1
|
Maul K, Gradstein SR, Quandt D, Kessler M. Temperature dependence of liverwort diversification reveals a cool origin and hot hotspots. Sci Rep 2025; 15:3225. [PMID: 39863681 PMCID: PMC11762728 DOI: 10.1038/s41598-025-87206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band. In addition, we reconstructed the ancestral temperature preferences of the genera. We found that diversification rates increase linearly with temperature, and hence decrease with elevation. This pattern is mainly driven by epiphytic genera. In contrast, overall genus age is highest at intermediate elevations where liverwort species richness peaks and decreases towards both ends of the elevational and thermal gradient. Our results further indicate that the ancestral lineages from which the extant liverwort genera descended had a preference for cool and humid habitats. We conclude that the extant liverwort species diversity accumulated over long time under these climatic conditions, which are today prevailing at mid-elevations of the world's mountains. Subsequently, liverworts expanded their ranges from these temperate areas towards warm (with high diversification rates) and cold regions (with low diversification rates), located in contemporaneous (tropical) lowlands and high mountains, respectively. The conserved preference for temperate climates shared by the majority of liverwort lineages gives reason to the assumption that they will not be able to cope with the conditions induced by rapid climate warming, whereas the current low-elevation radiation may be less affected by climate change.
Collapse
Affiliation(s)
- Karola Maul
- Bonn Institute of Organismic Biology (BIOB), University of Bonn, Bonn, Germany.
| | | | - Dietmar Quandt
- Bonn Institute of Organismic Biology (BIOB), University of Bonn, Bonn, Germany
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Georgescu P, Zhang H. Global stability of coexistence equilibria for n-species models of facultative mutualism. J Theor Biol 2024; 595:111961. [PMID: 39368627 DOI: 10.1016/j.jtbi.2024.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
We further pursue an investigation on an abstract model characterizing the dynamics of a general class of n-species facultative mutualisms that was initiated in Georgescu et al. (2017), establishing biologically relevant sufficient conditions for the global asymptotic stability of the coexistence equilibria. These conditions are given in terms of per-species limits of growth-to-loss ratios computed at higher population densities, complemented by either monotonicity or sublinearity inequalities, and are observed to hold for n-species versions of mutualistic models in current use. The specific modeling details that require either of these conditions being satisfied are outlined and discussed. As mutualisms can enhance species diversification and facilitate stable coexistence via a plethora of mechanisms, it is then important to understand the stability of speciose mutualisms, our results being of potential interest to theoretical ecologists studying the coexistence of many interacting species and to conservationists aiming for rare species preservation.
Collapse
Affiliation(s)
- Paul Georgescu
- Department of Mathematics, Technical University of Iaşi, Bd. Copou 11A, 700506 Iaşi, Romania.
| | - Hong Zhang
- School of Innovation and Entrepreneurship, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, PR China.
| |
Collapse
|
3
|
Leclère T, Gerhold P. Phylogenetic Diversity of Plant and Insect Communities on Islands. Ecol Evol 2024; 14:e70660. [PMID: 39629173 PMCID: PMC11612024 DOI: 10.1002/ece3.70660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Interactions between plants and insects have long fascinated scientists. While some plants rely on insects for pollination and seed dispersal, insects rely on plants for food or as a habitat. Despite extensive research investigating pair-wise species interactions, few studies have characterized plant and insect communities simultaneously, making it unclear if diverse plant communities are generally associated with diverse insect communities. This work aims to better understand the historical and evolutionary relationships between plant and insect phylogenetic diversity (PD) on islands. We hypothesized that phylogenetically diverse plant communities (i.e., high PD) support diverse insect communities, with the relationship varying with island isolation, area, age, and latitude. Species lists for plants and insects were compiled from the published literature, and plant PD was calculated using ´standardized mean pairwise distance´ (SES.MPD) and ´standardized mean nearest taxon distance´ (SES.MNTD). For insects, PD was estimated using the number of genera, families, and orders. We found that plant diversity in evolutionary recent times (SES.MNTD) is associated with recent insect diversity (number of genera), but no relationship was found between plant and insect diversity across whole phylogenies (plant SES.MPD vs. number of insect families). Distant islands generally support high PD of plants (high SES.MPD and SES.MNTD) and insects (low number of genera). Plant and insect PD was generally high on small islands, except for plant SES.MPD revealing no relationship with island size. Insect PD was somewhat higher on young islands (low number of families), whereas there was no relationship between island age and plant PD. Plant SES.MPD was higher on high latitude islands, yet we did not find significant relationships between the latitude and the metrics of insect PD or plant SES.MNTD. These findings suggest that protecting high plant PD may also help conserve high insect PD, with a focus on small and distant islands as potential hotspots of phylogenetic diversity across multiple taxa.
Collapse
Affiliation(s)
- Thomas Leclère
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Pille Gerhold
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| |
Collapse
|
4
|
Wang R, Kass JM, Chaudhary C, Economo EP, Guénard B. Global biogeographic regions for ants have complex relationships with those for plants and tetrapods. Nat Commun 2024; 15:5641. [PMID: 38969636 PMCID: PMC11226674 DOI: 10.1038/s41467-024-49918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
On a global scale, biodiversity is geographically structured into regions of biotic similarity. Delineating these regions has been mostly targeted for tetrapods and plants, but those for hyperdiverse groups such as insects are relatively unknown. Insects may have higher biogeographic congruence with plants than tetrapods due to their tight ecological and evolutionary links with the former, but it remains untested. Here, we develop a global regionalization for a major and widespread insect group, ants, based on the most comprehensive distributional and phylogenetic information to date, and examine its similarity to regionalizations for tetrapods and vascular plants. Our ant regionalization supports the newly proposed Madagascan and Sino-Japanese realms based on tetrapod delineations, and it recovers clusters observed in plants but not in tetrapods, such as the Holarctic and Indo-Pacific realms. Quantitative comparison suggests strong associations among different groups-plants showed a higher congruence with ants than with tetrapods. These results underscore the wide congruence of diverse distribution patterns across the tree of life and the similarities shared by insects and plants that are not captured by tetrapod groups. Our analysis highlights the importance of developing global biogeographic maps for insect groups to obtain a more comprehensive geographic picture of life on Earth.
Collapse
Affiliation(s)
- Runxi Wang
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China.
| | - Jamie M Kass
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
- Macroecology Laboratory, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Chhaya Chaudhary
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China
| |
Collapse
|
5
|
Brockhurst MA, Cameron DD, Beckerman AP. Fitness trade-offs and the origins of endosymbiosis. PLoS Biol 2024; 22:e3002580. [PMID: 38607979 PMCID: PMC11014431 DOI: 10.1371/journal.pbio.3002580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Endosymbiosis drives evolutionary innovation and underpins the function of diverse ecosystems. The mechanistic origins of symbioses, however, remain unclear, in part because early evolutionary events are obscured by subsequent evolution and genetic drift. This Essay highlights how experimental studies of facultative, host-switched, and synthetic symbioses are revealing the important role of fitness trade-offs between within-host and free-living niches during the early-stage evolution of new symbiotic associations. The mutational targets underpinning such trade-offs are commonly regulatory genes, such that single mutations have major phenotypic effects on multiple traits, thus enabling and reinforcing the transition to a symbiotic lifestyle.
Collapse
Affiliation(s)
- Michael A. Brockhurst
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Duncan D. Cameron
- Department of Environmental and Earth Sciences, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew P. Beckerman
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Burin G, Campbell LCE, Renner SS, Kiers ET, Chomicki G. Mutualisms drive plant trait evolution beyond interaction-related traits. Ecol Lett 2024; 27:e14379. [PMID: 38361469 DOI: 10.1111/ele.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Mutualisms have driven the evolution of extraordinary structures and behavioural traits, but their impact on traits beyond those directly involved in the interaction remains unclear. We addressed this gap using a highly evolutionarily replicated system - epiphytes in the Rubiaceae forming symbioses with ants. We employed models that allow us to test the influence of discrete mutualistic traits on continuous non-mutualistic traits. Our findings are consistent with mutualism shaping the pace of morphological evolution, strength of selection and long-term mean of non-mutualistic traits in function of mutualistic dependency. While specialised and obligate mutualisms are associated with slower trait change, less intimate, facultative and generalist mutualistic interactions - which are the most common - have a greater impact on non-mutualistic trait evolution. These results challenge the prevailing notion that mutualisms solely affect the evolution of interaction-related traits via stabilizing selection and instead demonstrate a broader role for mutualisms in shaping trait evolution.
Collapse
Affiliation(s)
| | | | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, Missouri, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Nathan P, Economo EP, Guénard B, Simonsen AK, Frederickson ME. Generalized mutualisms promote range expansion in both plant and ant partners. Proc Biol Sci 2023; 290:20231083. [PMID: 37700642 PMCID: PMC10498038 DOI: 10.1098/rspb.2023.1083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Mutualism improves organismal fitness, but strong dependence on another species can also limit a species' ability to thrive in a new range if its partner is absent. We assembled a large, global dataset on mutualistic traits and species ranges to investigate how multiple plant-animal and plant-microbe mutualisms affect the spread of legumes and ants to novel ranges. We found that generalized mutualisms increase the likelihood that a species establishes and thrives beyond its native range, whereas specialized mutualisms either do not affect or reduce non-native spread. This pattern held in both legumes and ants, indicating that specificity between mutualistic partners is a key determinant of ecological success in a new habitat. Our global analysis shows that mutualism plays an important, if often overlooked, role in plant and insect invasions.
Collapse
Affiliation(s)
- Pooja Nathan
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Ontario, Canada
| | - Evan P. Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Anna K. Simonsen
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Megan E. Frederickson
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Ontario, Canada
| |
Collapse
|
8
|
Wiens JJ. Trait-based species richness: ecology and macroevolution. Biol Rev Camb Philos Soc 2023; 98:1365-1387. [PMID: 37015839 DOI: 10.1111/brv.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
Understanding the origins of species richness patterns is a fundamental goal in ecology and evolutionary biology. Much research has focused on explaining two kinds of species richness patterns: (i) spatial species richness patterns (e.g. the latitudinal diversity gradient), and (ii) clade-based species richness patterns (e.g. the predominance of angiosperm species among plants). Here, I highlight a third kind of richness pattern: trait-based species richness (e.g. the number of species with each state of a character, such as diet or body size). Trait-based richness patterns are relevant to many topics in ecology and evolution, from ecosystem function to adaptive radiation to the paradox of sex. Although many studies have described particular trait-based richness patterns, the origins of these patterns remain far less understood, and trait-based richness has not been emphasised as a general category of richness patterns. Here, I describe a conceptual framework for how trait-based richness patterns arise compared to other richness patterns. A systematic review suggests that trait-based richness patterns are most often explained by when each state originates within a group (i.e. older states generally have higher richness), and not by differences in transition rates among states or faster diversification of species with certain states. This latter result contrasts with the widespread emphasis on diversification rates in species-richness research. I show that many recent studies of spatial richness patterns are actually studies of trait-based richness patterns, potentially confounding the causes of these patterns. Finally, I describe a plethora of unanswered questions related to trait-based richness patterns.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, USA
| |
Collapse
|
9
|
Hao K, Liu T, Hembry DH, Luo S. Trait matching in a multi-species geographic mosaic of leafflower plants, brood pollinators, and cheaters. Ecol Evol 2023; 13:e10228. [PMID: 37408629 PMCID: PMC10318581 DOI: 10.1002/ece3.10228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
Trait matching between mutualistic species is usually expected to maintain mutualism, but empirical studies of trait complementarity and coadaptation in multi-species assemblages-which represent the reality of most interactions in nature-are few. Here, we studied trait matching between the leafflower shrub Kirganelia microcarpa and three associated seed-predatory leafflower moths (Epicephala spp.) across 16 populations. Behavioral and morphological observations suggested that two moths (E. microcarpa and E. tertiaria) acted as pollinators while a third (E. laeviclada) acted as a cheater. These species differed in ovipositor morphology but showed trait complementarity between ovipositor length and floral traits at both species level and population level, presumably as adaptations to divergent oviposition behaviors. However, this trait matching varied among populations. Comparisons of ovipositor length and floral traits among populations with different moth assemblages suggested an increase of ovary wall thickness where the locular-ovipositing pollinator E. microcarpa and cheater E. laeviclada were present, while stylar pit depth was less in populations with the stylar pit-ovipositing pollinator E. tertiaria. Our study indicates that trait matching between interacting partners occurs even in extremely specialized multi-species mutualisms, and that although these responses vary, sometimes non-intuitively, in response to different partner species. It seems that the moths can track changes in host plant tissue depth for oviposition.
Collapse
Affiliation(s)
- Kai Hao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of ScienceGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Ting‐Ting Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of ScienceGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - David H. Hembry
- Department of BiologyUniversity of Texas Permian BasinOdessaTexasUSA
| | - Shi‐Xiao Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of ScienceGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| |
Collapse
|
10
|
Cruz AR, Davidowitz G, Moore CM, Bronstein JL. Mutualisms in a warming world. Ecol Lett 2023. [PMID: 37303268 DOI: 10.1111/ele.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.
Collapse
Affiliation(s)
- Austin R Cruz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| | | | - Judith L Bronstein
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Liow LH, Uyeda J, Hunt G. Cross-disciplinary information for understanding macroevolution. Trends Ecol Evol 2023; 38:250-260. [PMID: 36456381 DOI: 10.1016/j.tree.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Many different macroevolutionary models can produce the same observations. Despite efforts in building more complex and realistic models, it may still be difficult to distinguish the processes that have generated the biodiversity we observe. In this opinion we argue that we can make new progress by reaching out across disciplines, relying on independent data and theory to constrain macroevolutionary inference. Using mainly paleontological insights and data, we illustrate how we can eliminate less plausible or implausible models, and/or parts of parameter space, while applying comparative phylogenetic approaches. We emphasize that such cross-disciplinary insights and data can be drawn between many other disciplines relevant to macroevolution. We urge cross-disciplinary training, and collaboration using common-use databases as a platform for increasing our understanding.
Collapse
Affiliation(s)
- Lee Hsiang Liow
- Natural History Museum, University of Oslo, Oslo 0562, Norway.
| | - Josef Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Gene Hunt
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
12
|
Parshuram ZA, Harrison TL, Simonsen AK, Stinchcombe JR, Frederickson ME. Nonsymbiotic legumes are more invasive, but only if polyploid. THE NEW PHYTOLOGIST 2023; 237:758-765. [PMID: 36305214 DOI: 10.1111/nph.18579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Both mutualism and polyploidy are thought to influence invasion success in plants, but few studies have tested their joint effects. Mutualism can limit range expansion when plants cannot find a compatible partner in a novel habitat, or facilitate range expansion when mutualism increases a plant's niche breadth. Polyploids are also expected to have greater niche breadth because of greater self-compatibility and phenotypic plasticity, increasing invasion success. For 847 legume species, we compiled data from published sources to estimate ploidy, symbiotic status with rhizobia, specificity on rhizobia, and the number of introduced ranges. We found that diploid species have had limited spread around the globe regardless of whether they are symbiotic or how many rhizobia partners they can host. Polyploids, by contrast, have been successfully introduced to many new ranges, but interactions with rhizobia constrain their range expansion. In a hidden state model of trait evolution, we also found evidence of a high rate of re-diploidization in symbiotic legume lineages, suggesting that symbiosis and ploidy may interact at macroevolutionary scales. Overall, our results suggest that symbiosis with rhizobia limits range expansion when legumes are polyploid but not diploid.
Collapse
Affiliation(s)
- Zoe A Parshuram
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Tia L Harrison
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Anna K Simonsen
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
13
|
Post-dispersal astrobiological events: modelling macroevolutionary dynamics for lithopanspermia. Extremophiles 2023; 27:3. [PMID: 36640217 DOI: 10.1007/s00792-023-01288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/24/2022] [Indexed: 01/15/2023]
Abstract
Lithopanspermia is defined as dispersal of living extremophiles from one planetary body to another, through life-bearing rocks ejected by meteor impacts. If lithopanspermia proves concrete, it should be viewed as an eco-evolutionary phenomenon. Biogeographic/microevolutionary models have been proposed as analogues for lithopanspermia dynamics; however, extremophile arrival on a planetary body is not the end of story. Here, we suggest that eco-evolutionary (environment + organismal microevolution) dynamics can lead to distinct macroevolutionary scenarios after extremophile arrival on a planetary body. Speciation would be the most important factor in interplanetary dynamics due to the possibly long time and distance between dispersive events, similar to long-distance dispersal dynamics on Earth. In previously uninhabited planets, persistence of extremophiles and descendants depends almost only on evolvability of extremophiles against abiotic filters. Considering a previously inhabited planet, ecological interactions at local or global scales could drive persistence (speciation/extinction) of extremophiles in the new habitat. Thus, we might expect high extinction rates if negative interactions are dominant, or, high speciation, if positive interactions occur, with extremophile lineages overpower (or not) the native biota. If interplanetary dispersal is possible, theories about the evolution of life may be universal, leading to a general eco-evolutionary model for life in the Universe.
Collapse
|
14
|
Neubauer TA, Hauffe T, Silvestro D, Scotese CR, Stelbrink B, Albrecht C, Delicado D, Harzhauser M, Wilke T. Drivers of diversification in freshwater gastropods vary over deep time. Proc Biol Sci 2022; 289:20212057. [PMID: 35105242 PMCID: PMC8808086 DOI: 10.1098/rspb.2021.2057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Unravelling the drivers of species diversification through geological time is of crucial importance for our understanding of long-term evolutionary processes. Numerous studies have proposed different sets of biotic and abiotic controls of speciation and extinction rates, but typically they were inferred for a single, long geological time frame. However, whether the impact of biotic and abiotic controls on diversification changes over time is poorly understood. Here, we use a large fossil dataset, a multivariate birth-death model and a comprehensive set of biotic and abiotic predictors, including a new index to quantify tectonic complexity, to estimate the drivers of diversification for European freshwater gastropods over the past 100 Myr. The effects of these factors on origination and extinction are estimated across the entire time frame as well as within sequential time windows of 20 Myr each. Our results find support for temporal heterogeneity in the factors associated with changes in diversification rates. While the factors impacting speciation and extinction rates vary considerably over time, diversity-dependence and topography are consistently important. Our study highlights that a high level of heterogeneity in diversification rates is best captured by incorporating time-varying effects of biotic and abiotic factors.
Collapse
Affiliation(s)
- Thomas A. Neubauer
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
- Marine Biodiversity, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Torsten Hauffe
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Daniele Silvestro
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
| | - Christopher R. Scotese
- Department of Earth and Planetary Sciences, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Björn Stelbrink
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Diana Delicado
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Mathias Harzhauser
- Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| |
Collapse
|
15
|
Althoff DM, Segraves KA. Evolution of antagonistic and mutualistic traits in the yucca-yucca moth obligate pollination mutualism. J Evol Biol 2021; 35:100-108. [PMID: 34855267 DOI: 10.1111/jeb.13967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
Species interactions shape the evolution of traits, life histories and the pattern of speciation. What is less clear is whether certain types of species interaction are more or less likely to lead to phenotypic divergence among species. We used the brood pollination mutualism between yuccas and yucca moths to test how mutualistic (pollination) and antagonistic (oviposition) traits differ in the propensity to increase phenotypic divergence among pollinator moths. We measured traits of the tentacular mouthparts, structures used by females to actively pollinate flowers, as well as ovipositor traits to examine differences in the rate of evolution of these two suites of traits among pollinator species. Morphological analyses revealed two distinct groups of moths based on ovipositor morphology, but no such groupings were identified for tentacle morphology, even for moths that pollinated distantly related yuccas. In addition, ovipositor traits evolved at significantly faster rates than tentacular traits. These results support theoretical work suggesting that antagonism is more likely than mutualism to lead to phenotypic divergence.
Collapse
Affiliation(s)
- David M Althoff
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Kari A Segraves
- Department of Biology, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
16
|
Zeng Y, Wiens JJ. Do mutualistic interactions last longer than antagonistic interactions? Proc Biol Sci 2021; 288:20211457. [PMID: 34493078 PMCID: PMC8424312 DOI: 10.1098/rspb.2021.1457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 11/12/2022] Open
Abstract
Species interactions are crucial and ubiquitous across organisms. However, it remains unclear how long these interactions last over macroevolutionary timescales, and whether the nature of these interactions (mutualistic versus antagonistic) helps predict how long they persist. Here, we estimated the ages of diverse species interactions, based on phylogenies from 60 studies spanning the Tree of Life. We then tested if mutualistic interactions persist longer than antagonistic interactions. We found that the oldest mutualisms were significantly older than the oldest antagonisms across all organisms, and within plants, fungi, bacteria and protists. Surprisingly, this pattern was reversed in animals, with the oldest mutualisms significantly younger than the oldest antagonisms. We also found that many mutualisms were maintained for hundreds of millions of years (some greater than 1 billion years), providing strong evidence for the long-term stability of mutualisms and for niche conservatism in species interactions.
Collapse
Affiliation(s)
- Yichao Zeng
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
17
|
Verdú M, Gómez JM, Valiente-Banuet A, Schöb C. Facilitation and plant phenotypic evolution. TRENDS IN PLANT SCIENCE 2021; 26:913-923. [PMID: 34112618 DOI: 10.1016/j.tplants.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
While antagonistic interactions between plants have been a major topic of eco-evolutionary research, little evidence exists on the evolution of positive plant interactions (i.e., plant facilitation). Here, we first summarize the existing empirical evidence on the role of facilitation as a selection pressure on plants. Then, we develop a theoretical eco-evolutionary framework based on fitness-trait functions and interaction effectiveness that provides predictions for how facilitation-related traits may evolve. As evolution may act at levels beyond the individual (such as groups or species), we discuss the subject of the units of evolutionary selection through facilitation. Finally, we use the proposed formal evolutionary framework for facilitation to identify areas of future research based on the knowledge gaps detected.
Collapse
Affiliation(s)
- M Verdú
- Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Ctra Moncada-Náquera km4.5, 46113 Moncada, (Valencia), Spain.
| | - J M Gómez
- Dpto de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Carretera de Sacramento s/n, La Cañada de San Urbano, 0-4120 Almería, Spain
| | - A Valiente-Banuet
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, A.P. 70-275, C.P. 04510, México D.F., México; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México
| | - C Schöb
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|