1
|
Gao S, Fu Y, Peng X, Ma S, Liu YR, Chen W, Huang Q, Hao X. Microplastics Trigger Soil Dissolved Organic Carbon and Nutrient Turnover by Strengthening Microbial Network Connectivity and Cross-Trophic Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5596-5606. [PMID: 40041936 DOI: 10.1021/acs.est.4c12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Increasing microplastic (MP) inputs in agricultural soils have gained global attention for their ecological effects, especially on soil organic carbon (SOC) and nutrient turnover. However, the microbial mechanism underlying MP-induced SOC and nutrient dynamics remains poorly understood. Here, we investigated the impacts of two common MPs (polyethylene and polyvinyl chloride) on microbial hierarchical groups (bacteria, fungi, and protists) and the cascading effects on dissolved organic carbon (DOC) and nutrient dynamics in two typical agricultural soils (Mollisol and Ultisol). Our results showed that MP inputs consistently reduced NO3--N concentration but increased the content of DOC and specific dissolved organic matter (DOM) components. Despite divergent responses of microbial hierarchical groups to MPs, MP inputs consistently strengthened the connectivity and cross-trophic associations of microbial multitrophic networks. Protistan nodes belonging to Cercozoa, Ciliophora, and Chlorophyta played essential roles in maintaining network connectivity in MP-treated soils. The enhanced network connectivity and cross-trophic associations primarily explained variations in soil DOC and nutrient turnover. These findings collectively indicate that MP inputs trigger DOC and nutrient turnover by enhancing the potential multitrophic interactions and species connectivity within soil micro-food webs. Our study provides novel insights into the ecological consequences of MP pollution on microbial hierarchical interactions and microbially mediated biogeochemical cycling.
Collapse
Affiliation(s)
- Shenghan Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunbo Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyi Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Silin Ma
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Wang X, Liang C, Dini-Andreote F, Zhou S, Jiang Y. Impacts of trophic interactions on carbon accrual in soils. Trends Microbiol 2025; 33:277-284. [PMID: 39616038 DOI: 10.1016/j.tim.2024.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 03/08/2025]
Abstract
The transformation and stabilization of soil organic carbon (SOC) are important processes of global carbon (C) cycling, with implications for climate change. Much attention has been given to microbial anabolic processes driving SOC accrual. These are referred to as the soil microbial carbon pump (MCP), which emphasizes the contribution of microbial metabolism and necromass to the stable soil C pool. However, we still lack a fundamental understanding of how trophic interactions between soil fauna and microbiota modulate microbial necromass production and, consequently, SOC formation. Here, we provide an ecological perspective on the impacts of trophic interactions on modulating necromass formation and C accrual in soils. We discuss the mechanisms of trophic interactions in the context of food web ecology, with a focus on trophic control of microbial population densities and their influences on soil microbiota assembly. We foresee that integrating trophic interactions into the soil MCP framework can provide a more comprehensive basis for guiding future research efforts to elucidate the mechanisms modulating microbial necromass and SOC formation in terrestrial ecosystems. This perspective offers an ecological foundation for leveraging the use of biological interventions to enhance SOC accrual, providing valuable insights for sustainable C management strategies.
Collapse
Affiliation(s)
- Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shungui Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Liang M, Cappelli SL, Borer ET, Tilman D, Seabloom EW. Consumers Modulate Effects of Plant Diversity on Community Stability. Ecol Lett 2025; 28:e70103. [PMID: 40110955 PMCID: PMC11924315 DOI: 10.1111/ele.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Biotic complexity, encompassing both competitive interactions within trophic levels and consumptive interactions among trophic levels, plays a fundamental role in maintaining ecosystem stability. While theory and experiments have established that plant diversity enhances ecosystem stability, the role of consumers in the diversity-stability relationships remains elusive. In a decade-long grassland biodiversity experiment, we investigated how heterotrophic consumers (e.g., insects and fungi) interact with plant diversity to affect the temporal stability of plant community biomass. Plant diversity loss reduces community stability due to increased synchronisation among species but enhances the population-level stability of the remaining plant species. Reducing trophic complexity via pesticide treatments does not directly affect either community- or population-level stability but further amplifies plant species synchronisation. Our findings demonstrate that the loss of arthropod or fungal consumers can destabilise plant communities by exacerbating synchronisation, underscoring the crucial role of trophic complexity in maintaining ecological stability.
Collapse
Affiliation(s)
- Maowei Liang
- Cedar Creek Ecosystem Science ReserveUniversity of MinnesotaEast BethelMinnesotaUSA
| | - Seraina L. Cappelli
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - David Tilman
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
- Bren School of Environmental Science and ManagementUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
4
|
González Sagrario MDLÁ, Vrede T, Belle S. Late Holocene cooling drove drastic decreases in cladoceran diversity in a subarctic lake. Sci Rep 2024; 14:30490. [PMID: 39681604 DOI: 10.1038/s41598-024-81690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Subarctic lakes are sentinels of climate change, showing responses in their physical, chemical, and biological properties. However, climate-induced changes in invertebrate diversity and their underlying mechanisms are not fully understood. We explored the relationship between past climate change and taxonomic composition of subfossil cladocerans in a subarctic lake during the last ca. 5700 years. The Cladocera community shifted from specialist to generalist species at ca. 3500 cal years BP, corresponding to the long-term cooling period between the Holocene Thermal Maximum and the Late Holocene. Taxonomic diversity declined driven by the collapse of the keystone herbivorous Daphnia longispina group, pelagic and littoral predators, and phytophilous benthic species, therefore resulting in a simplification of the food web and a reduction of trophic levels. Furthermore, the shift in cladoceran composition was associated with the decline of aquatic primary producers and the development of birch forest, suggesting a potential causal link between dissolved organic carbon dynamics and cladoceran community composition. This study provides empirical evidence of the response of cladocerans to climatic fluctuations and their underlying mechanisms through catchment-mediated processes and direct temperature-induced changes.
Collapse
Affiliation(s)
- María de Los Ángeles González Sagrario
- Instituto de Investigaciones Marinas y Costeras (IIMYC), Universidad Nacional de Mar del Plata, CONICET, J. B. Justo 2550, 7600, Mar del Plata, Argentina
| | - Tobias Vrede
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07, Uppsala, Sweden
| | - Simon Belle
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07, Uppsala, Sweden.
| |
Collapse
|
5
|
Keyes AA, Barner AK, Dee LE. Synthesising the Relationships Between Food Web Structure and Robustness. Ecol Lett 2024; 27:e14533. [PMID: 39437024 DOI: 10.1111/ele.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 10/25/2024]
Abstract
For many decades, ecologists have sought to understand the extent to which species losses lead to secondary extinctions-that is, the additional loss of species that occurs when resources or key interactions are lost (i.e. robustness). In particular, ecologists aim to identify generalisable rules that explain which types of food webs are more or less robust to secondary extinctions. Food web structure, or the patterns formed by species and their interactions, has been extensively studied as a potential factor that influences robustness to species loss. We systematically reviewed 28 studies to identify the relationships between food web structure and robustness to species loss and how the conclusions depend on methodological differences. Contrary to popular belief and theory, we found relatively consistent, positive relationships between connectance and robustness, among other generalities. Yet, we also found that conflicting conclusions about structure-robustness relationships can be, in part, attributed to differences in the type of data that studies use, particularly studies that use empirical data versus those generated from theoretical models. This review points towards a need to standardise methodology to answer the open question of whether robustness and its relationship with food web structure and to provide applicable insights for managing complex systems.
Collapse
Affiliation(s)
- Aislyn A Keyes
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | | | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
6
|
Sporta Caputi S, Kabala JP, Rossi L, Careddu G, Calizza E, Ventura M, Costantini ML. Individual diet variability shapes the architecture of Antarctic benthic food webs. Sci Rep 2024; 14:12333. [PMID: 38811641 PMCID: PMC11137039 DOI: 10.1038/s41598-024-62644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Antarctic biodiversity is affected by seasonal sea-ice dynamics driving basal resource availability. To (1) determine the role of intraspecific dietary variability in structuring benthic food webs sustaining Antarctic biodiversity, and (2) understand how food webs and the position of topologically central species vary with sea-ice cover, single benthic individuals' diets were studied by isotopic analysis before sea-ice breakup and afterwards. Isotopic trophospecies (or Isotopic Trophic Units) were investigated and food webs reconstructed using Bayesian Mixing Models. As nodes, these webs used either ITUs regardless of their taxonomic membership (ITU-webs) or ITUs assigned to species (population-webs). Both were compared to taxonomic-webs based on taxa and their mean isotopic values. Higher resource availability after sea-ice breakup led to simpler community structure, with lower connectance and linkage density. Intra-population diet variability and compartmentalisation were crucial in determining community structure, showing population-webs to be more complex, stable and robust to biodiversity loss than taxonomic-webs. The core web, representing the minimal community 'skeleton' that expands opportunistically while maintaining web stability with changing resource availability, was also identified. Central nodes included the sea-urchin Sterechinus neumayeri and the bivalve Adamussium colbecki, whose diet is described in unprecedented detail. The core web, compartmentalisation and topologically central nodes represent crucial factors underlying Antarctica's rich benthic food web persistence.
Collapse
Affiliation(s)
- Simona Sporta Caputi
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Jerzy Piotr Kabala
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
| | - Loreto Rossi
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy.
| | - Giulio Careddu
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Edoardo Calizza
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Matteo Ventura
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
| | - Maria Letizia Costantini
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| |
Collapse
|
7
|
Vagnon C, Pomeranz J, Loheac B, Vallat M, Guillard J, Raymond JC, Sentis A, Frossard V. Changes in vertical and horizontal diversities mediated by the size structure of introduced fish collectively shape food-web stability. Ecol Lett 2023; 26:1752-1764. [PMID: 37492003 DOI: 10.1111/ele.14290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Species introductions can alter local food-web structure by changing the vertical or horizontal diversity within communities, largely driven by their body size distributions. Increasing vertical and horizontal diversities is predicted to have opposing effects on stability. However, their interactive effects remain largely overlooked. We investigated the independent and collective effects of vertical and horizontal diversities on food-web stability in alpine lakes stocked with variable body size distributions of introduced fish species. Introduced predators destabilize food-webs by increasing vertical diversity through food chain lengthening. Alternatively, increasing horizontal diversity results in more stable food-web topologies. A non-linear interaction between vertical and horizontal diversities suggests that increasing vertical diversity is most destabilizing when horizontal diversity is low. Our findings suggest that the size structure of introduced predators drives their impacts on stability by modifying the structure of food-webs, and highlights the interactive effects of vertical and horizontal diversities on stability.
Collapse
Affiliation(s)
- Chloé Vagnon
- Université Savoie Mont Blanc, INRAE, UMR CARRTEL, Thonon-les-Bains, France
- Pôle R&D Ecosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
| | | | - Bertrand Loheac
- Fédération de Savoie pour la Pêche et la Protection du Milieu Aquatique (FDPPMA 73), Saint-Alban-Leysse, France
| | - Manuel Vallat
- Fédération de Savoie pour la Pêche et la Protection du Milieu Aquatique (FDPPMA 73), Saint-Alban-Leysse, France
| | - Jean Guillard
- Université Savoie Mont Blanc, INRAE, UMR CARRTEL, Thonon-les-Bains, France
- Pôle R&D Ecosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
| | - Jean-Claude Raymond
- Pôle R&D Ecosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
- Office Française pour la Biodiversité, Unité Spécialisée Milieux Lacustres, Thonon-les-Bains, France
| | - Arnaud Sentis
- Pôle R&D Ecosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
- INRAE, Université Aix Marseille, UMR RECOVER, Aix-en-Provence, France
| | - Victor Frossard
- Université Savoie Mont Blanc, INRAE, UMR CARRTEL, Thonon-les-Bains, France
- Pôle R&D Ecosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France
| |
Collapse
|
8
|
Bundschuh M, Mesquita-Joanes F, Rico A, Camacho A. Understanding Ecological Complexity in a Chemical Stress Context: A Reflection on Recolonization, Recovery, and Adaptation of Aquatic Populations and Communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1857-1866. [PMID: 37204216 DOI: 10.1002/etc.5677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Recovery, recolonization, and adaptation in a chemical stress context are processes that regenerate local populations and communities as well as the functions these communities perform. Recolonization, either by species previously present or by new species able to occupy the niches left empty, refers to a metacommunity process with stressed ecosystems benefiting from the dispersal of organisms from other areas. A potential consequence of recolonization is a limited capacity of local populations to adapt to potentially repeating events of chemical stress exposure when their niches have been effectively occupied by the new colonizers or by new genetic lineages of the taxa previously present. Recovery, instead, is an internal process occurring within stressed ecosystems. More specifically, the impact of a stressor on a community benefits less sensitive individuals of a local population as well as less sensitive taxa within a community. Finally, adaptation refers to phenotypic and, sometimes, genetic changes at the individual and population levels, allowing the permanence of individuals of previously existing taxa without necessarily changing the community taxonomic composition (i.e., not replacing sensitive species). Because these processes are usually operating in parallel in nature, though at different degrees, it seems relevant to try to understand their relative importance for the regeneration of community structure and ecosystem functioning after chemical exposure. In the present critical perspective, we employed case studies supporting our understanding of the underlying processes with the hope to provide a theoretical framework to disentangle the relevance of the three processes for the regeneration of a biological community after chemical exposure. Finally, we provide some recommendations to experimentally compare their relative importance so that the net effects of these processes can be used to parameterize risk-assessment models and inform ecosystem management. Environ Toxicol Chem 2023;42:1857-1866. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Francesc Mesquita-Joanes
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
| |
Collapse
|
9
|
Limberger R, Daugaard U, Gupta A, Krug RM, Lemmen KD, van Moorsel SJ, Suleiman M, Zuppinger-Dingley D, Petchey OL. Functional diversity can facilitate the collapse of an undesirable ecosystem state. Ecol Lett 2023; 26:883-895. [PMID: 37059694 DOI: 10.1111/ele.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 04/16/2023]
Abstract
Biodiversity may increase ecosystem resilience. However, we have limited understanding if this holds true for ecosystems that respond to gradual environmental change with abrupt shifts to an alternative state. We used a mathematical model of anoxic-oxic regime shifts and explored how trait diversity in three groups of bacteria influences resilience. We found that trait diversity did not always increase resilience: greater diversity in two of the groups increased but in one group decreased resilience of their preferred ecosystem state. We also found that simultaneous trait diversity in multiple groups often led to reduced or erased diversity effects. Overall, our results suggest that higher diversity can increase resilience but can also promote collapse when diversity occurs in a functional group that negatively influences the state it occurs in. We propose this mechanism as a potential management approach to facilitate the recovery of a desired ecosystem state.
Collapse
Affiliation(s)
- Romana Limberger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Uriah Daugaard
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Anubhav Gupta
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rainer M Krug
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Kimberley D Lemmen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Marcel Suleiman
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Debra Zuppinger-Dingley
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Ulrich W, Batáry P, Baudry J, Beaumelle L, Bucher R, Čerevková A, de la Riva EG, Felipe‐Lucia MR, Gallé R, Kesse‐Guyot E, Rembiałkowska E, Rusch A, Stanley D, Birkhofer K. From biodiversity to health: Quantifying the impact of diverse ecosystems on human well‐being. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Werner Ulrich
- Department of Ecology and Biogeography Nicolaus Copernicus University Toruń Poland
| | - Péter Batáry
- Lendület Landscape and Conservation Ecology Institute of Ecology and Botany, Centre for Ecological Research Vácrátót Hungary
| | - Julia Baudry
- INRAE U1125, INSERM U1153, CNAM, USPN, Nutritional Epidemiology Research Team (EREN) Epidemiology and Statistics Research Center University of Paris (CRESS) Bobigny France
| | - Léa Beaumelle
- INRAE Bordeaux Sciences Agro, ISVV, SAVE Villenave d'Ornon France
| | - Roman Bucher
- Department of Ecology, Brandenburg University of Technology Cottbus‐Senftenberg Cottbus Germany
| | - Andrea Čerevková
- Institute of Parasitology, Slovak Academy of Sciences Košice Slovakia
| | - Enrique G. de la Riva
- Department of Ecology, Brandenburg University of Technology Cottbus‐Senftenberg Cottbus Germany
- Department of Biodiversity and Environmental Management Faculty of Biological and Environmental Sciences University of León León Spain
| | - Maria R. Felipe‐Lucia
- Department of Ecosystem Services Helmholtz Centre for Environmental Research—UFZ Leipzig Germany
- Department of Ecosystem Services German Center for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Germany
| | - Róbert Gallé
- Lendület Landscape and Conservation Ecology Institute of Ecology and Botany, Centre for Ecological Research Vácrátót Hungary
| | - Emmanuelle Kesse‐Guyot
- INRAE U1125, INSERM U1153, CNAM, USPN, Nutritional Epidemiology Research Team (EREN) Epidemiology and Statistics Research Center University of Paris (CRESS) Bobigny France
| | - Ewa Rembiałkowska
- Department of Functional and Organic Food Warsaw University of Life Sciences Warsaw Poland
| | - Adrien Rusch
- INRAE Bordeaux Sciences Agro, ISVV, SAVE Villenave d'Ornon France
| | - Dara Stanley
- School of Agriculture and Food Science University College Dublin Dublin 4 Ireland
| | - Klaus Birkhofer
- Department of Ecology, Brandenburg University of Technology Cottbus‐Senftenberg Cottbus Germany
| |
Collapse
|
11
|
Yang X, Gu H, Zhao Q, Zhu Y, Teng Y, Li Y, Zhang Z. High seed diversity and availability increase rodent community stability under human disturbance and climate variation. FRONTIERS IN PLANT SCIENCE 2022; 13:1068795. [PMID: 36531400 PMCID: PMC9748286 DOI: 10.3389/fpls.2022.1068795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/15/2022] [Indexed: 05/31/2023]
Abstract
The relationship between diversity and stability is a focus in community ecology, but the relevant hypotheses have not been rigorously tested at trophic and network levels due to a lack of long-term data of species interactions. Here, by using seed tagging and infrared camera tracking methods, we qualified the seed-rodent interactions, and analyzed the associations of rodent community stability with species diversity, species abundance, and seed-rodent network complexity of 15 patches in a subtropical forest from 2013 to 2021. A total of 47,400 seeds were released, 1,467 rodents were marked, and 110 seed-rodent networks were reconstructed to estimate species richness, species abundance, and seed-rodent network metrics. We found, from younger to older stands, species richness and abundance (biomass) of seeds increased, while those of rodents decreased, leading to a seed-rodent network with higher nestedness, linkage density, and generality in older stands, but higher connectance in younger stands. With the increase of temperature and precipitation, seed abundance (biomass), rodent abundance, and the growth rate of rodent abundance increased significantly. We found rodent community stability (i.e., the inverse of rodent abundance variability) was significantly and positively associated with seed diversity, seed availability, linkage density and generality of seed-rodent networks, providing evidence of supporting the Bottom-Up Diversity-Stability Hypotheses and the Abundant Food Diversity-Stability Hypothesis. Our findings highlight the significant role of resource diversity and availability in promoting consumers' community stability at trophic and network levels, and the necessity of protecting biodiversity for increasing ecosystem stability under human disturbance and climate variation.
Collapse
Affiliation(s)
- Xifu Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Haifeng Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingjian Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yunlong Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuwei Teng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Eschenbrenner J, Thébault É. Diversity, food web structure and the temporal stability of total plant and animal biomasses. OIKOS 2022. [DOI: 10.1111/oik.08769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jérôme Eschenbrenner
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES‐Paris) Paris France
- Sorbonne Univ., Univ. Paris Est Créteil, Univ. de Paris, CNRS, INRAE, IRD, Inst. d'Écologie et des Sciences de l'Environnement – Paris, iEES‐Paris Paris France
| | - Élisa Thébault
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES‐Paris) Paris France
- Sorbonne Univ., Univ. Paris Est Créteil, Univ. de Paris, CNRS, INRAE, IRD, Inst. d'Écologie et des Sciences de l'Environnement – Paris, iEES‐Paris Paris France
| |
Collapse
|
13
|
Merging theory and experiments to predict and understand coextinctions. Trends Ecol Evol 2022; 37:886-898. [DOI: 10.1016/j.tree.2022.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
|
14
|
Liu Y, Li D, Gao H, Li Y, Chen W, Jiao S, Wei G. Regulation of soil micro-foodwebs to root secondary metabolites in cultivated and wild licorice plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154302. [PMID: 35276159 DOI: 10.1016/j.scitotenv.2022.154302] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The diversity of soil eukaryotes and micro-foodwebs are only partially understood. Moreover, how they affect secondary metabolites in plant roots under distinct soil environment is not well elucidated. By combining multiple statistical analyses and network constructions, variations in soil eukaryotic diversity, community assembly processes and potential associations of holistic microbiotas were investigated in the bulk and rhizosphere soils of cultivated and wild licorice, and their regulatory patterns for root secondary metabolites were elucidated. The protistan communities displayed lower alpha diversity, more varied beta diversity patterns, and higher stochastic processes, as compared with fungal communities. Soil fungi individually played a more essential role than soil protists in the regulation of root secondary metabolites. Furthermore, rhizosphere soil was associated with more complicated networks than bulk soil; and wild licorice was associated with more complicated networks than cultivated licorice. Specific responsive modules resulting from networks were essential for the regulation of root secondary metabolites and were mostly affected by edaphic properties. Moreover, these modules directly or indirectly regulated the root secondary metabolites to varying degrees in the presence of soil protists. This indicated that the secondary metabolites were affected by associations between protistan, fungal and bacterial groups, and not merely by individual types of microorganisms in agricultural ecosystems. This study provides insight into the responses of root secondary metabolites to different groups of soil eukaryotic diversity and micro-foodwebs. The results have implications for comprehensively understanding the characteristics of the separate and combined roles of microbiotas for environmental management of licorice plantation ecosystem.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Da Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hang Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhua Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
15
|
Structure and Stability of Agroforestry Ecosystems: Insights into the Improvement of Service Supply Capacity of Agroforestry Ecosystems under the Karst Rocky Desertification Control. FORESTS 2022. [DOI: 10.3390/f13060878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agroforestry provides essential ecosystem services; its structure and stability directly determine ecosystem function and service provision. Sustaining agroforestry ecosystem functions and services in the long term is necessary to meet the needs of people. This study conducted a literature search and statistical analysis based on WOS and CNKI literature databases. We reviewed 136 literature reports on studies of agroforestry ecosystem structure and stability. The landmark results are summarized in five aspects of agroforestry ecosystems: structure characteristics, structure optimization, structure design, stability research, and influence factors. On this basis, the key scientific issues that need to be solved are summarized, and their insights for improving the supply capacity of agroforestry ecosystem services under the rocky desertification control are discussed.
Collapse
|
16
|
Polazzo F, Roth SK, Hermann M, Mangold‐Döring A, Rico A, Sobek A, Van den Brink PJ, Jackson M. Combined effects of heatwaves and micropollutants on freshwater ecosystems: Towards an integrated assessment of extreme events in multiple stressors research. GLOBAL CHANGE BIOLOGY 2022; 28:1248-1267. [PMID: 34735747 PMCID: PMC9298819 DOI: 10.1111/gcb.15971] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 05/11/2023]
Abstract
Freshwater ecosystems are strongly influenced by weather extremes such as heatwaves (HWs), which are predicted to increase in frequency and magnitude in the future. In addition to these climate extremes, the freshwater realm is impacted by the exposure to various classes of chemicals emitted by anthropogenic activities. Currently, there is limited knowledge on how the combined exposure to HWs and chemicals affects the structure and functioning of freshwater ecosystems. Here, we review the available literature describing the single and combined effects of HWs and chemicals on different levels of biological organization, to obtain a holistic view of their potential interactive effects. We only found a few studies (13 out of the 61 studies included in this review) that investigated the biological effects of HWs in combination with chemical pollution. The reported interactive effects of HWs and chemicals varied largely not only within the different trophic levels but also depending on the studied endpoints for populations or individuals. Hence, owing also to the little number of studies available, no consistent interactive effects could be highlighted at any level of biological organization. Moreover, we found an imbalance towards single species and population experiments, with only five studies using a multitrophic approach. This results in a knowledge gap for relevant community and ecosystem level endpoints, which prevents the exploration of important indirect effects that can compromise food web stability. Moreover, this knowledge gap impairs the validity of chemical risk assessments and our ability to protect ecosystems. Finally, we highlight the urgency of integrating extreme events into multiple stressors studies and provide specific recommendations to guide further experimental research in this regard.
Collapse
Affiliation(s)
- Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
| | - Sabrina K. Roth
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Markus Hermann
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Annika Mangold‐Döring
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| | - Anna Sobek
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Paul J. Van den Brink
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
- Wageningen Environmental ResearchWageningenThe Netherlands
| | | |
Collapse
|
17
|
Caron D, Maiorano L, Thuiller W, Pollock LJ. Addressing the Eltonian shortfall with trait-based interaction models. Ecol Lett 2022; 25:889-899. [PMID: 35032411 DOI: 10.1111/ele.13966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022]
Abstract
We have very limited knowledge of how species interact in most communities and ecosystems despite trophic relationships being fundamental for linking biodiversity to ecosystem functioning. A promising approach to fill this gap is to predict interactions based on functional traits, but many questions remain about how well we can predict interactions for different taxa, ecosystems and amounts of input data. Here, we built a new traits-based model of trophic interactions for European vertebrates and found that even models calibrated with 0.1% of the interactions (100 out of 71 k) estimated the full European vertebrate food web reasonably well. However, predators were easier to predict than prey, especially for some clades (e.g. fowl and storks) and local food web connectance was consistently overestimated. Our results demonstrate the ability to rapidly generate food webs when empirical data are lacking-an important step towards a more complete and spatially explicit description of food webs.
Collapse
Affiliation(s)
- Dominique Caron
- Department of Biology, McGill University, Montreal, QC, Canada.,Quebec Centre for Biodiversity Sciences, Montreal, QC, Canada
| | - Luigi Maiorano
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, Grenoble, France
| | - Laura J Pollock
- Department of Biology, McGill University, Montreal, QC, Canada.,Quebec Centre for Biodiversity Sciences, Montreal, QC, Canada
| |
Collapse
|
18
|
Van den Brink PJ, Alix A, Thorbek P, Baveco H, Agatz A, Faber JH, Brown AR, Marshall S, Maltby L. The use of ecological models to assess the effects of a plant protection product on ecosystem services provided by an orchard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149329. [PMID: 34375230 DOI: 10.1016/j.scitotenv.2021.149329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
The objective of this case study was to explore the feasibility of using ecological models for applying an ecosystem services-based approach to environmental risk assessment using currently available data and methodologies. For this we used a 5 step approach: 1) selection of environmental scenario, 2) ecosystem service selection, 3) development of logic chains, 4) selection and application of ecological models and 5) detailed ecosystem service assessment. The study system is a European apple orchard managed according to integrated pest management principles. An organophosphate insecticide was used as the case study chemical. Four ecosystem services are included in this case study: soil quality regulation, pest control, pollination and recreation. Logic chains were developed for each ecosystem service and describe the link between toxicant effects on service providing units and ecosystem services delivery. For the soil quality regulation ecosystem service, springtails and earthworms were the service providing units, for the pest control ecosystem service it was ladybirds, for the pollination ecosystem service it was honeybees and for the recreation ecosystem service it was the meadow brown butterfly. All the ecological models addressed the spatio-temporal magnitude of the direct effects of the insecticide on the service providing units and ecological production functions were used to extrapolate these outcomes to the delivery of ecosystem services. For all ecosystem services a decision on the acceptability of the modelled and extrapolated effects on the service providing units could be made using the protection goals as set by the European Food Safety Authority (EFSA). Developing quantitative ecological production functions for extrapolation of ecosystem services delivery from population endpoints remains one of the major challenges. We feel that the use of ecological models can greatly add to this development, although the further development of existing ecological models, and of new models, is needed for this.
Collapse
Affiliation(s)
- Paul J Van den Brink
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Anne Alix
- Corteva Agriscience, 3B Park Square, Milton Park, Abingdon, Oxfordshire OX14 4RN, UK
| | - Pernille Thorbek
- BASF SE, APD/EE, Speyerer Strasse 2, 67117 Limburgerhof, Germany
| | - Hans Baveco
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Annika Agatz
- Ibacon GmbH, Arheilger Weg 17, 64380 Roßdorf, Germany
| | - Jack H Faber
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - A Ross Brown
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX44QD, UK
| | | | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
19
|
Albert G, Gauzens B, Loreau M, Wang S, Brose U. The hidden role of multi-trophic interactions in driving diversity-productivity relationships. Ecol Lett 2021; 25:405-415. [PMID: 34846785 DOI: 10.1111/ele.13935] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Resource-use complementarity of producer species is often invoked to explain the generally positive diversity-productivity relationships. Additionally, multi-trophic interactions that link processes across trophic levels have received increasing attention as a possible key driver. Given that both are integral to natural ecosystems, their interactive effect should be evident but has remained hidden. We address this issue by analysing diversity-productivity relationships in a simulation experiment of producer communities nested within complex food-webs, manipulating resource-use complementarity and multi-trophic animal richness. We show that these two mechanisms interactively create diverse communities of complementary producer species. This shapes diversity-productivity relationships such that their joint contribution generally exceeds their individual effects. Specifically, multi-trophic interactions in animal-rich ecosystems facilitate producer coexistence by preventing competitive exclusion despite overlaps in resource-use, which increases the realised complementarity. The interdependence of food-webs and producer complementarity in creating biodiversity-productivity relationships highlights the importance to adopt a multi-trophic perspective on biodiversity-ecosystem functioning relationships.
Collapse
Affiliation(s)
- Georg Albert
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Benoit Gauzens
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
20
|
Holmes M, Spaak JW, De Laender F. Stressor richness intensifies productivity loss but mitigates biodiversity loss. Ecol Evol 2021; 11:14977-14987. [PMID: 34765154 PMCID: PMC8571636 DOI: 10.1002/ece3.8182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Ecosystems are subject to a multitude of anthropogenic environmental changes. Experimental research in the field of multiple stressors has typically involved varying the number of stressors, here termed stressor richness, but without controlling for total stressor intensity. Mistaking stressor intensity effects for stressor richness effects can misinform management decisions when there is a trade-off between mitigating these two factors. We incorporate multiple stressors into three community models and show that, at a fixed total stressor intensity, increasing stressor richness aggravates joint stressor effects on ecosystem functioning, but reduces effects on species persistence and composition. In addition, stressor richness weakens the positive selection and negative complementarity effects on ecosystem function. We identify the among-species variation of stressor effects on traits as a key determinant of the resulting community-level stressor effects. Taken together, our results unravel the mechanisms linking multiple environmental changes to biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Mark Holmes
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and EnvironmentUniversity of NamurNamurBelgium
| | - Jurg Werner Spaak
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and EnvironmentUniversity of NamurNamurBelgium
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and EnvironmentUniversity of NamurNamurBelgium
| |
Collapse
|
21
|
Rezende F, Antiqueira PAP, Petchey OL, Velho LFM, Rodrigues LC, Romero GQ. Trophic downgrading decreases species asynchrony and community stability regardless of climate warming. Ecol Lett 2021; 24:2660-2673. [PMID: 34537987 DOI: 10.1111/ele.13885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023]
Abstract
Theory and some evidence suggest that biodiversity promotes stability. However, evidence of how trophic interactions and environmental changes modulate this relationship in multitrophic communities is lacking. Given the current scenario of biodiversity loss and climate changes, where top predators are disproportionately more affected, filling these knowledge gaps is crucial. We simulated climate warming and top predator loss in natural microcosms to investigate their direct and indirect effects on temporal stability of microbial communities and the role of underlying stabilising mechanisms. Community stability was insensitive to warming, but indirectly decreased due to top predator loss via increased mesopredator abundance and consequent reduction of species asynchrony and species stability. The magnitude of destabilising effects differed among trophic levels, being disproportionally higher at lower trophic levels (e.g. producers). Our study unravels major patterns and causal mechanisms by which trophic downgrading destabilises large food webs, regardless of climate warming scenarios.
Collapse
Affiliation(s)
- Felipe Rezende
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil.,Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| | - Pablo A P Antiqueira
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| | - Owen L Petchey
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Luiz Felipe M Velho
- Universidade Estadual de Maringá (UEM), DBI/PEA/NUPÉLIA, Av. Colombo, Maringá-PR, Brazil
| | - Luzia C Rodrigues
- Universidade Estadual de Maringá (UEM), DBI/PEA/NUPÉLIA, Av. Colombo, Maringá-PR, Brazil
| | - Gustavo Q Romero
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| |
Collapse
|
22
|
Spaak JW, Carpentier C, De Laender F. Species richness increases fitness differences, but does not affect niche differences. Ecol Lett 2021; 24:2611-2623. [PMID: 34532957 DOI: 10.1111/ele.13877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/21/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022]
Abstract
A key question in ecology is what limits species richness. Modern coexistence theory presents the persistence of species as a balance between niche differences and fitness differences that favour and hamper coexistence, respectively. With most applications focusing on species pairs, however, we know little about if and how this balance changes with species richness. Here, we apply recently developed definitions of niche and fitness differences, based on invasion analysis, to multispecies communities. We present the first mathematical proof that, for invariant average interaction strengths, the average fitness difference among species increases with richness, while the average niche difference stays constant. Extensive simulations with more complex models and analyses of empirical data confirmed these mathematical results. Combined, our work suggests that, as species accumulate in ecosystems, ever-increasing fitness differences will at some point exceed constant niche differences, limiting species richness. Our results contribute to a better understanding of coexistence multispecies communities.
Collapse
Affiliation(s)
- Jurg W Spaak
- University of Namur, Institute of Life-Earth-Environment, Namur Center for Complex Systems, Namur, Belgium.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Camille Carpentier
- University of Namur, Institute of Life-Earth-Environment, Namur Center for Complex Systems, Namur, Belgium
| | - Frederik De Laender
- University of Namur, Institute of Life-Earth-Environment, Namur Center for Complex Systems, Namur, Belgium
| |
Collapse
|
23
|
Trogisch S, Liu X, Rutten G, Xue K, Bauhus J, Brose U, Bu W, Cesarz S, Chesters D, Connolly J, Cui X, Eisenhauer N, Guo L, Haider S, Härdtle W, Kunz M, Liu L, Ma Z, Neumann S, Sang W, Schuldt A, Tang Z, van Dam NM, von Oheimb G, Wang MQ, Wang S, Weinhold A, Wirth C, Wubet T, Xu X, Yang B, Zhang N, Zhu CD, Ma K, Wang Y, Bruelheide H. The significance of tree-tree interactions for forest ecosystem functioning. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Wood ZT, Palkovacs EP, Olsen BJ, Kinnison MT. The Importance of Eco-evolutionary Potential in the Anthropocene. Bioscience 2021. [DOI: 10.1093/biosci/biab010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Humans are dominant global drivers of ecological and evolutionary change, rearranging ecosystems and natural selection. In the present article, we show increasing evidence that human activity also plays a disproportionate role in shaping the eco-evolutionary potential of systems—the likelihood of ecological change generating evolutionary change and vice versa. We suggest that the net outcome of human influences on trait change, ecology, and the feedback loops that link them will often (but not always) be to increase eco-evolutionary potential, with important consequences for stability and resilience of populations, communities, and ecosystems. We also integrate existing ecological and evolutionary metrics to predict and manage the eco-evolutionary dynamics of human-affected systems. To support this framework, we use a simple eco–evo feedback model to show that factors affecting eco-evolutionary potential are major determinants of eco-evolutionary dynamics. Our framework suggests that proper management of anthropogenic effects requires a science of human effects on eco-evolutionary potential.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Brian J Olsen
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Michael T Kinnison
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| |
Collapse
|
25
|
Liao CP, Hsu JY, Huang SP, Clark RW, Lin JW, Tseng HY, Huang WS. Sum of fears among intraguild predators drives the survival of green sea turtle ( Chelonia mydas) eggs. Proc Biol Sci 2021; 288:20202631. [PMID: 33563122 DOI: 10.1098/rspb.2020.2631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecologists have long theorized that apex predators stabilize trophic systems by exerting a net protective effect on the basal resource of a food web. Although experimental and observational studies have borne this out, it is not always clear what behavioural mechanisms among the trophically connected species are responsible for this stability. Fear of intraguild predation is commonly identified as one such mechanism in models and mesocosm studies, but empirical evidence in natural systems remains limited, as the complexity of many trophic systems renders detailed behavioural studies of species interactions challenging. Here, we combine long-term field observations of a trophic system in nature with experimental behavioural studies of how all the species in this system interact, in both pairs and groups. The results demonstrate how an abundant, sessile and palatable prey item (sea turtle eggs, Chelonia mydas) survives when faced by three potential predators that all readily eat eggs: an apex predator (the stink ratsnake, Elaphe carinata) and two mesopredators (the brown rat, Rattus norvegicus, and kukri snake, Oligodon formosanus). Our results detail how fear of intraguild predation, conspecific cannibalism, habitat structure and territorial behaviour among these species interact in a complex fashion that results in high egg survival.
Collapse
Affiliation(s)
- Chen-Pan Liao
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Jung-Ya Hsu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shi-Ping Huang
- Department of Life Sciences, Tunghai University, Taichung, Taiwan
| | - Rulon W Clark
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Jhan-Wei Lin
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Hui-Yun Tseng
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan.,Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Wen-San Huang
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Life Sciences, Tunghai University, Taichung, Taiwan
| |
Collapse
|
26
|
Moi DA, Romero GQ, Antiqueira PAP, Mormul RP, Teixeira de Mello F, Bonecker CC. Multitrophic richness enhances ecosystem multifunctionality of tropical shallow lakes. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dieison A. Moi
- Graduate Program in Ecology of Inland Water Ecosystems Department of Biology State University of Maringá Maringá Brazil
| | - Gustavo Q. Romero
- Laboratory of Multitrophic Interactions and Biodiversity Department of Animal Biology Institute of Biology University of Campinas (UNICAMP) Campinas Brazil
| | - Pablo A. P. Antiqueira
- Laboratory of Multitrophic Interactions and Biodiversity Department of Animal Biology Institute of Biology University of Campinas (UNICAMP) Campinas Brazil
| | - Roger P. Mormul
- Graduate Program in Ecology of Inland Water Ecosystems Department of Biology State University of Maringá Maringá Brazil
| | | | - Claudia C. Bonecker
- Graduate Program in Ecology of Inland Water Ecosystems Department of Biology State University of Maringá Maringá Brazil
| |
Collapse
|
27
|
Fei M, Kong X. Prey preference of top predators manipulates the functioning and stability of multi-trophic ecosystems. ECOLOGICAL COMPLEXITY 2021. [DOI: 10.1016/j.ecocom.2021.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Zhao Q, De Laender F, Van den Brink PJ. Community composition modifies direct and indirect effects of pesticides in freshwater food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139531. [PMID: 32531685 DOI: 10.1016/j.scitotenv.2020.139531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
For environmental risk assessment, the effects of pesticides on aquatic ecosystems are often assessed based on single species tests, disregarding the potential influence of community composition. We, therefore, studied the influence of changing the horizontal (the number of species within trophic levels) and vertical composition (number of trophic levels) on the ecological effects of the herbicide linuron and the insecticide chlorpyrifos, targeting producers and herbivores, respectively. We tested how adding, to a single primary producer, 4 selected competing producer species, 0-1-4 selected herbivore species, and one selected predator species resulting in 1, 2 and 3 trophic levels, changes the effects of the two pesticides. Linuron decreased producer biovolume less (17%) when the 4 producers were added, because insensitive producers compensated for the loss of sensitive producers. However, linuron decreased producer biovolume 42% and 32% more as we increased the number of herbivore species from 0 to 4 and as we increased trophic levels from 1 to 3, respectively. The indirect negative effect of linuron on herbivore biovolume was 11% and 15% lower when more producer and herbivores were added, respectively. Adding a predator increased this indirect negative effect by 22%. Chlorpyrifos decreased herbivore biovolume about 10% less when adding multiple herbivore or producer species. However, adding a predator magnified the direct negative impact on herbivores (13%). Increasing the number of producer, herbivore species and adding trophic levels increased the indirect positive impact on producer biovolume (between 10% and 35%). Our study shows that changing horizontal composition can both increase and decrease the effects of the selected pesticides, while changing vertical composition by adding number of trophic levels always increased these effects. Therefore, single species sensitivity will not always represent a worst case estimate of ecological effects. Protecting the most sensitive species may not ensure protection of ecosystems.
Collapse
Affiliation(s)
- Qinghua Zhao
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
29
|
Ostandie N, Muneret L, Giffard B, Thiéry D, Rusch A. The shape of the predator biomass distribution affects biological pest control services in agricultural landscapes. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Noémie Ostandie
- INRAE ISVV UMR 1065 Santé et Agroécologie du Vignoble Villenave d'Ornon France
| | - Lucile Muneret
- INRAE ISVV UMR 1065 Santé et Agroécologie du Vignoble Villenave d'Ornon France
- INRAE UMR 1347 Agroécologie Agro Sup Dijon Université Bourgogne Franche‐Comté Dijon France
| | - Brice Giffard
- INRAE ISVV UMR 1065 Santé et Agroécologie du Vignoble Villenave d'Ornon France
| | - Denis Thiéry
- INRAE ISVV UMR 1065 Santé et Agroécologie du Vignoble Villenave d'Ornon France
| | - Adrien Rusch
- INRAE ISVV UMR 1065 Santé et Agroécologie du Vignoble Villenave d'Ornon France
| |
Collapse
|
30
|
Taylor NP, Kim H, Krause AL, Van Gorder RA. A Non-local Cross-Diffusion Model of Population Dynamics I: Emergent Spatial and Spatiotemporal Patterns. Bull Math Biol 2020; 82:112. [PMID: 32780350 DOI: 10.1007/s11538-020-00786-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 07/31/2020] [Indexed: 11/28/2022]
Abstract
We extend a spatially non-local cross-diffusion model of aggregation between multiple species with directed motion toward resource gradients to include many species and more general kinds of dispersal. We first consider diffusive instabilities, determining that for directed motion along fecundity gradients, the model permits the Turing instability leading to colony formation and persistence provided there are three or more interacting species. We also prove that such patterning is not possible in the model under the Turing mechanism for two species under directed motion along fecundity gradients, confirming earlier findings in the literature. However, when the directed motion is not along fecundity gradients, for instance, if foraging or migration is sub-optimal relative to fecundity gradients, we find that very different colony structures can emerge. This generalization also permits colony formation for two interacting species. In the advection-dominated case, aggregation patterns are more broad and global in nature, due to the inherent non-local nature of the advection which permits directed motion over greater distances, whereas in the diffusion-dominated case, more highly localized patterns and colonies develop, owing to the localized nature of random diffusion. We also consider the interplay between Turing patterning and spatial heterogeneity in resources. We find that for small spatial variations, there will be a combination of Turing patterns and patterning due to spatial forcing from the resources, whereas for large resource variations, spatial or spatiotemporal patterning can be modified greatly from what is predicted on homogeneous domains. For each of these emergent behaviors, we outline the theoretical mechanism leading to colony formation and then provide numerical simulations to illustrate the results. We also discuss implications this model has for studies of directed motion in different ecological settings.
Collapse
Affiliation(s)
- Nick P Taylor
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Hyunyeon Kim
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Andrew L Krause
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Robert A Van Gorder
- Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
31
|
Beaumelle L, De Laender F, Eisenhauer N. Biodiversity mediates the effects of stressors but not nutrients on litter decomposition. eLife 2020; 9:55659. [PMID: 32589139 PMCID: PMC7402682 DOI: 10.7554/elife.55659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding the consequences of ongoing biodiversity changes for ecosystems is a pressing challenge. Controlled biodiversity-ecosystem function experiments with random biodiversity loss scenarios have demonstrated that more diverse communities usually provide higher levels of ecosystem functioning. However, it is not clear if these results predict the ecosystem consequences of environmental changes that cause non-random alterations in biodiversity and community composition. We synthesized 69 independent studies reporting 660 observations of the impacts of two pervasive drivers of global change (chemical stressors and nutrient enrichment) on animal and microbial decomposer diversity and litter decomposition. Using meta-analysis and structural equation modeling, we show that declines in decomposer diversity and abundance explain reduced litter decomposition in response to stressors but not to nutrients. While chemical stressors generally reduced biodiversity and ecosystem functioning, detrimental effects of nutrients occurred only at high levels of nutrient inputs. Thus, more intense environmental change does not always result in stronger responses, illustrating the complexity of ecosystem consequences of biodiversity change. Overall, these findings provide strong evidence that the consequences of observed biodiversity change for ecosystems depend on the kind of environmental change, and are especially significant when human activities decrease biodiversity.
Collapse
Affiliation(s)
- Léa Beaumelle
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, Belgium
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
32
|
Lin D, Chen X. Top predator reveals the stability of prey community in the western subarctic Pacific. PLoS One 2020; 15:e0234905. [PMID: 32559216 PMCID: PMC7304915 DOI: 10.1371/journal.pone.0234905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/04/2020] [Indexed: 11/19/2022] Open
Abstract
The stability of the ecosystems depends on the dynamics of the prey community, but changes in the composition and abundance of prey species are poorly understood, especially in open ocean ecosystems. We used neon flying squid Ommastrephes bartramii, an active top predator, as a biological sampler to investigate the dynamics of the prey community in the southwestern part of the Western Subarctic Gyre in the northwestern Pacific Ocean. Squid were collected monthly from July to November 2016. There were no significant differences among months in stable isotopes (δ13C and δ15N) in the digestive gland, a fast turnover organ reflecting recent dietary information. Similar findings were obtained from analyses of isotopic niche width and fatty acid profiles. The potential influence of the environment (monthly mean sea surface temperature, SST, and chlorophyll-a, Chl-a) on the prey community was examined with SST and Chl-a both varying significantly among sampling months. We found little evidence for significant effects of SST and Chl-a on the isotopic values, nor on the fatty acid profiles except for 20:4n6 and 24:1n9. These lines of evidence indicate that the prey community in the southwestern part of the gyre remains stable, with little evidence for systematic changes at the community level. This study provides a novel understanding of the dynamics of the prey community and highlights the use of top predators to study the trophic dynamics of an oceanic system where a long-term scientific survey is unavailable.
Collapse
Affiliation(s)
- Dongming Lin
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fishery Resources, Ministry of Education, Shanghai, China
- National Distant-water Fisheries Engineering Research Center, Shanghai, China
- Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xinjun Chen
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fishery Resources, Ministry of Education, Shanghai, China
- National Distant-water Fisheries Engineering Research Center, Shanghai, China
- Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
33
|
Gonzalez A, Germain RM, Srivastava DS, Filotas E, Dee LE, Gravel D, Thompson PL, Isbell F, Wang S, Kéfi S, Montoya J, Zelnik YR, Loreau M. Scaling-up biodiversity-ecosystem functioning research. Ecol Lett 2020; 23:757-776. [PMID: 31997566 PMCID: PMC7497049 DOI: 10.1111/ele.13456] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 12/14/2019] [Indexed: 12/27/2022]
Abstract
A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.
Collapse
Affiliation(s)
- Andrew Gonzalez
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, H3A 1B1, Canada
| | - Rachel M Germain
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Diane S Srivastava
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Elise Filotas
- Center for Forest Research, Département Science et Technologie, Université du Québec, 5800 Saint-Denis, Téluq, Montreal, H2S 3L5, Canada
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, J1K 2R1, Canada
| | - Patrick L Thompson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
| | - Jose Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Yuval R Zelnik
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| |
Collapse
|