industries Research Centre; University of the Sunshine Coast; Sippy Downs Queensland Australia
- Department of Agriculture and Fisheries; Forest Industries Research Centre; Ecosciences Precinct; Dutton Park Queensland Australia
| | - Andrew Hayes
- Forest Industries Research Centre; University of the Sunshine Coast; Sippy Downs Queensland Australia
- Department of Agriculture and Fisheries; Forest Industries Research Centre; Ecosciences Precinct; Dutton Park Queensland Australia
| | - Valerie Debuse
- Forest Industries Research Centre; University of the Sunshine Coast; Sippy Downs Queensland Australia
- Department of Agriculture and Fisheries; Forest Industries Research Centre; Ecosciences Precinct; Dutton Park Queensland Australia
| | - Alan York
- School of Ecosystem and Forest Sciences; University of Melbourne; Creswick Victoria Australia
| | - Tom Lewis
- School of Science; Faculty of Science, Health, Education & Engineering; University of the Sunshine Coast; 90 Sippy Downs Dr Sippy Downs Queensland 4556 Australia
- Department of Agriculture and Fisheries; Forest Industries Research Centre; Ecosciences Precinct; Dutton Park Queensland Australia
| |
Collapse
|
49
|
Buisson E, Le Stradic S, Silveira FAO, Durigan G, Overbeck GE, Fidelis A, Fernandes GW, Bond WJ, Hermann JM, Mahy G, Alvarado ST, Zaloumis NP, Veldman JW. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol Rev Camb Philos Soc 2018; 94:590-609. [PMID: 30251329 DOI: 10.1111/brv.12470] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 01/18/2023]
Abstract
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open-canopy grassy woodlands) remains limited. To incorporate grasslands into large-scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved - frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human-caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species-diverse plant communities, including endemic species, are slow to recover. Complicating plant-community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re-establish. To guide restoration decisions, we draw on the old-growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old-growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old-growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.
Collapse
Affiliation(s)
- Elise Buisson
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Université d'Avignon et des Pays de Vaucluse, CNRS, IRD, Aix Marseille Université, Agroparc BP61207, Avignon 84911 cedex 9, France
| | - Soizig Le Stradic
- Gembloux Agro-Bio Tech, Biodiversity and Landscape unit, University of Liege, Gembloux 5030, Belgium.,Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Botânica, Lab of Vegetation Ecology, Av. 24A, 1515, Rio Claro, SP 13506-900, Brazil
| | - Fernando A O Silveira
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-901, Brazil
| | - Giselda Durigan
- Laboratório de Ecologia e Hidrologia Florestal, Floresta Estadual de Assis, Instituto Florestal, PO box 104, Assis, SP 19802-970, Brazil
| | - Gerhard E Overbeck
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Alessandra Fidelis
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Botânica, Lab of Vegetation Ecology, Av. 24A, 1515, Rio Claro, SP 13506-900, Brazil
| | - G Wilson Fernandes
- Ecologia Evolutiva e Biodiversidade, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-901, Brazil
| | - William J Bond
- Department of Biological Sciences, University of Cape Town and South African Environmental Observation Network, NRF, Rondebosch, 7701, South Africa
| | - Julia-Maria Hermann
- Restoration Ecology, Center of Life and Food Sciences Weihenstephan, Technische Universität München - TUM, Freising, Germany
| | - Gregory Mahy
- Gembloux Agro-Bio Tech, Biodiversity and Landscape unit, University of Liege, Gembloux 5030, Belgium
| | - Swanni T Alvarado
- Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Departamento de Geografia, Ecosystem Dynamics Observatory, Av. 24A, 1515, Rio Claro, SP 13506-900, Brazil
| | - Nicholas P Zaloumis
- Department of Botany, University of Cape Town, P/Bag X3, Rondebosch, 7701, Cape Town, South Africa
| | - Joseph W Veldman
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, U.S.A
| |
Collapse
|