1
|
Boys WA, Lanzer TL, Ping TS, Siepielski AM. Predators drive selection for adaptive plasticity in prey defense behavior. Evolution 2025; 79:665-673. [PMID: 39820732 DOI: 10.1093/evolut/qpaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
Plasticity to reduce activity is a common way prey evade predators. However, by reducing activity prey often experience lower individual growth rates because they encounter their own prey less often. To overcome this cost, natural selection should not simply favor individuals generating stronger plasticity to reduce activity rates but also selection to resume activity once the threat of predation subsides. If such plasticity is adaptive, it should vary under environmental conditions that generate stronger selection for greater plasticity, such as predator density. Using a mesocosm experiment and observational study with a damselfly-prey/fish-predator system, we show that fish predation exerts selection for greater plasticity in activity rates of damselflies. Such selection allows damselfly activity levels to initially decrease and then rebound when the threat of predation dissipates, potentially helping to ameliorate a hypothesized growth penalty from activity reductions. We also find that the extent of plasticity in activity to the threat of fish predation increases, albeit slightly (r2 = 0.04%-0.063%), as fish densities increase across natural lakes, consistent with the idea that the magnitude of plasticity is shaped by environmental conditions underlying selection. Collectively, these results demonstrate how selection acts to drive adaptive plasticity in a common predator avoidance strategy.
Collapse
Affiliation(s)
- Wade A Boys
- Department of Biological Sciences, University of Arkansas, 601 Science Engineering Hall, 850 W Dickson St, Fayetteville, AR 72701, United States
| | - Tara L Lanzer
- Department of Biological Sciences, University of Arkansas, 601 Science Engineering Hall, 850 W Dickson St, Fayetteville, AR 72701, United States
| | - Taylor S Ping
- Department of Biological Sciences, University of Arkansas, 601 Science Engineering Hall, 850 W Dickson St, Fayetteville, AR 72701, United States
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, 601 Science Engineering Hall, 850 W Dickson St, Fayetteville, AR 72701, United States
| |
Collapse
|
2
|
Sniegula S, Stoks R, Golab MJ. Insect responses to seasonal time constraints under global change are facilitated by warming and counteracted by invasive alien predators. Sci Rep 2024; 14:24565. [PMID: 39427019 PMCID: PMC11490650 DOI: 10.1038/s41598-024-76057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
In seasonal environments, organisms with complex life cycles not only contend with seasonal time constraints (TC) but also increasingly face global change stressors that may interfere with responses to TC. Here, we tested how warming and predator stress imposed during the egg and larval stages shaped life history and behavioural responses to TC in the temperate damselfly Ischnura elegans. Eggs from early and late clutches in the season were subjected to ambient and 4 °C warming temperature and the presence or absence of predator cues from perch and signal crayfish. After hatching, larvae were retained at the same thermal regime, and the predator treatment was continued or not up to emergence. The late eggs decreased their development time, especially under warming and when not exposed to predator cues. However, the late eggs increased their development time when exposed to predator cues, especially to crayfish cues. The TC decreased survival of late larvae that were as eggs exposed to crayfish cues, indicating a carry-over effect. The TC and warming additively reduced late larvae development time to emergence. Independent of the TC, predator cue effects on development time were stronger during the egg than during the larval stage. The late individuals expressed lower mass at emergence, which mirrored the size difference between field-collected mothers. Warming caused a higher mass at emergence. The late individuals increased their boldness and showed a higher number of moves, whereas warming caused a decreased boldness. There was no predator cue effect on larval behaviour. The results indicate that late individuals compensate for late season egg laying, which is facilitated under warming but counteracted under predation risk, especially when imposed by the crayfish.
Collapse
Affiliation(s)
- Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Maria J Golab
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
3
|
Hasik AZ, Bried JT, Bolnick DI, Siepielski AM. Is the local environment more important than within-host interactions in determining coinfection? J Anim Ecol 2024; 93:1541-1555. [PMID: 39245878 DOI: 10.1111/1365-2656.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Host populations often vary in the magnitude of coinfection they experience across environmental gradients. Furthermore, coinfection often occurs sequentially, with a second parasite infecting the host after the first has established a primary infection. Because the local environment and interactions between coinfecting parasites can both drive patterns of coinfection, it is important to disentangle the relative contributions of environmental factors and within-host interactions to patterns of coinfection. Here, we develop a conceptual framework and present an empirical case study to disentangle these facets of coinfection. Across multiple lakes, we surveyed populations of five damselfly (host) species and quantified primary parasitism by aquatic, ectoparasitic water mites and secondary parasitism by terrestrial, endoparasitic gregarines. We first asked if coinfection is predicted by abiotic and biotic factors within the local environment, finding that the probability of coinfection decreased for all host species as pH increased. We then asked if primary infection by aquatic water mites mediated the relationship between pH and secondary infection by terrestrial gregarines. Contrary to our expectations, we found no evidence for a water mite-mediated relationship between pH and gregarines. Instead, the intensity of gregarine infection correlated solely with the local environment, with the magnitude and direction of these relationships varying among environmental predictors. Our findings emphasize the role of the local environment in shaping infection dynamics that set the stage for coinfection. Although we did not detect within-host interactions, the approach herein can be applied to other systems to elucidate the nature of interactions between hosts and coinfecting parasites within complex ecological communities.
Collapse
Affiliation(s)
- Adam Z Hasik
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheva, Midreshet Ben-Gurion, Israel
| | - Jason T Bried
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
4
|
Wos G, Palomar G, Marszałek M, Sniegula S. Comparative Transcriptomic Reveals Greater Similarities in Response to Temperature Than to Invasive Alien Predator in the Damselfly Ischnura elegans Across Different Geographic Scales. Evol Appl 2024; 17:e70002. [PMID: 39247089 PMCID: PMC11377989 DOI: 10.1111/eva.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The impact of global changes on populations may not be necessarily uniform across a species' range. Here, we aim at comparing the phenotypic and transcriptomic response to warming and an invasive predator cue in populations across different geographic scales in the damselfly Ischnura elegans. We collected adult females in two ponds in southern Poland (central latitude) and two ponds in southern Sweden (high latitude). We raised their larvae in growth chambers and exposed them to combination of temperature and a predator cue released by the crayfish Orconectes limosus. When larvae reached the prefinal larval stage, they were phenotyped for traits related to growth and size and collected for a gene expression analysis. High-latitude populations exhibited greater phenotypic and transcriptomic variation than central-latitude populations. Across latitudes and ponds, temperature generally increased growth rate and the predator cue decreased mass, but the effects of temperature were also pond-specific. Comparison of the transcriptomic profiles revealed a greater overlap in the response to temperature across latitudes and ponds, especially for pathway-related oxidative stress and sugar and lipid metabolism. The transcriptomic response to a predator cue and to the interaction temperature × predator cue was more pond-specific and overlapped only for few genes and pathways related to cuticle, development and signal transduction. We demonstrated that central- and high-latitude populations may partially respond through similar mechanisms to warming and, to a lower extent to a predator cue and to the interaction temperature × predator cue. For the predator cue and the interaction, the large fraction of ponds-specific genes suggests local adaptation. We show that high-latitude populations were generally more plastic at the phenotypic and transcriptomic level and may be more capable to cope with environmental changes than their central-latitude counterparts.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| | - Gemma Palomar
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences Complutense University of Madrid Madrid Spain
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| |
Collapse
|
5
|
Giery ST, Sloan RK, Watson J, Groesbeck A, Davenport JM. Ecosystem effects of intraspecific variation in a colour polymorphic amphibian. Proc Biol Sci 2024; 291:20240016. [PMID: 38565157 PMCID: PMC10987232 DOI: 10.1098/rspb.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
An emerging consensus suggests that evolved intraspecific variation can be ecologically important. However, evidence that evolved trait variation within vertebrates can influence fundamental ecosystem-level processes remains sparse. In this study, we sought to assess the potential for evolved variation in the spotted salamander (Ambystoma maculatum) to affect aquatic ecosystem properties. Spotted salamanders exhibit a conspicuous polymorphism in the colour of jelly encasing their eggs-some females produce clear jelly, while others produce white jelly. Although the functional significance of jelly colour variation remains largely speculative, evidence for differences in fecundity and the morphology of larvae suggests that the colour morphs might differ in the strength or identity of ecological effects. Here, we assessed the potential for frequency variation in spotted salamander colour morphs to influence fundamental physiochemical and ecosystem properties-dissolved organic carbon, conductivity, acidity and primary production-with a mesocosm experiment. By manipulating colour morph frequency across a range of larval densities, we were able to demonstrate that larva density and colour morph variation were ecologically relevant: population density reduced dissolved organic carbon and increased primary production while mesocosms stocked with white morph larvae tended to have higher dissolved organic carbon and conductivity. Thus, while an adaptive significance of jelly coloration remains hypothetical, our results show that colour morphs differentially influence key ecosystem properties-dissolved organic carbon and conductivity.
Collapse
Affiliation(s)
- Sean T. Giery
- Department of Biology, Ohio University, Athens, OH 45701, USA
| | - Reese K. Sloan
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| | - James Watson
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| | - Autumn Groesbeck
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| | - Jon M. Davenport
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| |
Collapse
|
6
|
Gómez-Llano M, Boys WA, Ping T, Tye SP, Siepielski AM. Interactions between fitness components across the life cycle constrain competitor coexistence. J Anim Ecol 2023; 92:2297-2308. [PMID: 37087690 DOI: 10.1111/1365-2656.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Numerous mechanisms can promote competitor coexistence. Yet, these mechanisms are often considered in isolation from one another. Consequently, whether multiple mechanisms shaping coexistence combine to promote or constrain species coexistence remains an open question. Here, we aim to understand how multiple mechanisms interact within and between life stages to determine frequency-dependent population growth, which has a key role stabilizing local competitor coexistence. We conducted field experiments in three lakes manipulating relative frequencies of two Enallagma damselfly species to evaluate demographic contributions of three mechanisms affecting different fitness components across the life cycle: the effect of resource competition on individual growth rate, predation shaping mortality rates, and mating harassment determining fecundity. We then used a demographic model that incorporates carry-over effects between life stages to decompose the relative effect of each fitness component generating frequency-dependent population growth. This decomposition showed that fitness components combined to increase population growth rates for one species when rare, but they combined to decrease population growth rates for the other species when rare, leading to predicted exclusion in most lakes. Because interactions between fitness components within and between life stages vary among populations, these results show that local coexistence is population specific. Moreover, we show that multiple mechanisms do not necessarily increase competitor coexistence, as they can also combine to yield exclusion. Identifying coexistence mechanisms in other systems will require greater focus on determining contributions of different fitness components across the life cycle shaping competitor coexistence in a way that captures the potential for population-level variation.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, 65188, Sweden
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Wade A Boys
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Taylor Ping
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Simon P Tye
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| |
Collapse
|
7
|
Fronhofer EA, Corenblit D, Deshpande JN, Govaert L, Huneman P, Viard F, Jarne P, Puijalon S. Eco-evolution from deep time to contemporary dynamics: The role of timescales and rate modulators. Ecol Lett 2023; 26 Suppl 1:S91-S108. [PMID: 37840024 DOI: 10.1111/ele.14222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 10/17/2023]
Abstract
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.
Collapse
Affiliation(s)
| | - Dov Corenblit
- GEOLAB, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
- Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (CNRS/Université Paris I Sorbonne), Paris, France
| | - Frédérique Viard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Jarne
- CEFE, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - Sara Puijalon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
8
|
Kolbe JJ, Giery ST, Lapiedra O, Lyberger KP, Pita-Aquino JN, Moniz HA, Leal M, Spiller DA, Losos JB, Schoener TW, Piovia-Scott J. Experimentally simulating the evolution-to-ecology connection: Divergent predator morphologies alter natural food webs. Proc Natl Acad Sci U S A 2023; 120:e2221691120. [PMID: 37276393 PMCID: PMC10268251 DOI: 10.1073/pnas.2221691120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/29/2023] [Indexed: 06/07/2023] Open
Abstract
The idea that changing environmental conditions drive adaptive evolution is a pillar of evolutionary ecology. But, the opposite-that adaptive evolution alters ecological processes-has received far less attention yet is critical for eco-evolutionary dynamics. We assessed the ecological impact of divergent values in a key adaptive trait using 16 populations of the brown anole lizard (Anolis sagrei). Mirroring natural variation, we established islands with short- or long-limbed lizards at both low and high densities. We then monitored changes in lower trophic levels, finding that on islands with a high density of short-limbed lizards, web-spider densities decreased and plants grew more via an indirect positive effect, likely through an herbivore-mediated trophic cascade. Our experiment provides strong support for evolution-to-ecology connections in nature, likely closing an otherwise well-characterized eco-evolutionary feedback loop.
Collapse
Affiliation(s)
- Jason J. Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, RI02881
| | - Sean T. Giery
- Department of Biology, The Pennsylvania State University, University Park, PA16802
| | - Oriol Lapiedra
- Centre for Research in Ecology and Applied Forestry (CREAF), Cerdanyola del Valles, Catalonia08193, Spain
| | - Kelsey P. Lyberger
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | | | - Haley A. Moniz
- Department of Biology, University of Nevada, Reno, NV89557
| | - Manuel Leal
- Department of Biological Sciences, University of Missouri, Columbia, MO65211
| | - David A. Spiller
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Jonathan B. Losos
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO63130
| | - Thomas W. Schoener
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA98686
| |
Collapse
|
9
|
Hasik AZ, King KC, Hawlena H. Interspecific host competition and parasite virulence evolution. Biol Lett 2023; 19:20220553. [PMID: 37130550 PMCID: PMC10734695 DOI: 10.1098/rsbl.2022.0553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Virulence, the harm to hosts caused by parasite infection, can be selected for by several ecological factors acting synergistically or antagonistically. Here, we focus on the potential for interspecific host competition to shape virulence through such a network of effects. We first summarize how host natural mortality, body mass changes, population density and community diversity affect virulence evolution. We then introduce an initial conceptual framework highlighting how these host factors, which change during host competition, may drive virulence evolution via impacts on life-history trade-offs. We argue that the multi-faceted nature of both interspecific host competition and virulence evolution still requires consideration and experimentation to disentangle contrasting mechanisms. It also necessitates a differential treatment for parasites with various transmission strategies. However, such a comprehensive approach focusing on the role of interspecific host competition is essential to understand the processes driving the evolution of virulence in a tangled bank.
Collapse
Affiliation(s)
- Adam Z. Hasik
- Jacob Blaustein Center for
Scientific Cooperation, Ben-Gurion University of the
Negev, 8499000 Midreshet Ben-Gurion,
Israel
| | - Kayla C. King
- Department of Biology,
University of Oxford, 11a Mansfield Road,
Oxford OX1 3SZ, UK
| | - Hadas Hawlena
- Mitrani Department of Desert
Ecology, Swiss Institute for Dryland Environmental and Energy Research, The
Jacob Blaustein Institutes for Desert Research, Ben-Gurion
University of the Negev, 849900 Midreshet Ben-Gurion,
Israel
| |
Collapse
|
10
|
Hasik AZ, de Angeli Dutra D, Doherty JF, Duffy MA, Poulin R, Siepielski AM. Resetting our expectations for parasites and their effects on species interactions: a meta-analysis. Ecol Lett 2023; 26:184-199. [PMID: 36335559 PMCID: PMC10099232 DOI: 10.1111/ele.14139] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
Despite the ubiquitous nature of parasitism, how parasitism alters the outcome of host-species interactions such as competition, mutualism and predation remains unknown. Using a phylogenetically informed meta-analysis of 154 studies, we examined how the mean and variance in the outcomes of species interactions differed between parasitized and non-parasitized hosts. Overall, parasitism did not significantly affect the mean or variance of host-species interaction outcomes, nor did the shared evolutionary histories of hosts and parasites have an effect. Instead, there was considerable variation in outcomes, ranging from strongly detrimental to strongly beneficial for infected hosts. Trophically-transmitted parasites increased the negative effects of predation, parasites increased and decreased the negative effects of interspecific competition for parasitized and non-parasitized heterospecifics, respectively, and parasites had particularly strong negative effects on host species interactions in freshwater and marine habitats, yet were beneficial in terrestrial environments. Our results illuminate the diverse ways in which parasites modify critical linkages in ecological networks, implying that whether the cumulative effects of parasitism are considered detrimental depends not only on the interactions between hosts and their parasites but also on the many other interactions that hosts experience.
Collapse
Affiliation(s)
- Adam Z Hasik
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA.,Jacob Blaustein Center for Scientific Cooperation, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | | | - Jean-François Doherty
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
11
|
Wang Y, Tüzün N, Sentis A, Stoks R. Thermal plasticity and evolution shape predator‐prey interactions differently in clear and turbid water. J Anim Ecol 2022; 91:883-894. [DOI: 10.1111/1365-2656.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Ying‐Jie Wang
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Debériotstraat 32, 3000 Leuven Belgium
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Debériotstraat 32, 3000 Leuven Belgium
| | - Arnaud Sentis
- INRAE, Aix‐Marseille Université, UMR RECOVER, 3275 route Cézanne, 13182 Aix‐en‐Provence France
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Debériotstraat 32, 3000 Leuven Belgium
| |
Collapse
|
12
|
Siepielski AM, Gómez-Llano M, McPeek MA. Environmental Conditions during Development Affect Sexual Selection through Trait-Fitness Relationships. Am Nat 2022; 199:34-50. [DOI: 10.1086/717294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
A common measure of prey immune function is not constrained by the cascading effects of predators. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Wang Y, Sentis A, Tüzün N, Stoks R. Thermal evolution ameliorates the long‐term plastic effects of warming, temperature fluctuations and heat waves on predator–prey interaction strength. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying‐Jie Wang
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Leuven Belgium
| | - Arnaud Sentis
- INRAE, Aix‐Marseille Université, UMR RECOVER Aix‐en‐Provence France
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Leuven Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Leuven Belgium
| |
Collapse
|
15
|
de Meo I, Østbye K, Kahilainen KK, Hayden B, Fagertun CHH, Poléo ABS. Predator community and resource use jointly modulate the inducible defense response in body height of crucian carp. Ecol Evol 2021; 11:2072-2085. [PMID: 33717443 PMCID: PMC7920785 DOI: 10.1002/ece3.7176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
Phenotypic plasticity can be expressed as changes in body shape in response to environmental variability. Crucian carp (Carassius carassius), a widespread cyprinid, displays remarkable plasticity in body morphology and increases body depth when exposed to cues from predators, suggesting the triggering of an antipredator defense mechanism. However, these morphological changes could also be related to resource use and foraging behavior, as an indirect effect of predator presence. In order to determine whether phenotypic plasticity in crucian carp is driven by a direct or indirect response to predation threat, we compared twelve fish communities inhabiting small lakes in southeast Norway grouped by four categories of predation regimes: no predator fish, or brown trout (Salmo trutta), perch (Perca fluviatilis), or pike (Esox lucius) as main piscivores. We predicted the body shape of crucian carp to be associated with the species composition of predator communities and that the presence of efficient piscivores would result in a deeper body shape. We use stable isotope analyses to test whether this variation in body shape was related to a shift in individual resource use-that is, littoral rather than pelagic resource use would favor the development of a specific body shape-or other environmental characteristics. The results showed that increasingly efficient predator communities induced progressively deeper body shape, larger body size, and lower population densities. Predator maximum gape size and individual trophic position were the best variables explaining crucian carp variation in body depth among predation categories, while littoral resource use did not have a clear effect. The gradient in predation pressure also corresponded to a shift in lake productivity. These results indicate that crucian carp have a fine-tuned morphological defense mechanism against predation risk, triggered by the combined effect of predator presence and resource availability.
Collapse
Affiliation(s)
- Ilaria de Meo
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Kjartan Østbye
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | | | - Brian Hayden
- Biology DepartmentCanadian Rivers InstituteUniversity of New BrunswickFrederictonNBCanada
| | - Christian H. H. Fagertun
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Antonio B. S. Poléo
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| |
Collapse
|