1
|
Wada Y, Iwasaki K, Yusa Y. Effects of adult and egg predators on hatching plasticity of the pulmonate limpet. Oecologia 2025; 207:86. [PMID: 40397028 DOI: 10.1007/s00442-025-05712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/10/2025] [Indexed: 05/22/2025]
Abstract
In response to predation threats during the embryonic period, prey from diverse taxonomic groups exhibit plasticity in their hatching timing. In theory, predators of adult prey, as well as predators of eggs or embryos, can influence hatching timing. Similarly, not only embryos but also parents of prey can regulate hatching timing. However, research on the influence of adult predators and adult prey on hatching timing in species with separate predators for adults and eggs remains limited. To the best of our knowledge, no study has investigated this phenomenon in marine invertebrates under natural conditions. In this study, we investigated the effects of life-stage-specific predators (i.e., adult and egg predators) on the hatching timing of the pulmonate limpet (Siphonaria sirius), which undergoes planktonic development on an intertidal rocky shore. The presence of adult predators before and after egg-laying did not affect the hatching timing. Furthermore, while the egg predators present before egg-laying did not influence hatching timing, those present after egg-laying accelerated it. The results indicate that embryos, rather than their parents, determine hatching timing in response to their own predation risk. This finding highlights a strategy in which organisms with planktonic development rely on embryonic plasticity to mitigate strong predation risks during the egg stage. To understand how predation risk shapes predator-prey dynamics, it is critical to identify how predators, specific to each life-history stage of prey (such as adult and egg), interact with prey at different life-history stages during key events like reproduction.
Collapse
Affiliation(s)
- Yoko Wada
- Faculty of Agriculture, Miyazaki University, Miyazaki, Japan.
| | | | - Yoichi Yusa
- Faculty of Science, Nara Women's University, Nara, Japan
| |
Collapse
|
2
|
Martins LP, Stouffer DB, Blendinger PG, Böhning-Gaese K, Costa JM, Dehling DM, Donatti CI, Emer C, Galetti M, Heleno R, Menezes Í, Morante-Filho JC, Muñoz MC, Neuschulz EL, Pizo MA, Quitián M, Ruggera RA, Saavedra F, Santillán V, Schleuning M, da Silva LP, Ribeiro da Silva F, Tobias JA, Traveset A, Vollstädt MGR, Tylianakis JM. Birds optimize fruit size consumed near their geographic range limits. Science 2024; 385:331-336. [PMID: 39024457 DOI: 10.1126/science.adj1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024]
Abstract
Animals can adjust their diet to maximize energy or nutritional intake. For example, birds often target fruits that match their beak size because those fruits can be consumed more efficiently. We hypothesized that pressure to optimize diet-measured as matching between fruit and beak size-increases under stressful environments, such as those that determine species' range edges. Using fruit-consumption and trait information for 97 frugivorous bird and 831 plant species across six continents, we demonstrate that birds feed more frequently on closely size-matched fruits near their geographic range limits. This pattern was particularly strong for highly frugivorous birds, whereas opportunistic frugivores showed no such tendency. These findings highlight how frugivore interactions might respond to stressful conditions and reveal that trait matching may not predict resource use consistently.
Collapse
Affiliation(s)
- Lucas P Martins
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| | - Pedro G Blendinger
- Instituto de Ecología Regional, Universidad Nacional de Tucumán and CONICET, CC 34, 4107 Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 2005, 4000 Tucumán, Argentina
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60439 Frankfurt am Main, Germany
| | - José Miguel Costa
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - D Matthias Dehling
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Camila I Donatti
- Conservation International, Arlington, VA 22202, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| | - Carine Emer
- Rio de Janeiro Botanical Garden Research Institute, Rua Pacheco Leão 915, Jardim Botânico, Rio de Janeiro, RJ 22460-030, Brazil
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Mauro Galetti
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
- Kimberly Green Latin American and Caribbean Center, Florida International University (FIU), Miami, FL 33199, USA
| | - Ruben Heleno
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ícaro Menezes
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, BA 45662-000, Brazil
| | - José Carlos Morante-Filho
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, BA 45662-000, Brazil
| | - Marcia C Muñoz
- Programa de Biología, Universidad de La Salle, Carrera 2 # 10-70, Bogotá, Colombia
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Marco Aurélio Pizo
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Marta Quitián
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Systematic Zoology Laboratory, Tokyo Metropolitan University TMU, Tokyo, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
| | - Roman A Ruggera
- Instituto de Ecorregiones Andinas (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Jujuy), Canónigo Gorriti 237, Y4600 San Salvador de Jujuy, Jujuy, Argentina
- Cátedra de Diversidad Biológica III, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, Y4600 San Salvador de Jujuy, Jujuy, Argentina
| | - Francisco Saavedra
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Vinicio Santillán
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Av. de las Américas, Cuenca, Ecuador
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Luís Pascoal da Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Fernanda Ribeiro da Silva
- Laboratory of Ecology and Management of Forest Ecosystems, University of Santa Catarina (UFSC), Trindade, Florianópolis, SC 88040-900, Brazil
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Anna Traveset
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
| | - Maximilian G R Vollstädt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Jason M Tylianakis
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
- Bioprotection Aotearoa, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| |
Collapse
|
3
|
Hatton IA, Mazzarisi O, Altieri A, Smerlak M. Diversity begets stability: Sublinear growth and competitive coexistence across ecosystems. Science 2024; 383:eadg8488. [PMID: 38484074 DOI: 10.1126/science.adg8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
The worldwide loss of species diversity brings urgency to understanding how diverse ecosystems maintain stability. Whereas early ecological ideas and classic observations suggested that stability increases with diversity, ecological theory makes the opposite prediction, leading to the long-standing "diversity-stability debate." Here, we show that this puzzle can be resolved if growth scales as a sublinear power law with biomass (exponent <1), exhibiting a form of population self-regulation analogous to models of individual ontogeny. We show that competitive interactions among populations with sublinear growth do not lead to exclusion, as occurs with logistic growth, but instead promote stability at higher diversity. Our model realigns theory with classic observations and predicts large-scale macroecological patterns. However, it makes an unsettling prediction: Biodiversity loss may accelerate the destabilization of ecosystems.
Collapse
Affiliation(s)
- Ian A Hatton
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC H3A 0E8, Canada
| | - Onofrio Mazzarisi
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
- The Abdus Salam International Centre for Theoretical Physics (ICTP), 34014 Trieste, Italy
- National Institute of Oceanography and Applied Geophysics (OGS), 34014 Trieste, Italy
| | - Ada Altieri
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité CNRS, 75013 Paris, France
| | - Matteo Smerlak
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Laboratoire de Biophysique et Evolution, UMR 8231 CBI, ESPCI Paris, PSL Research University, 75005 Paris, France
- Capital Fund Management, 75007 Paris, France
| |
Collapse
|
4
|
Gauzens B, Kalinkat G, Antunes AC, Boy T, O'Gorman EJ, Jacob U, Jochum M, Kortsch S, Rosenbaum B, Figueiredo L, Brose U. Quantitative description of six fish species' gut contents and prey abundances in the Baltic Sea (1968-1978). Sci Data 2024; 11:236. [PMID: 38396055 PMCID: PMC10891096 DOI: 10.1038/s41597-024-03075-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The dataset presents a compilation of stomach contents from six demersal fish species from two functional groups inhabiting the Baltic Sea. It includes detailed information on prey identities, body masses, and biomasses recovered from both the fish's digestive systems and their surrounding environment. Environmental parameters, such as salinity and temperature levels, have been integrated to enrich this dataset. The juxtaposition of information on prey found in stomachs and in the environment provides an opportunity to quantify trophic interactions across different environmental contexts and investigate how fish foraging behaviour adapts to changes in their environment, such as an increase in temperature. The compilation of body mass and taxonomic information for all species allows approaching these new questions using either a taxonomic (based on species identity) or functional trait (based on body mass) approach.
Collapse
Affiliation(s)
- Benoit Gauzens
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
| | - Gregor Kalinkat
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Ana Carolina Antunes
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Boy
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Ute Jacob
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570, Bremerhaven, Germany
| | - Malte Jochum
- Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Institute of Biology, Leipzig, Germany
- Department of Global Change Ecology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Susanne Kortsch
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Benjamin Rosenbaum
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Ludmilla Figueiredo
- Integrative Biodiversity Data and Code Support Unit, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Informatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Eichenwald AJ, Fefferman NH, Reed JM. Potential extinction cascades in a desert ecosystem: Linking food web interactions to community viability. Ecol Evol 2024; 14:e10930. [PMID: 38362165 PMCID: PMC10867880 DOI: 10.1002/ece3.10930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/17/2024] Open
Abstract
Desert communities are threatened with species loss due to climate change, and their resistance to such losses is unknown. We constructed a food web of the Mojave Desert terrestrial community (300 nodes, 4080 edges) to empirically examine the potential cascading effects of bird extinctions on this desert network, compared to losses of mammals and lizards. We focused on birds because they are already disappearing from the Mojave, and their relative thermal vulnerabilities are known. We quantified bottom-up secondary extinctions and evaluated the relative resistance of the community to losses of each vertebrate group. The impact of random bird species loss was relatively low compared to the consequences of mammal (causing the greatest number of cascading losses) or reptile loss, and birds were relatively less likely to be in trophic positions that could drive top-down effects in apparent competition and tri-tropic cascade motifs. An avian extinction cascade with year-long resident birds caused more secondary extinctions than the cascade involving all bird species for randomized ordered extinctions. Notably, we also found that relatively high interconnectivity among avian species has formed a subweb, enhancing network resistance to bird losses.
Collapse
Affiliation(s)
| | - Nina H. Fefferman
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - J. Michael Reed
- Department of BiologyTufts UniversityMedfordMassachusettsUSA
| |
Collapse
|
6
|
Ortiz E, Ramos-Jiliberto R, Arim M. Prey selection along a predators' body size gradient evidences the role of different trait-based mechanisms in food web organization. PLoS One 2023; 18:e0292374. [PMID: 37797081 PMCID: PMC10553361 DOI: 10.1371/journal.pone.0292374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
An increase in prey richness, prey size and predator trophic position with predator body size has been consistently reported as prime features of food web organization. These trends have been explained by non-exclusive mechanisms. First, the increase in energy demand with body size determines that larger predators must reduce prey selectivity for achieving the required number of resources, being consumption relationships independent of prey traits. Second, when consumption is restricted by gape limitation, small predators are constrained to select among small prey. However, this selection weakens over large predators, which progressively consume more and larger prey. Finally, the optimal foraging mechanism predicts that larger predators optimize their diet by selecting only large prey with high energy reward. Each one of these mechanisms can individually explain the increase in prey richness, prey size and predator trophic position with predator body size but their relative importance or the direct evidence for their combined role was seldom considered. Here we use the community assembly by trait selection (CATS) theory for evaluating the support for each one of these mechanisms based on the prey selection patterns that they predict. We analyzed how prey body size and trophic guild determine prey selection by predators of increasing body size in a killifish guild from a temporary pond system. Results support the combination of the three mechanisms to explain the structural trends in our food web, although their strength is contingent on prey trophic group. Overall, high energy prey are preferred by larger predators, and small predators select small prey of all trophic status. However, large predators prefer large primary producers and avoid large carnivorous prey, probably because of the inherent risk of consuming other carnivorous. Our study provides a mechanistic understanding of how predator traits determine the selection of prey traits affecting food web assembly.
Collapse
Affiliation(s)
- Esteban Ortiz
- Departamento de Ecología y Gestión Ambiental-Centro Universitario Regional del Este, Universidad de la República, Maldonado, Uruguay
| | | | - Matías Arim
- Departamento de Ecología y Gestión Ambiental-Centro Universitario Regional del Este, Universidad de la República, Maldonado, Uruguay
| |
Collapse
|
7
|
Ho HC, Brodersen J, Gossner MM, Graham CH, Kaeser S, Reji Chacko M, Seehausen O, Zimmermann NE, Pellissier L, Altermatt F. Blue and green food webs respond differently to elevation and land use. Nat Commun 2022; 13:6415. [PMID: 36302854 PMCID: PMC9613893 DOI: 10.1038/s41467-022-34132-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
While aquatic (blue) and terrestrial (green) food webs are parts of the same landscape, it remains unclear whether they respond similarly to shared environmental gradients. We use empirical community data from hundreds of sites across Switzerland and a synthesis of interaction information in the form of a metaweb to show that inferred blue and green food webs have different structural and ecological properties along elevation and among various land-use types. Specifically, in green food webs, their modular structure increases with elevation and the overlap of consumers' diet niche decreases, while the opposite pattern is observed in blue food webs. Such differences between blue and green food webs are particularly pronounced in farmland-dominated habitats, indicating that anthropogenic habitat modification modulates the climatic effects on food webs but differently in blue versus green systems. These findings indicate general structural differences between blue and green food webs and suggest their potential divergent future alterations through land-use or climatic changes.
Collapse
Affiliation(s)
- Hsi-Cheng Ho
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.
| | - Jakob Brodersen
- Department Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Martin M Gossner
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Catherine H Graham
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Silvana Kaeser
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Merin Reji Chacko
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Ole Seehausen
- Department Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
- Division Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland
| | - Niklaus E Zimmermann
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Loïc Pellissier
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
8
|
Gutiérrez Al‐Khudhairy OU, Rossberg AG. Evolution of prudent predation in complex food webs. Ecol Lett 2022; 25:1055-1074. [PMID: 35229972 PMCID: PMC9540554 DOI: 10.1111/ele.13979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 12/17/2021] [Indexed: 01/09/2023]
Abstract
Prudent predators catch sufficient prey to sustain their populations but not as much as to undermine their populations' survival. The idea that predators evolve to be prudent has been dismissed in the 1970s, but the arguments invoked then are untenable in the light of modern evolution theory. The evolution of prudent predation has repeatedly been demonstrated in two-species predator-prey metacommunity models. However, the vigorous population fluctuations that these models predict are not widely observed. Here we show that in complex model food webs prudent predation evolves as a result of consumer-mediated ('apparent') competitive exclusion of resources, which disadvantages aggressive consumers and does not generate such fluctuations. We make testable predictions for empirical signatures of this mechanism and its outcomes. Then we discuss how these predictions are borne out across freshwater, marine and terrestrial ecosystems. Demonstrating explanatory power of evolved prudent predation well beyond the question of predator-prey coexistence, the predicted signatures explain unexpected declines of invasive alien species, the shape of stock-recruitment relations of fish, and the clearance rates of pelagic consumers across the latitudinal gradient and 15 orders of magnitude in body mass. Specific research to further test this theory is proposed.
Collapse
Affiliation(s)
| | - Axel G. Rossberg
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
9
|
Beardsell A, Gravel D, Clermont J, Berteaux D, Gauthier G, Bêty J. A mechanistic model of functional response provides new insights into indirect interactions among arctic tundra prey. Ecology 2022; 103:e3734. [DOI: 10.1002/ecy.3734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Andréanne Beardsell
- Chaire de recherche du Canada en biodiversité nordique, Centre d’études nordiques et Centre de la science de la biodiversité du Québec Université du Québec à Rimouski Rimouski Québec Canada
| | - Dominique Gravel
- Département de biologie et Centre d’études nordiques Université de Sherbrooke Sherbrooke Québec Canada
| | - Jeanne Clermont
- Chaire de recherche du Canada en biodiversité nordique, Centre d’études nordiques et Centre de la science de la biodiversité du Québec Université du Québec à Rimouski Rimouski Québec Canada
| | - Dominique Berteaux
- Chaire de recherche du Canada en biodiversité nordique, Centre d’études nordiques et Centre de la science de la biodiversité du Québec Université du Québec à Rimouski Rimouski Québec Canada
| | - Gilles Gauthier
- Département de biologie et Centre d’études nordiques Université Laval Québec Québec Canada
| | - Joël Bêty
- Chaire de recherche du Canada en biodiversité nordique, Centre d’études nordiques et Centre de la science de la biodiversité du Québec Université du Québec à Rimouski Rimouski Québec Canada
| |
Collapse
|
10
|
Bellec L, Seimandi‐Corda G, Menacer K, Trabalon M, Ollivier J, Lunel C, Faure S, Cortesero A, Hervé M. Factors driving the within‐plant patterns of resource exploitation in a herbivore. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Bellec
- IGEPP‐UMR 1349, INRAE, Institut Agro, Univ Rennes 1, 35000 Rennes France
- Innolea, 6 Chemin de Panedautes, 31700 Mondonville France
| | - Gaëtan Seimandi‐Corda
- IGEPP‐UMR 1349, INRAE, Institut Agro, Univ Rennes 1, 35000 Rennes France
- Biointeractions and Crop protections, Rothamsted Research Harpenden
| | - Kathleen Menacer
- IGEPP‐UMR 1349, INRAE, Institut Agro, Univ Rennes 1, 35000 Rennes France
| | - Marie Trabalon
- EthoS‐UMR 6552, CNRS, Univ Rennes 1, 35000 Rennes France
| | - Jérôme Ollivier
- IGEPP‐UMR 1349, INRAE, Institut Agro, Univ Rennes 1, 35000 Rennes France
- ISCR, CNRS, 35000 Rennes France
| | - Christophe Lunel
- IGEPP‐UMR 1349, INRAE, Institut Agro, Univ Rennes 1, 35000 Rennes France
| | | | | | - Maxime Hervé
- IGEPP‐UMR 1349, INRAE, Institut Agro, Univ Rennes 1, 35000 Rennes France
| |
Collapse
|
11
|
McLeod A, Leroux SJ, Gravel D, Chu C, Cirtwill AR, Fortin M, Galiana N, Poisot T, Wood SA. Sampling and asymptotic network properties of spatial multi‐trophic networks. OIKOS 2021. [DOI: 10.1111/oik.08650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anne McLeod
- Dept of Biology, Memorial Univ. of Newfoundland St. John's NL Canada
| | - Shawn J. Leroux
- Dept of Biology, Memorial Univ. of Newfoundland St. John's NL Canada
| | | | - Cindy Chu
- Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry Peterborough ON Canada
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada Burlington ON Canada
| | | | - Marie‐Josée Fortin
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto Toronto ON Canada
| | - Núria Galiana
- Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier Univ. Moulis France
| | - Timothée Poisot
- Dépt de Sciences Biologiques, Univ. de Montréal Montréal QC Canada
| | | |
Collapse
|
12
|
Fritsch C, Billiard S, Champagnat N. Identifying conversion efficiency as a key mechanism underlying food webs adaptive evolution: a step forward, or backward? OIKOS 2021. [DOI: 10.1111/oik.07421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Bruckerhoff LA, Pennock CA, Gido KB. Do fine-scale experiments underestimate predator consumption rates? J Anim Ecol 2021; 90:2391-2403. [PMID: 34048063 DOI: 10.1111/1365-2656.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022]
Abstract
Understanding ecological processes across spatial scales helps link observations and predictions from experiments to ecological patterns occurring at coarser scales relevant to management and conservation. Using fish, we experimentally manipulated the size of arenas to test the spatial scaling of predator-prey interactions. We measured variation in predator consumption and prey behaviour (prey aggregation, spatial overlap with predators and movement) across arena sizes. Variation in prey behaviour across arena sizes was hypothesized to drive consumption patterns by altering prey vigilance and encounter rates with predators. Per capita consumption and movement were highest in the largest arena relative to the smallest and we observed a mismatch between where bass were present and the highest densities of prey across all arena sizes. We hypothesize more movement in largest arenas increased encounter rates and drove the observed increase in consumption with increasing arena size. Consumption estimates obtained in experimental studies may underestimate consumption, but understanding the mechanisms driving bias across scales helps predict the outcomes of predator-prey interactions in natural systems.
Collapse
Affiliation(s)
| | - Casey A Pennock
- Division of Biology, Kansas State University, Manhattan, KS, USA.,Department of Watershed Sciences, Utah State University, Logan, UT, USA
| | - Keith B Gido
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
14
|
Beardsell A, Gravel D, Berteaux D, Gauthier G, Clermont J, Careau V, Lecomte N, Juhasz CC, Royer-Boutin P, Bêty J. Derivation of Predator Functional Responses Using a Mechanistic Approach in a Natural System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.630944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The functional response is at the core of any predator-prey interactions as it establishes the link between trophic levels. The use of inaccurate functional response can profoundly affect the outcomes of population and community models. Yet most functional responses are evaluated using phenomenological models which often fail to discriminate among functional response shapes and cannot identify the proximate mechanisms regulating predator acquisition rates. Using a combination of behavioral, demographic, and experimental data collected over 20 years, we develop a mechanistic model based on species traits and behavior to assess the functional response of a generalist mammalian predator, the arctic fox (Vulpes lagopus), to various tundra prey species (lemmings and the nests of geese, passerines, and sandpipers). Predator acquisition rates derived from the mechanistic model were consistent with field observations. Although acquisition rates slightly decrease at high goose nest and lemming densities, none of our simulations resulted in a saturating response in all prey species. Our results highlight the importance of predator searching components in predator-prey interactions, especially predator speed, while predator acquisition rates were not limited by handling processes. By combining theory with field observations, our study provides support that the predator acquisition rate is not systematically limited at the highest prey densities observed in a natural system. Our study also illustrates how mechanistic models based on empirical estimates of the main components of predation can generate functional response shapes specific to the range of prey densities observed in the wild. Such models are needed to fully untangle proximate drivers of predator-prey population dynamics and to improve our understanding of predator-mediated interactions in natural communities.
Collapse
|
15
|
Ho HC, Tylianakis JM, Pawar S. Behaviour moderates the impacts of food-web structure on species coexistence. Ecol Lett 2020; 24:298-309. [PMID: 33205909 DOI: 10.1111/ele.13643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
How species coexistence (mathematical 'feasibility') in food webs emerges from species' trophic interactions remains a long-standing open question. Here we investigate how structure (network topology and body-size structure) and behaviour (foraging strategy and spatial dimensionality of interactions) interactively affect feasibility in food webs. Metabolically-constrained modelling of food-web dynamics based on whole-organism consumption revealed that feasibility is promoted in systems dominated by large-eat-small foraging (consumers eating smaller resources) whenever (1) many top consumers are present, (2) grazing or sit-and-wait foraging strategies are common, and (3) species engage in two-dimensional interactions. Congruently, the first two conditions were associated with dominance of large-eat-small foraging in 74 well-resolved (primarily aquatic) real-world food webs. Our findings provide a new, mechanistic understanding of how behavioural properties can modulate the effects of structural properties on species coexistence in food webs, and suggest that 'being feasible' constrains the spectra of behavioural and structural properties seen in natural food webs.
Collapse
Affiliation(s)
- Hsi-Cheng Ho
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Jason M Tylianakis
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| |
Collapse
|
16
|
Martinez ND. Allometric Trophic Networks From Individuals to Socio-Ecosystems: Consumer–Resource Theory of the Ecological Elephant in the Room. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|