1
|
Gutgesell M, McCann K, O'Connor R, Kc K, Fraser EDG, Moore JC, McMeans B, Donohue I, Bieg C, Ward C, Pauli B, Scott A, Gillam W, Gedalof Z, Hanner RH, Tunney T, Rooney N. The productivity-stability trade-off in global food systems. Nat Ecol Evol 2024; 8:2135-2149. [PMID: 39227681 DOI: 10.1038/s41559-024-02529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Historically, humans have managed food systems to maximize productivity. This pursuit has drastically modified terrestrial and aquatic ecosystems globally by reducing species diversity and body size while creating very productive, yet homogenized, environments. Such changes alter the structure and function of ecosystems in ways that ultimately erode their stability. This productivity-stability trade-off has largely been ignored in discussions around global food security. Here, we synthesize empirical and theoretical literature to demonstrate the existence of the productivity-stability trade-off and argue the need for its explicit incorporation in the sustainable management of food systems. We first explore the history of human management of food systems, its impacts on average body size within and across species and food web stability. We then demonstrate how reductions in body size are symptomatic of a broader biotic homogenization and rewiring of food webs. We show how this biotic homogenization decompartmentalizes interactions among energy channels and increases energy flux within the food web in ways that threaten their stability. We end by synthesizing large-scale ecological studies to demonstrate the prevalence of the productivity-stability trade-off. We conclude that management strategies promoting landscape heterogeneity and maintenance of key food web structures are critical to sustainable food production.
Collapse
Affiliation(s)
| | | | | | - Krishna Kc
- University of Guelph, Guelph, Ontario, Canada
| | | | - John C Moore
- Colorado State University, Fort Collins, CO, USA
| | - Bailey McMeans
- University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | | | | | - Brett Pauli
- University of Guelph, Guelph, Ontario, Canada
| | - Alexa Scott
- University of Guelph, Guelph, Ontario, Canada
| | | | | | | | - Tyler Tunney
- Fisheries and Oceans Canada, Moncton, New Brunswick, Canada
| | - Neil Rooney
- University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Hashimoto K, Hayasaka D, Eguchi Y, Seko Y, Cai J, Suzuki K, Goka K, Kadoya T. Multifaceted effects of variable biotic interactions on population stability in complex interaction webs. Commun Biol 2024; 7:1309. [PMID: 39438612 PMCID: PMC11496648 DOI: 10.1038/s42003-024-06948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Recent studies have revealed that biotic interactions in ecological communities vary over time, possibly mediating community responses to anthropogenic disturbances. This study investigated the heterogeneity of such variability within a real community and its impact on population stability in the face of pesticide application, particularly focusing on density-dependence of the interaction effect. Using outdoor mesocosms with a freshwater community, we found considerable heterogeneity in density-dependent interaction variability among links in the same community. This variability mediated the stability of recipient populations, with negative density-dependent interaction variability stabilizing whereas positive density-dependence and density-independent interaction variability destabilizing populations. Unexpectedly, the mean interaction strength, which is typically considered crucial for stability, had no significant effect, suggesting that how organisms interact on average is insufficient to predict the ecological impacts of pesticides. Our findings emphasize the multifaceted role of interaction variability in predicting the ecological consequences of anthropogenic disturbances such as pesticide application.
Collapse
Affiliation(s)
- Koya Hashimoto
- Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara, 631-8505, Japan.
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan.
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| | - Daisuke Hayasaka
- Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara, 631-8505, Japan
| | - Yuji Eguchi
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara, 631-8505, Japan
| | - Yugo Seko
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara, 631-8505, Japan
| | - Ji Cai
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan
| | - Kenta Suzuki
- BioResource Research Center, RIKEN, Takanodai 3-1-1, Tsukuba, Ibaraki, 305-0074, Japan
- Institute for Multidisciplinary Sciences, Yokohama National University, Tokiwadai 9-5, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan
| | - Koichi Goka
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Taku Kadoya
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
3
|
Lemmen KD, Pennekamp F. Food web context modifies predator foraging and weakens trophic interaction strength. Ecol Lett 2024; 27:e14475. [PMID: 39060898 DOI: 10.1111/ele.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Trophic interaction modifications (TIM) are widespread in natural systems and occur when a third species indirectly alters the strength of a trophic interaction. Past studies have focused on documenting the existence and magnitude of TIMs; however, the underlying processes and long-term consequences remain elusive. To address this gap, we experimentally quantified the density-dependent effect of a third species on a predator's functional response. We conducted short-term experiments with ciliate communities composed of a predator, prey and non-consumable 'modifier' species. In both communities, increasing modifier density weakened the trophic interaction strength, due to a negative effect on the predator's space clearance rate. Simulated long-term dynamics indicate quantitative differences between models that account for TIMs or include only pairwise interactions. Our study demonstrates that TIMs are important to understand and predict community dynamics and highlights the need to move beyond focal species pairs to understand the consequences of species interactions in communities.
Collapse
Affiliation(s)
- Kimberley D Lemmen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Abraham A, Duvall E, Ferraro K, Webster A, Doughty C, le Roux E, Ellis‐Soto D. Understanding anthropogenic impacts on zoogeochemistry is essential for ecological restoration. Restor Ecol 2022. [DOI: 10.1111/rec.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew Abraham
- School of Informatics, Computing and Cyber Systems Northern Arizona University Flagstaff USA
| | - Ethan Duvall
- Department of Ecology and Evolutionary Biology Cornell University Ithaca USA
| | - Kristy Ferraro
- School of the Environment Yale University Connecticut USA
| | - Andrea Webster
- Mammal Research Institute University of Pretoria Pretoria South Africa
| | - Chris Doughty
- School of Informatics, Computing and Cyber Systems Northern Arizona University Flagstaff USA
| | - Elizabeth le Roux
- Mammal Research Institute University of Pretoria Pretoria South Africa
- Centre for Biodiversity Dynamics in a Changing World (BIOCHANGE), Section of EcoInformatics and Biodiversity, Department of Biology Aarhus University Denmark
- Environmental Change Institute, School of Geography and the Environment University of Oxford Oxford UK
| | - Diego Ellis‐Soto
- Department of Ecology and Evolutionary Biology Yale University Connecticut USA
| |
Collapse
|
5
|
Daugaard U, Munch SB, Inauen D, Pennekamp F, Petchey OL. Forecasting in the face of ecological complexity: Number and strength of species interactions determine forecast skill in ecological communities. Ecol Lett 2022; 25:1974-1985. [PMID: 35831269 PMCID: PMC9540476 DOI: 10.1111/ele.14070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
The potential for forecasting the dynamics of ecological systems is currently unclear, with contrasting opinions regarding its feasibility due to ecological complexity. To investigate forecast skill within and across systems, we monitored a microbial system exposed to either constant or fluctuating temperatures in a 5-month-long laboratory experiment. We tested how forecasting of species abundances depends on the number and strength of interactions and on model size (number of predictors). We also tested how greater system complexity (i.e. the fluctuating temperatures) impacted these relations. We found that the more interactions a species had, the weaker these interactions were and the better its abundance was predicted. Forecast skill increased with model size. Greater system complexity decreased forecast skill for three out of eight species. These insights into how abundance prediction depends on the connectedness of the species within the system and on overall system complexity could improve species forecasting and monitoring.
Collapse
Affiliation(s)
- Uriah Daugaard
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Stephan B Munch
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - David Inauen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Terui A, Kim S, Dolph CL, Kadoya T, Miyazaki Y. Emergent dual scaling of riverine biodiversity. Proc Natl Acad Sci U S A 2021; 118:e2105574118. [PMID: 34795054 PMCID: PMC8617499 DOI: 10.1073/pnas.2105574118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
A prevailing paradigm suggests that species richness increases with area in a decelerating way. This ubiquitous power law scaling, the species-area relationship, has formed the foundation of many conservation strategies. In spatially complex ecosystems, however, the area may not be the sole dimension to scale biodiversity patterns because the scale-invariant complexity of fractal ecosystem structure may drive ecological dynamics in space. Here, we use theory and analysis of extensive fish community data from two distinct geographic regions to show that riverine biodiversity follows a robust scaling law along the two orthogonal dimensions of ecosystem size and complexity (i.e., the dual scaling law). In river networks, the recurrent merging of various tributaries forms fractal branching systems, where the prevalence of branching (ecosystem complexity) represents a macroscale control of the ecosystem's habitat heterogeneity. In the meantime, ecosystem size dictates metacommunity size and total habitat diversity, two factors regulating biodiversity in nature. Our theory predicted that, regardless of simulated species' traits, larger and more branched "complex" networks support greater species richness due to increased space and environmental heterogeneity. The relationships were linear on logarithmic axes, indicating power law scaling by ecosystem size and complexity. In support of this theoretical prediction, the power laws have consistently emerged in riverine fish communities across the study regions (Hokkaido Island in Japan and the midwestern United States) despite hosting different fauna with distinct evolutionary histories. The emergence of dual scaling law may be a pervasive property of branching networks with important implications for biodiversity conservation.
Collapse
Affiliation(s)
- Akira Terui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412;
| | - Seoghyun Kim
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Christine L Dolph
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108
| | - Taku Kadoya
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Yusuke Miyazaki
- Department of Child Education and Welfare, Shiraume Gakuen College, Tokyo 187-8570, Japan
| |
Collapse
|
7
|
McLeod AM, Leroux SJ. The multiple meanings of omnivory influence empirical, modular theory and whole food web stability relationships. J Anim Ecol 2020; 90:447-459. [PMID: 33073862 DOI: 10.1111/1365-2656.13378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
The persistence of whole communities hinges on the presence of select interactions which act to stabilize communities making the identification of these keystone interactions critical. One potential candidate is omnivory, yet theoretical research on omnivory thus far has been dominated by a modular theory approach whereby an omnivore and consumer compete for a shared resource. Empirical research, however, has highlighted the presence of a broader suite of omnivory modules. Here, we integrate empirical data analysis and mathematical models to explore the influence of both omnivory module (including classic, multi-resource, higher level, mutual predation and cannibalism) and omnivore-resource interaction type on food web stability. We use six classic empirical food webs to examine the prevalence of the different types of omnivory, a multi-species consumer-resource model to determine the stability of these different kinds of omnivory within a module context, and finally extend these models to a 50 species, whole food web model to examine the influence of omnivory on whole food web persistence. Our results challenge the concept that omnivory is broadly stabilizing. In particular, we demonstrate that the impact of omnivory depends on the type of omnivory being examined with multi-resource omnivory having the largest correlation with whole food web persistence. Moreover, our results highlight that we need to exercise caution when scaling modular theory to whole food web theory. Cannibalism, for example, was the most persistent and stable omnivory module in the modular theory analysis, but only demonstrated a weak correlation with whole food web persistence. Lastly, our results demonstrate that the frequency of omnivory modules are more important for whole food web persistence than the frequency of omnivore-resource interactions. Together, these results demonstrate that the role of omnivory often depends both on the type of omnivory being examined and the food web within which it is nested. In whole food web models, omnivory acts less as a keystone interaction, rather, specific types of omnivory, particularly multi-resource omnivory, act as keystone modules. Future work integrating module and whole food web theory is critical for resolving the role of key interactions in food webs.
Collapse
Affiliation(s)
- Anne M McLeod
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
8
|
Terry JCD, Lewis OT. Finding missing links in interaction networks. Ecology 2020; 101:e03047. [PMID: 32219855 DOI: 10.1002/ecy.3047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022]
Abstract
Documenting which species interact within ecological communities is challenging and labor intensive. As a result, many interactions remain unrecorded, potentially distorting our understanding of network structure and dynamics. We test the utility of four structural models and a new coverage-deficit model for predicting missing links in both simulated and empirical bipartite networks. We find they can perform well, although the predictive power of structural models varies with the underlying network structure. The accuracy of predictions can be improved by ensembling multiple models. Augmenting observed networks with most-likely missing links improves estimates of qualitative network metrics. Tools to identify likely missing links can be simple to implement, allowing the prioritization of research effort and more robust assessment of network properties.
Collapse
Affiliation(s)
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
| |
Collapse
|
9
|
Zhao Q, Van den Brink PJ, Carpentier C, Wang YXG, Rodríguez-Sánchez P, Xu C, Vollbrecht S, Gillissen F, Vollebregt M, Wang S, De Laender F. Horizontal and vertical diversity jointly shape food web stability against small and large perturbations. Ecol Lett 2019; 22:1152-1162. [PMID: 31095883 PMCID: PMC6852190 DOI: 10.1111/ele.13282] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/19/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022]
Abstract
The biodiversity of food webs is composed of horizontal (i.e. within trophic levels) and vertical diversity (i.e. the number of trophic levels). Understanding their joint effect on stability is a key challenge. Theory mostly considers their individual effects and focuses on small perturbations near equilibrium in hypothetical food webs. Here, we study the joint effects of horizontal and vertical diversity on the stability of hypothetical (modelled) and empirical food webs. In modelled food webs, horizontal and vertical diversity increased and decreased stability, respectively, with a stronger positive effect of producer diversity on stability at higher consumer diversity. Experiments with an empirical plankton food web, where we manipulated horizontal and vertical diversity and measured stability from species interactions and from resilience against large perturbations, confirmed these predictions. Taken together, our findings highlight the need to conserve horizontal biodiversity at different trophic levels to ensure stability.
Collapse
Affiliation(s)
- Qinghua Zhao
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.,Wageningen Environmental Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Camille Carpentier
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Yingying X G Wang
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
| | - Pablo Rodríguez-Sánchez
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Chi Xu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Silke Vollbrecht
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Frits Gillissen
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Marlies Vollebregt
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| |
Collapse
|