1
|
Praeg N, Steinwandter M, Urbach D, Snethlage MA, Alves RP, Apple ME, Bilovitz P, Britton AJ, Bruni EP, Chen TW, Dumack K, Fernandez-Mendoza F, Freppaz M, Frey B, Fromin N, Geisen S, Grube M, Guariento E, Guisan A, Ji QQ, Jiménez JJ, Maier S, Malard LA, Minor MA, Mc Lean CC, Mitchell EAD, Peham T, Pizzolotto R, Taylor AFS, Vernon P, van Tol JJ, Wu D, Wu Y, Xie Z, Weber B, Illmer P, Seeber J. Biodiversity in mountain soils above the treeline. Biol Rev Camb Philos Soc 2025. [PMID: 40369817 DOI: 10.1111/brv.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Biological diversity in mountain ecosystems has been increasingly studied over the last decade. This is also the case for mountain soils, but no study to date has provided an overall synthesis of the current state of knowledge. Here we fill this gap with a first global analysis of published research on cryptogams, microorganisms, and fauna in mountain soils above the treeline, and a structured synthesis of current knowledge. Based on a corpus of almost 1400 publications and the expertise of 37 mountain soil scientists worldwide, we summarise what is known about the diversity and distribution patterns of each of these organismal groups, specifically along elevation, and provide an overview of available knowledge on the drivers explaining these patterns and their changes. In particular, we document an elevation-dependent decrease in faunal diversity above the treeline, while for cryptogams there is an initial increase above the treeline, followed by a decrease towards the nival belt. Thus, our data confirm the key role that elevation plays in shaping the biodiversity and distribution of these organisms in mountain soils. The response of prokaryote diversity to elevation, in turn, was more diverse, whereas fungal diversity appeared to be substantially influenced by plants. As far as available, we describe key characteristics, adaptations, and functions of mountain soil species, and despite a lack of ecological information about the uncultivated majority of prokaryotes, fungi, and protists, we illustrate the remarkable and unique diversity of life forms and life histories encountered in alpine mountain soils. By applying rule- as well as pattern-based literature-mining approaches and semi-quantitative analyses, we identified hotspots of mountain soil research in the European Alps and Central Asia and revealed significant gaps in taxonomic coverage, particularly among biocrusts, soil protists, and soil fauna. We further report thematic priorities for research on mountain soil biodiversity above the treeline and identify unanswered research questions. Building upon the outcomes of this synthesis, we conclude with a set of research opportunities for mountain soil biodiversity research worldwide. Soils in mountain ecosystems above the treeline fulfil critical functions and make essential contributions to life on land. Accordingly, seizing these opportunities and closing knowledge gaps appears crucial to enable science-based decision making in mountain regions and formulating laws and guidelines in support of mountain soil biodiversity conservation targets.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Michael Steinwandter
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Davnah Urbach
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Mark A Snethlage
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Rodrigo P Alves
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Martha E Apple
- Department of Biological Sciences, Montana Technological University, Butte, 59701, MT, USA
| | - Peter Bilovitz
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Andrea J Britton
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Estelle P Bruni
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Ting-Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 702/7, České Budějovice, 37005, Czech Republic
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Fernando Fernandez-Mendoza
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Michele Freppaz
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
- Research Center on Natural Risks in Mountain and Hilly Environments, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Nathalie Fromin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Route de Mende 34199, Montpellier Cedex 5, France
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Martin Grube
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Elia Guariento
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Antoine Guisan
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Géopolis, Lausanne, 1015, Switzerland
| | - Qiao-Qiao Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
| | - Juan J Jiménez
- Instituto Pirenaico de Ecología (IPE), Consejo Superior de Investigaciones Cientificas (CSIC), Avda. Ntra. Sra. de la Victoria 16, Jaca, 22700, Huesca, Spain
| | - Stefanie Maier
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Lucie A Malard
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
| | - Maria A Minor
- School of Food Technology and Natural Sciences, Massey University, Riddett Road, Palmerston North, 4410, New Zealand
| | - Cowan C Mc Lean
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Thomas Peham
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Roberto Pizzolotto
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Ponte Pietro Bucci 4b, Rende, 87036, Italy
| | - Andy F S Taylor
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Philippe Vernon
- UMR 6553 EcoBio CNRS, University of Rennes, Biological Station, Paimpont, 35380, France
| | - Johan J van Tol
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Donghui Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yunga Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Zhijing Xie
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Bettina Weber
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Julia Seeber
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| |
Collapse
|
2
|
Duan Y, Zhang J, Petropoulos E, Zhao J, Jia R, Wu F, Chen Y, Wang L, Wang X, Li Y, Li Y. Soil Acidification Destabilizes Terrestrial Ecosystems via Decoupling Soil Microbiome. GLOBAL CHANGE BIOLOGY 2025; 31:e70174. [PMID: 40183155 DOI: 10.1111/gcb.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Soil microbiome is essential for terrestrial ecosystem preservation. β-diversity information on the former, although dynamic due to its sensitivity to environmental conditions driven by climate change, is limited. Our knowledge becomes poorer for microbiomes subjected to environmental gradients, especially for those across multiple ecosystems-information important for biological conservation management. In this study, using next generation sequencing and machine learning at samples from 207 locations among 4300 km of transects that spanned among six typical terrestrial ecosystems of China, we established the divergent distance-decay relationships between bacterial and eukaryotic communities in response to soil pH (pH as proxy of climate and edaphic conditions). The findings, pH-decrease results in lower β-diversity (convergent tendency) among the bacterial communities opposite to the eukaryotic ones (low pH-high β-diversity (divergent tendency)). Meanwhile, competition between bacteria and eukaryotes intensifies at lower pH while the predominant genera and communities are re-structured. Under these circumstances, potential soil acidification due to climate change or other factors could alter soil bacteria and eukaryotes into decoupling directions influencing ecosystems' stability. Thus, soil pH is a pivotal environmental variable that not only describes, but also controls, soil microbiome dynamics at a large scale under ongoing global changes; hence, a cornerstone variable for the biodiversity conservation of China's nature protected areas and not only.
Collapse
Affiliation(s)
- Yulong Duan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Naiman Desertification Research Station, Northwest Institute of eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junbiao Zhang
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, China
| | | | - Jianhua Zhao
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, China
| | - Rongliang Jia
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Shapotou Desert Research and Experiment Station, Northwest Institute of eco-Environment and Resources, Chinese Academy of Sciences, Zhongwei, China
| | - Fasi Wu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, Gansu, China
| | - Yun Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Naiman Desertification Research Station, Northwest Institute of eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Lilong Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Naiman Desertification Research Station, Northwest Institute of eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Xuyang Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Naiman Desertification Research Station, Northwest Institute of eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulin Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Naiman Desertification Research Station, Northwest Institute of eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiang Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Naiman Desertification Research Station, Northwest Institute of eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Cao L, Guo W, Yang S, Ahmad AA, Dong Y, Gong C, Wang S, Yang X, Cheng Z, Yan Z, Wang W. Survey of gut microbial biogeography and their functional niche in the grow-finishing swine of ordinary feeding. Front Microbiol 2025; 16:1530553. [PMID: 40124893 PMCID: PMC11925874 DOI: 10.3389/fmicb.2025.1530553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Background Swine represent one of the most economically significant livestock worldwide, and their intestinal microbial communities are crucial for maintaining physiological development and regulating host metabolism. While extensive research has focused on the fecal microbiota of swine, investigations into microbial communities across different intestinal segments remain limited. Objective This study aims to elucidate the intestinal microbiota of swine by analyzing luminal contents from different intestinal segments, including the duodenum, jejunum, ileum, cecum, and colon. Methods We employed 16S rRNA sequencing to explore the diversity and structure of gut microbial biogeography, microbial functional niches, and their associated pathways. Results Our findings reveal significantly lower microbial richness and diversity in the small intestine (duodenum, jejunum, and ileum) compared to the large intestine (cecum and colon) (p < 0.05). At the phylum level, Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant phyla, collectively accounting for over 90% of the total sequences. In the small intestine, Proteobacteria (4.76-34.2%), Actinobacteria, and Fusobacteriota were more abundant, whereas in the large intestine, Firmicutes (89.8-90.4%) was predominated. At the genus level, Fusobacterium, Corynebacterium, Rothia, Bradyrhizobium, and Brevundimonas were predominant in duodenum. Romboutsia, Clostridium_sensu_stricto_1, Terrisporobacter, and Jeotgalicoccus demonstrated greater abundances in the jejunum and ileum. Oscillospiraceae_UCG-005 in the cecum and Christensenellaceae_R-7_group in the colon were more abundant with 16.4 and 20.2% relative abundances, respectively. The specialists detected from the duodenum to the colon were all the predominant genera in each intestinal segment with relatively higher relative abundance. For instance, Romboutsia (3.06-36.1%), Clostridium_sensu_stricto_1 (5.31-18.6%), and Terrisporobacter (0.849-5.72%) were dominant genera and specialists in the small intestine, associated with enriched pathways of Amino acid metabolism and Lipid metabolism. Conversely, Oscillospiraceae_UCG-005 (16.4%, 4.06%) and Christensenellaceae_R-7_group (5.44%, 20.2%) are predominant genera and specialists within the large intestine, linked to pathways involved in Glycan biosynthesis and metabolism pathway, as well as the Biosynthesis of other secondary metabolites. Conclusion These highlight the importance of genus specialists compared to genus generalists. The findings provide essential data for assessing the role of the intestinal microbiome in maintaining and enhancing swine health and productivity, offering fundamental guidance for further exploration of host-microbe interaction mechanisms and regulatory pathways.
Collapse
Affiliation(s)
- Lili Cao
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Wei Guo
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Shiyu Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- Guizhou Yuhong Biotechnology Co., Ltd., Guiyang, China
| | - Anum Ali Ahmad
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuntao Dong
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Cen Gong
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Shuoqi Wang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Xuemin Yang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Zhentao Cheng
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Zhihong Yan
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- Institute of New Rural Development, Guizhou University, Guiyang, China
| | - Weiwei Wang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Leng H, Li A, Li Z, Hoyt JR, Dai W, Xiao Y, Feng J, Sun K. Variation and assembly mechanisms of Rhinolophus ferrumequinum skin and cave environmental fungal communities during hibernation periods. Microbiol Spectr 2025; 13:e0223324. [PMID: 39846756 PMCID: PMC11878040 DOI: 10.1128/spectrum.02233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
Animal skin acts as the barrier against invasion by pathogens and microbial colonizers. Environmental microbiota plays a significant role in shaping these microbial communities, which, in turn, have profound implications for host health. Previous research has focused on characterizing microorganisms on bats' skin and in their roosting environments, particularly bacterial communities. The emergence of white-nose syndrome, caused by the fungal-pathogen Pseudogymnoascus destructans, highlights the importance of understanding fungal dynamics in cave ecosystems and on bats' skin. In this study, we employed ITS amplicon sequencing to investigate the fungal community associated with the skin of Rhinolophus ferrumequinum and surfaces within hibernacula. In addition, we utilized neutral community and null models to assess the relative importance of stochastic and deterministic processes in fungal community assembly. The infection status of P. destructans did not significantly impact fungal community composition either on bat skin or cave environments. However, fungal diversity was significantly higher in cave environments compared to bat skin. Notably, potentially inhibitory genera of fungal pathogens were present in both bats and cave environments during hibernation. Furthermore, the composition and structure of fungal communities on both bat skin and cave environments varied across hibernation periods. Our findings suggest neutral processes primarily drive the assembly of fungal communities associated with hibernating R. ferrumequinum and cave environments, with dispersal limitation exerting a significant influence. This study provides insights into the fungal communities associated with hibernating R. ferrumequinum and cave environments.IMPORTANCEAnimal habitats provide sources and reservoirs for host microorganisms, making it critical to understand changes in microbial communities between habitats and hosts. While most studies have focused on bacterial microorganisms, research on fungal communities is lacking. This study investigated how community dynamics and assembly processes differ between the skin of hibernating Rhinolophus ferrumequinum and the cave environments under pathogen stress. We found significant differences in the composition and structure of the fungal communities between bat skin and roosting cave environments. Fungal genera with potential inhibitory effects on pathogens were found in all bat skin and cave environments. In addition, dispersal limitations during stochastic processes were a key factor in the formation of environmental fungal communities on bat skin and in caves. These findings offer new insights for exploring pathogen-host-environment-microbe interactions.
Collapse
Affiliation(s)
- Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Aoqiang Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhongle Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Joseph R. Hoyt
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| |
Collapse
|
5
|
Li J, Li XC, Gan HY, Zhang Y, Guo ZX, Liu YX, Lin YQ, Guo LD. Plant diversity increases diversity and network complexity rather than alters community assembly processes of leaf-associated fungi in a subtropical forest. SCIENCE CHINA. LIFE SCIENCES 2025; 68:846-858. [PMID: 39432205 DOI: 10.1007/s11427-024-2630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/23/2024] [Indexed: 10/22/2024]
Abstract
Plant diversity significantly impacts ecosystem processes and functions, yet its influence on the community assembly of leaf fungi remains poorly understood. In this study, we investigated leaf epiphytic and endophytic fungal communities in a Chinese subtropical tree species richness experiment, ranging from 1 to 16 species, using amplicon sequencing to target the internal transcribed spacer 1 region of the rDNA. We found that the community assembly of epiphytic and endophytic fungi was predominantly governed by stochastic processes, with a higher contribution of dispersal limitation on epiphytic than on endophytic fungal communities but a higher contribution of selection on endophytic than on epiphytic fungal communities. The plant-epiphytic fungus interaction network was more complex (e.g., more highly connected and strongly nested but less specialized and modularized) than the plant-endophytic fungus interaction network. Additionally, tree species richness was positively correlated with the network complexity and diversity of epiphytic (α-, β- and γ-diversity) and endophytic (β- and γ-diversity) fungi, but was not associated with the contribution of the stochastic and deterministic processes on the community assembly of epiphytic and endophytic fungi. This study highlights that tree species diversity enhances the diversity and network complexity, rather than alters the ecological processes in community assembly of leaf-associated fungi.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Yun Gan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Xuan Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xuan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Qing Lin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Cantera I, Giachello S, Münkemüller T, Caccianiga M, Gobbi M, Losapio G, Marta S, Valle B, Zawierucha K, Thuiller W, Ficetola GF. Describing functional diversity of communities from environmental DNA. Trends Ecol Evol 2025; 40:170-179. [PMID: 39572353 DOI: 10.1016/j.tree.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 02/07/2025]
Abstract
Comprehensive assessments of functional diversity are needed to understand ecosystem alterations under global changes. The 'Fun-eDNA' approach characterises functional diversity by assigning traits to taxonomic units obtained through environmental DNA (eDNA) sampling. By simultaneously analysing an unprecedented number of taxa over broad spatial scales, the approach provides a whole-ecosystem perspective of functional diversity. Fun-eDNA is increasingly used to tackle multiple questions, but aligning eDNA with traits poses several conceptual and technical challenges. Enhancing trait databases, improving the annotation of eDNA-based taxonomic inventories, interdisciplinary collaboration, and conceptual harmonisation of traits are key steps to achieve a comprehensive assessment of diverse taxa. Overcoming these challenges can unlock the full potential of eDNA in leveraging measures of ecosystem functions from multi-taxa assessments.
Collapse
Affiliation(s)
- Isabel Cantera
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy.
| | - Simone Giachello
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Department of Sciences, Technologies and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Tamara Münkemüller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Marco Caccianiga
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum of Trento, Trento, Italy
| | - Gianalberto Losapio
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Silvio Marta
- Institute of Geosciences and Earth Resources, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Barbara Valle
- Università degli Studi di Siena, Siena, Italy; NBFC- Nature Biodiversity Future Center, Palermo, Italy
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
7
|
Li D, Chen D, Hou C, Chen H, Zhou Q, Wu J. Soil microfauna mediate multifunctionality under multilevel warming in a primary forest. J Anim Ecol 2025; 94:58-68. [PMID: 39551974 DOI: 10.1111/1365-2656.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/05/2024] [Indexed: 11/19/2024]
Abstract
Soil microfauna play a crucial role in maintaining multiple functions associated with soil phosphorous, nitrogen and carbon cycling. Although both soil microfauna diversity and multifunctionality are strongly affected by climate warming, it remains unclear how their relationships respond to different levels of warming. We conducted a 3-year multilevel warming experiment with five warming treatments in a subtropical primary forest. Using infrared heating systems, the soil surface temperature in plots was maintained at 0.8, 1.5, 3.0 and 4.2°C above ambient temperature (control). Our findings indicated that low-level warming (+0.8-1.5°C) increased soil multifunctionality, as well as nematode and protist diversity, compared with the control. In contrast, high-level warming (+4.2°C) significantly reduced these variables. We also identified significant positive correlations between soil multifunctionality and nematode and protist diversity in the 0-10 cm soil layer. Notably, we found that soil multifunctionality and protist diversity did not change significantly under 3.0°C warming treatment. Our results imply that a temperature increase of around 3°C may represent a critical threshold in subtropical forests, which is of great importance for identifying response measures to global warming from the perspective of microfauna in the surface soil. Our findings provide new evidence on how soil microfauna regulate multifunctionality under varying degrees of warming in primary forests.
Collapse
Affiliation(s)
- Debao Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Deyun Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Chunyu Hou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Hong Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Qingqiu Zhou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Jianping Wu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Li M, Li Q, Wang S, Wang X, Li Q, Liu W, Yu J, Zhang G, Wang J, Wu QL, Zeng J. The diversity and biogeography of bacterial communities in lake sediments across different climate zones. ENVIRONMENTAL RESEARCH 2024; 263:120028. [PMID: 39307222 DOI: 10.1016/j.envres.2024.120028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Bacteria are diverse and play important roles in biogeochemical cycling of aquatic ecosystems, but the global distribution patterns of bacterial communities in lake sediments across different climate zones are still obscure. Here we integrated the high-throughput sequencing data of 750 sediment samples from published literature to investigate the distribution of bacterial communities in different climate zones and the potential driving mechanisms. The obtained results indicated that the diversity and richness of bacterial community were notably higher in temperate and cold zones than those in other climate zones. In addition, the bacterial community composition varied significantly in different climate zones, which further led to changes in bacterial functional groups. Specifically, the relative abundance of nitrogen cycling functional groups in polar zones was notably higher compared to other climate zones. Regression analysis revealed that climate (mean annual precipitation, MAP; and mean annual temperature, MAT), vegetation, and geography together determined the diversity pattern of sediment bacterial community on a global scale. The results of partial least squares path modeling further demonstrated that climate was the most significant factor affecting the composition and diversity of bacterial communities, and MAP was the most important climate factor affecting the composition of bacteria community (R2 = 0.443, P < 0.001). It is worth noting that a strong positive correlation was observed between the abundance of the dominant bacterial group uncultured_f_Anaerolineaceae and the normalized difference vegetation index (NDVI; P < 0.001), suggesting that vegetation could affect bacterial community diversity by influencing dominant bacterial taxa. This study enhances our understanding of the global diversity patterns and biogeography of sediment bacteria.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qiang Li
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuren Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiujun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qisheng Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wan Liu
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jianghua Yu
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jianjun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jin Zeng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang, 332899, China.
| |
Collapse
|
9
|
Chen W, Wang J, Zhao Y, He Y, Chen J, Dong C, Liu L, Wang J, Zhou L. Contrasting pollution responses of native and non-native fish communities in anthropogenically disturbed estuaries unveiled by eDNA metabarcoding. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136323. [PMID: 39536350 DOI: 10.1016/j.jhazmat.2024.136323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Understanding the influence of environmental pollutants on the assembly mechanisms of estuarine fish communities is vital for addressing conservation challenges in these biodiverse ecosystems. Although significant research has explored the toxic impacts of pollutants such as petroleum, heavy metals, and eutrophication on individual species and populations, their effects on community assembly processes and the differential responses of native versus non-native fish at the meta-community level remain inadequately understood. This study utilized environmental DNA (eDNA) metabarcoding to analyze fish community diversity across 28 subtropical estuaries in China, assessing how these pollutants affect community composition and assembly mechanisms. Results indicated that eDNA was 2.54 times more effective than traditional methods in species identification, while also enabling the detection of a higher number of non-native fish species and more diverse functional guilds within estuarine ecosystems. A significant distance decay pattern (p < 0.05) was observed among native fish, whereas non-native species exhibited non-significant patterns. Neutral and null models showed that non-native species had significantly higher migration rates (0.005939 vs 0.001757) and a greater contribution of stochastic processes (82.38 % vs 70.59 %) compared to native species. Additionally, distance-based redundancy analysis (db-RDA), variance partitioning analysis (VPA), and correlation analyses revealed that native species were strongly constrained by environmental factors, particularly oil, Hg, Zn, Pb, Cr6+, and NH4+, while non-native species displayed notable resilience to these pollutants. These findings highlight the potential for non-native species to disproportionately influence community dynamics and assembly through unrestricted random dispersal amid environmental disturbances. This research clarifies the contrasting ecological responses of native and non-native fish communities to anthropogenic pressures in estuarine environments, offering essential insights into ecosystem resilience and informing biodiversity conservation strategies in rapidly changing coastal ecosystems.
Collapse
Affiliation(s)
- Wenjian Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuqi Zhao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yiyong He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jinlin Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chaoyu Dong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Rao G, Song WL, Yan SZ, Chen SL. Community structure and assembly of myxomycetes in northern Chinese forests under geographic barriers. Mycologia 2024; 116:903-914. [PMID: 39208238 DOI: 10.1080/00275514.2024.2386231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
The study of myxomycete biogeography has a long-standing history and has consistently drawn scholarly interest. Nevertheless, studies focusing specifically on the spatial and temporal distribution patterns of myxomycete diversity are relatively limited, with even fewer investigating the mechanisms driving the generation and maintenance of myxomycete diversity. Therefore, this study selected two geographically distant sampling sites within northern Chinese forests to investigate myxomycete species composition, community structure, environmental drivers, and assembly patterns under geographic barriers. We established plots in the Altai Mountains (ALE) and the Greater Khingan Mountains (GKM), gathered bark and litter, and conducted 80-day moist chamber cultures of myxomycetes. Additionally, myxomycete specimens were collected in the field simultaneously to supplement the data set. This study collected 541 myxomycete specimens belonging to 73 species from 28 genera, spanning 12 families and eight orders. The ALE and the GKM had 20 identical species, accounting for 27% of the total species. Myxomycetes from both regions exhibited abundant occurrence 18 days after cultivation, with the quantity on bark substrates notably higher than on litter. Arcyria pomiformis and Comatricha elegans were the most common species in moist chamber cultures. Mantel test outcomes revealed that environmental factors had no significant impact on myxomycete community similarity between the two areas, aligning with findings from the neutral community model analysis, indicating a predominant influence of stochastic processes on myxomycete community structure in moist chamber cultures. This study represents the first application of a quantitative framework to analyze myxomycete community assembly cultivated in moist chambers.
Collapse
Affiliation(s)
- Gu Rao
- School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wen-Long Song
- School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Shu-Zhen Yan
- School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Shuang-Lin Chen
- School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
11
|
Overgaard CK, Jamy M, Radutoiu S, Burki F, Dueholm MKD. Benchmarking long-read sequencing strategies for obtaining ASV-resolved rRNA operons from environmental microeukaryotes. Mol Ecol Resour 2024; 24:e13991. [PMID: 38979877 DOI: 10.1111/1755-0998.13991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The use of short-read metabarcoding for classifying microeukaryotes is challenged by the lack of comprehensive 18S rRNA reference databases. While recent advances in high-throughput long-read sequencing provide the potential to greatly increase the phylogenetic coverage of these databases, the performance of different sequencing technologies and subsequent bioinformatics processing remain to be evaluated, primarily because of the absence of well-defined eukaryotic mock communities. To address this challenge, we created a eukaryotic rRNA operon clone-library and turned it into a precisely defined synthetic eukaryotic mock community. This mock community was then used to evaluate the performance of three long-read sequencing strategies (PacBio circular consensus sequencing and two Nanopore approaches using unique molecular identifiers) and three tools for resolving amplicons sequence variants (ASVs) (USEARCH, VSEARCH, and DADA2). We investigated the sensitivity of the sequencing techniques based on the number of detected mock taxa, and the accuracy of the different ASV-calling tools with a specific focus on the presence of chimera among the final rRNA operon ASVs. Based on our findings, we provide recommendations and best practice protocols for how to cost-effectively obtain essentially error-free rRNA operons in high-throughput. An agricultural soil sample was used to demonstrate that the sequencing and bioinformatic results from the mock community also translates to highly diverse natural samples, which enables us to identify previously undescribed microeukaryotic lineages.
Collapse
Affiliation(s)
| | - Mahwash Jamy
- Department of Organismal Biology (Systematic Biology), Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment; Division of Microbial Ecology, Uppsala University, Uppsala, Sweden
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Fabien Burki
- Department of Organismal Biology (Systematic Biology), Uppsala University, Uppsala, Sweden
| | - Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
12
|
Wang Y, Xue W, Lyu J, Yue M, Mao Z, Shen X, Wang X, Li Y, Li Q. Biotic Interactions Shape Soil Bacterial Beta Diversity Patterns along an Altitudinal Gradient during Invasion. Microorganisms 2024; 12:1972. [PMID: 39458281 PMCID: PMC11509125 DOI: 10.3390/microorganisms12101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Invasive plants have already been observed in the understory of mountain forests, which are often considered a safe shelter for most native plants. Microorganisms might be drivers of plant invasions. Nevertheless, the mechanisms determining variations in microbial community composition (beta diversity) during invasion along altitudinal gradients remain to be elucidated. Here, the elevational patterns and the driving ecological processes (e.g., environmental filtering, co-occurrence patterns, and community assembly processes) of soil bacterial beta diversity were compared between invasive and native plants on the Qinling Mountains. The species turnover dominated bacterial compositional dissimilarities in both invasive and native communities, and its contribution to total beta diversity decreased during invasion. Total soil bacterial dissimilarities and turnover exhibited significant binominal patterns over an altitudinal gradient, with a tipping point of 1413 m. Further analysis showed that the contributions of assembly processes decreased in parallel with an increase in contributions of co-occurrence patterns during the invasion process, indicating that species interdependence rather than niche partitioning is strongly correlated with the bacterial biogeography of invasive communities. Plant invasion affects the relative contributions of stochastic processes and co-occurrence interactions through the regulation of the physiochemical characteristics of soil, and ultimately determines compositional dissimilarities and the components of the bacterial community along altitudinal gradients.
Collapse
Affiliation(s)
- Yuchao Wang
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
- Xi’an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi’an 710061, China
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710061, China
| | - Wenyan Xue
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Jinlin Lyu
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Ming Yue
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
- Xi’an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi’an 710061, China
- School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zhuxin Mao
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Xuejian Shen
- Forest Disease and Pest Control and Quarantine Station of Shangluo, Shangluo 726000, China
| | - Xue Wang
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yang Li
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Qian Li
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| |
Collapse
|
13
|
Rao G, Song WL, Yan SZ, Chen SL. Unraveling the distribution pattern and driving forces of soil microorganisms under geographic barriers. Appl Environ Microbiol 2024; 90:e0135924. [PMID: 39171904 PMCID: PMC11409670 DOI: 10.1128/aem.01359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The Altai Mountains (ALE) and the Greater Khingan Mountains (GKM) in northern China are forest regions dominated by coniferous trees. These geographically isolated regions provide an ideal setting for studying microbial biogeographic patterns. In this study, we employed high-throughput techniques to obtain DNA sequences of soil myxomycetes, bacteria, and fungi and explored the mechanisms underlying the assembly of both local and cross-regional microbial communities in relation to environmental factors. Our investigation revealed that the environmental heterogeneity in ALE and GKM significantly affected the succession and assembly of soil bacterial communities at cross-regional scales. Specifically, the optimal environmental factors affecting bacterial Bray-Curtis similarity were elevation and temperature seasonality. The spatial factors and climate change impact on bacterial communities under the geographical barriers surpassed that of local soil microenvironments. The assembly pattern of bacterial communities transitions from local drift to cross-regional heterogeneous selection. Environmental factors had a relatively weak influence on myxomycetes and fungi. Both soil myxomycetes and fungi faced considerable dispersal limitation at local and cross-regional scales, ultimately leading to weak geographical distribution patterns.IMPORTANCEThe impact of environmental selection and dispersal on the soil microbial spatial distribution is a key concern in microbial biogeography, particularly in large-scale geographical patterns. However, our current understanding remains limited. Our study found that soil bacteria displayed a distinct cross-regional geographical distribution pattern, primarily influenced by environmental selection. Conversely, the cross-regional geographical distribution patterns of soil myxomycetes and fungi were relatively weak. Their composition exhibited a weak association with the environment at local and cross-regional scales, with assembly primarily driven by dispersal limitation.
Collapse
Affiliation(s)
- Gu Rao
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wen-Long Song
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shu-Zhen Yan
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuang-Lin Chen
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
14
|
Han X, Pan B, Li D, Liu X, Liu X, Hou Y, Li G. Heterogenization of microplastic communities in lakes of the Qinghai-Tibetan Plateau driven by tourism and transport activities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135255. [PMID: 39042989 DOI: 10.1016/j.jhazmat.2024.135255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
The Qinghai-Tibetan Plateau has a booming tourism industry and an increasingly sophisticated road system. There is a paucity of studies quantifying the contributions of anthropogenic and natural factors to microplastic pollution in remote plateau areas. In this study, water and sediment samples were collected from eight lake tourist attractions and four remote lakes in northern and southern regions of the Qinghai-Tibetan Plateau. Microplastics were detected in all samples, with a mean abundance of 0.78 items/L in water and 44.98 items/kg in sediment. The abundance of microplastics in the study area was lower than previously observed in more populated areas of China. Small-sized (<1 mm and 1-2 mm), fiber, and transparent microplastics were predominant, with polyethylene and polypropylene microplastics as the primary polymer types. The compositions of microplastic communities indicated that tourism and road networks were the major sources of microplastics in the lakes. Distance-decay models revealed greater influence of environmental distances on microplastic community similarity than geographic distance. Compared to climate factors, urban spatial impact intensity and traffic flow impact played a leading role in the structuring of microplastic communities in lake water and sediment. Our findings provide novel quantitative insights into the role of various factors in shaping the distribution patterns of microplastic communities in plateau lakes.
Collapse
Affiliation(s)
- Xu Han
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China.
| | - Dianbao Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xing Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xinyuan Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Yiming Hou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Gang Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| |
Collapse
|
15
|
Liu Q, Duan X, Zhang Y, Duan L, Zhang X, Liu F, Li D, Zhang H. Rainfall seasonality shapes microbial assembly and niche characteristics in Yunnan Plateau lakes, China. ENVIRONMENTAL RESEARCH 2024; 257:119410. [PMID: 38871273 DOI: 10.1016/j.envres.2024.119410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Microorganisms are crucial components of freshwater ecosystems. Understanding the microbial community assembly processes and niche characteristics in freshwater ecosystems, which are poorly understood, is crucial for evaluating microbial ecological roles. The Yunnan Plateau lakes in China represent a freshwater ecosystem that is experiencing eutrophication due to anthropogenic activities. Here, variation in the assembly and niche characteristics of both prokaryotic and microeukaryotic communities was explored in Yunnan Plateau lakes across two seasons (dry season and rainy season) to determine the impacts of rainfall and environmental conditions on the microbial community and niche. The results showed that the environmental heterogeneity of the lakes decreased in the rainy season compared to the dry season. The microbial (bacterial and microeukaryotic) α-diversity significantly decreased during the rainy season. Deterministic processes were found to dominate microbial community assembly in both seasons. β-Diversity decomposition analysis revealed that microbial community compositional dissimilarities were dominated by species replacement processes. The co-occurrence networks indicated reduced species complexity for microbes and a destabilized network for prokaryotes prior to rainfall, while the opposite was found for microeukaryotes following rainfall. Microbial niche breadth decreased significantly in the rainy season. In addition, lower prokaryotic niche overlap, but greater microeukaryotic niche overlap, was observed after rainfall. Rainfall and environmental conditions significantly affected the microbial community assembly and niche characteristics. It can be concluded that rainfall and external pollutant input during the seasonal transition alter the lake environment, thereby regulating the microbial community and niche in these lakes. Our findings offer new insight into microbiota assembly and niche patterns in plateau lakes, further deepening the understanding of freshwater ecosystem functioning.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Xinlu Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China; Southwest United Graduate School, Kunming, 650500, Yunnan, China.
| |
Collapse
|
16
|
Liang C, Qi J, Wu W, Chen X, Li M, Liu Y, Peng Z, Chen S, Pan H, Chen B, Liu J, Wang Y, Chen S, Du S, Wei G, Jiao S. Smaller microorganisms outcompete larger ones in resistance and functional effects under disturbed agricultural ecosystems. IMETA 2024; 3:e219. [PMID: 39135696 PMCID: PMC11316917 DOI: 10.1002/imt2.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 08/15/2024]
Abstract
Body size is a key ecological trait of soil microorganisms related to their adaptation to environmental changes. In this study, we reveal that the smaller microorganisms show stronger community resistance than larger organisms in both maize and rice soil. Compared with larger organisms, smaller microorganisms have higher diversity and broader niche breadth to deploy survival strategies, because of which they are less affected by environmental selection and thus survive in complex and various kinds of environments. In addition, the strong correlation between smaller microorganisms and ecosystem functions reflects their greater metabolic flexibility and illustrates their significant roles in adaptation to continuously changing environments. This research highlights the importance of body size in maintaining stability of the soil microbiome and forecasting agroecosystem dynamics under environmental disturbances.
Collapse
Affiliation(s)
- Chunling Liang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jiejun Qi
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Wenyuan Wu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Xingyu Chen
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Mingyu Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yu Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Ziheng Peng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Shi Chen
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Haibo Pan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Beibei Chen
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jiai Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yihe Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Sanfeng Chen
- Key Laboratory for Agrobiotechnology and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Sen Du
- Fertilizer Technology DepartmentNational Agricultural Technology Extension and Service CenterBeijingChina
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Shuo Jiao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| |
Collapse
|
17
|
Wang X, Zeng J, Chen F, Wang Z, Liu H, Zhang Q, Liu W, Wang W, Guo Y, Niu Y, Yuan L, Ren C, Yang G, Zhong Z, Han X. Aridity shapes distinct biogeographic and assembly patterns of forest soil bacterial and fungal communities at the regional scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174812. [PMID: 39019268 DOI: 10.1016/j.scitotenv.2024.174812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Climate change is exacerbating drought in arid and semi-arid forest ecosystems worldwide. Soil microorganisms play a key role in supporting forest ecosystem services, yet their response to changes in aridity remains poorly understood. We present results from a study of 84 forests at four south-to-north Loess Plateau sites to assess how increases in aridity level (1- precipitation/evapotranspiration) shapes soil bacterial and fungal diversity and community stability by influencing community assembly. We showed that soil bacterial diversity underwent a significant downward trend at aridity levels >0.39, while fungal diversity decreased significantly at aridity levels >0.62. In addition, the relative abundance of Actinobacteria and Ascomycota increased with higher aridity level, while the relative abundance of Acidobacteria and Basidiomycota showed the opposite trend. Bacterial communities also exhibited higher similarity-distance decay rates across geographic and environmental gradients than did fungal communities. Phylogenetic bin-based community assembly analysis revealed homogeneous selection and dispersal limitation as the two dominant processes in bacterial and fungal assembly. Dispersal limitation of bacterial communities monotonically increased with aridity levels, whereas homogeneous selection of fungal communities monotonically decreased. Importantly, aridity also increased the sensitivity of microbial communities to environmental disturbance and potentially decreased community stability, as evidenced by greater community similarity-environmental distance decay rates, narrower habitat niche breadth, and lower microbial network stability. Our study provides new insights into soil microbial drought response, with implications on the sustainability of ecosystems under environmental stress.
Collapse
Affiliation(s)
- Xing Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Jia Zeng
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Fang Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zhengchen Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Hanyu Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Qi Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Weichao Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Wenjie Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yang Guo
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yanfeng Niu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Linshan Yuan
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zekun Zhong
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
18
|
Liu J, Zhao R, Feng J, Fu W, Cao L, Zhang J, Lei Y, Liang J, Lin L, Li X, Li B. Bacterial assembly and succession patterns in conventional and advanced drinking water systems: From source to tap. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134613. [PMID: 38788571 DOI: 10.1016/j.jhazmat.2024.134613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Bacteria are pivotal to drinking water treatment and public health. However, the mechanisms of bacterial assembly and their impact on species coexistence remain largely unexplored. This study explored the assembly and succession of bacterial communities in two full-scale drinking water systems over one year. We observed a decline in bacterial biomass, diversity, and co-occurrence network complexity along the treatment processes, except for the biological activated carbon filtration stage. The conventional plant showed higher bacterial diversity than the advanced plant, despite similar bacterial concentrations and better removal efficiency. The biological activated carbon filter exhibited high phylogenetic diversity, indicating enhanced bacterial metabolic functionality for organic matter removal. Chlorination inactivated most bacteria but favored some chlorination-resistant and potentially pathogenic species, such as Burkholderia, Bosea, Brevundimonas, and Acinetobacter. Moreover, the spatiotemporal dynamics of the bacterial continuum were primarily driven by stochastic processes, explaining more than 78% of the relative importance. The advanced plant's bacterial community was less influenced by dispersal limitation and more by homogeneous selection. The stochastic process regulated bacterial diversity and influenced the complexity of the species co-occurrence network. These findings deepen our understanding of microbial ecological mechanisms and species interactions, offering insights for enhancing hygienic safety in drinking water systems.
Collapse
Affiliation(s)
- Jie Liu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Renxin Zhao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jie Feng
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Wenjie Fu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lijia Cao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yusha Lei
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiajin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lin Lin
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
19
|
Martins BR, Radl V, Treder K, Michałowska D, Pritsch K, Schloter M. The rhizosphere microbiome of 51 potato cultivars with diverse plant growth characteristics. FEMS Microbiol Ecol 2024; 100:fiae088. [PMID: 38839598 PMCID: PMC11242454 DOI: 10.1093/femsec/fiae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
Rhizosphere microbial communities play a substantial role in plant productivity. We studied the rhizosphere bacteria and fungi of 51 distinct potato cultivars grown under similar greenhouse conditions using a metabarcoding approach. As expected, individual cultivars were the most important determining factor of the rhizosphere microbial composition; however, differences were also obtained when grouping cultivars according to their growth characteristics. We showed that plant growth characteristics were related to deterministic and stochastic assembly processes of bacterial and fungal communities, respectively. The bacterial genera Arthrobacter and Massilia (known to produce indole acetic acid and siderophores) exhibited greater relative abundance in high- and medium-performing cultivars. Bacterial co-occurrence networks were larger in the rhizosphere of these cultivars and were characterized by a distinctive combination of plant beneficial Proteobacteria and Actinobacteria along with a module of diazotrophs namely Azospira, Azoarcus, and Azohydromonas. Conversely, the network within low-performing cultivars revealed the lowest nodes, hub taxa, edges density, robustness, and the highest average path length resulting in reduced microbial associations, which may potentially limit their effectiveness in promoting plant growth. Our findings established a clear pattern between plant productivity and the rhizosphere microbiome composition and structure for the investigated potato cultivars, offering insights for future management practices.
Collapse
Affiliation(s)
- Benoit Renaud Martins
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Viviane Radl
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Krzysztof Treder
- Plant Breeding and Acclimatization Institute – National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str 3, 76-009 Bonin, Poland
| | - Dorota Michałowska
- Plant Breeding and Acclimatization Institute – National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str 3, 76-009 Bonin, Poland
| | - Karin Pritsch
- Research Unit for Environmental Simulation (EUS), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair for Environmental Microbiology, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany
| |
Collapse
|
20
|
Bian Q, Cheng K, Chen L, Jiang Y, Li D, Xie Z, Wang X, Sun B. Organic amendments increased Chinese milk vetch symbiotic nitrogen fixation by enriching Mesorhizobium in rhizosphere. ENVIRONMENTAL RESEARCH 2024; 252:118923. [PMID: 38636641 DOI: 10.1016/j.envres.2024.118923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Symbiotic nitrogen fixation of Chinese milk vetch (Astragalus sinicus L.) can fix nitrogen from the atmosphere and serve as an organic nitrogen source in agricultural ecosystems. Exogenous organic material application is a common practice of affecting symbiotic nitrogen fixation; however, the results of the regulation activities remain under discussion. Studies on the impact of organic amendments on symbiotic nitrogen fixation have focused on dissolved organic carbon content changes, whereas the impact on dissolved organic carbon composition and the underlying mechanism remain unclear. In situ pot experiments were carried out using soils from a 40-year-old field experiment platform to investigate symbiotic nitrogen fixation rate trends, dissolved organic carbon concentration and component, and diazotroph community structure in roots and in rhizosphere soils following long-term application of different exogenous organic substrates, i.e., green manure, green manure and pig manure, and green manure and rice straw. Remarkable increases in rate were observed in and when compared with that in green manure treatment, with the greatest enhancement observed in the treatment. Moreover, organic amendments, particularly pig manure application, altered diazotroph community composition in rhizosphere soils, therefore increasing the abundance of the host-specific genus Mesorhizobium. Furthermore, organic amendments influence the diazotroph communities through two primary mechanisms. Firstly, the components of dissolved organic carbon promote an increase in available iron, facilitated by the presence of humus substrates. Secondly, the elevated content of dissolved organic carbon and available iron expands the niche breadth of Mesorhizobium within the rhizosphere. Consequently, these alterations result in a modified diazotroph community within the rhizosphere, which in turn influences Mesorhizobium nodulation in the root and symbiotic nitrogen fixation rate. The results of the present study enhance our understanding of the impact of organic amendments on symbiotic nitrogen fixation and the underlying mechanism, highlighting the key role of dissolved organic carbon composition on diazotroph community composition in the rhizosphere.
Collapse
Affiliation(s)
- Qing Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Cheng
- Institute of Red Soil and Germplasm Resources, Jinxian, 331717, China
| | - Ling Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Daming Li
- Institute of Red Soil and Germplasm Resources, Jinxian, 331717, China.
| | - Zubin Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
21
|
Zhao M, Jiang M, Qin L, Hu N, Meng J, Wang M, Wang G. The recovery of soil eukaryotic alpha and beta diversity after wetland restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171814. [PMID: 38508279 DOI: 10.1016/j.scitotenv.2024.171814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Soil eukaryotes play an important role in regulating the ecological processes and ecosystem functioning. However, the recovery potential of soil eukaryotic diversity during wetland restoration is largely unknown. We compared the alpha and beta diversity of soil eukaryotes of farmlands and natural and restored wetlands to explore the underlying abiotic and biotic driving forces in the Sanjiang Plain, China. We found that there was no significant difference of the alpha diversity of soil eukaryotes, while the beta diversity of soil eukaryotes differed significantly between the three land use types, with the mean values in the restored wetlands in between those in the natural wetlands and farmlands. The composition of soil eukaryotic communities were less diverse in farmlands compared to restored and natural wetlands. Network property of soil eukaryotes community (positive: negative edges) increased from farmlands to restored wetlands to natural wetlands, indicating enhanced species positive: negative interactions during restoration. The structural equation modeling indicated that species positive: negative interactions and soil nutrients directly affected soil eukaryotic beta diversity. Soil pH and soil water content indirectly affected soil eukaryotic beta diversity by directly affecting species interactions. Our findings suggest that wetland restoration could change soil environment, strengthen microbial cooperation, and increase eukaryotic beta diversity. However, it may take a very long time to reach the original level of soil eukaryotic structure and diversity.
Collapse
Affiliation(s)
- Meiling Zhao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Jiang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Qin
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Nanlin Hu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingci Meng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ming Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Guodong Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
22
|
Feng M, Lin Y, He ZY, Hu HW, Jin S, Liu J, Wan S, Cheng Y, He JZ. Higher stochasticity in comammox Nitrospira community assembly in upland soils than the adjacent paddy soils at a regional scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171227. [PMID: 38402820 DOI: 10.1016/j.scitotenv.2024.171227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Understanding the assembly mechanisms of microbial communities, particularly comammox Nitrospira, in agroecosystems is crucial for sustainable agriculture. However, the large-scale distribution and assembly processes of comammox Nitrospira in agricultural soils remain largely elusive. We investigated comammox Nitrospira abundance, community structure, and assembly processes in 16 paired upland peanuts and water-logged paddy soils in south China. Higher abundance, richness, and network complexity of comammox Nitrospira were observed in upland soils than in paddy soils, indicating a preference for upland soils over paddy soils among comammox Nitrospira taxa in agricultural environments. Clade A.2.1 and clade A.1 were the predominant comammox Nitrospira taxa in upland and paddy soils, respectively. Soil pH was the most crucial factor shaping comammox Nitrospira community structure. Stochastic processes were found to predominantly drive comammox Nitrospira community assembly in both upland and paddy soils, with deterministic processes playing a more important role in paddy soils than in upland soils. Overall, our findings demonstrate the higher stochasticity of comammox Nitrospira in upland soils than in the adjacent paddy soils, which may have implications for autotrophic nitrification in acidic agricultural soils.
Collapse
Affiliation(s)
- Mengmeng Feng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Yongxin Lin
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China.
| | - Zi-Yang He
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia
| | - Shengsheng Jin
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Song Wan
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Yuheng Cheng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Ji-Zheng He
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China; School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
23
|
Fan Q, Liu K, Wang Z, Liu D, Li T, Hou H, Zhang Z, Chen D, Zhang S, Yu A, Deng Y, Cui X, Che R. Soil microbial subcommunity assembly mechanisms are highly variable and intimately linked to their ecological and functional traits. Mol Ecol 2024; 33:e17302. [PMID: 38421102 DOI: 10.1111/mec.17302] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Revealing the mechanisms underlying soil microbial community assembly is a fundamental objective in molecular ecology. However, despite increasing body of research on overall microbial community assembly mechanisms, our understanding of subcommunity assembly mechanisms for different prokaryotic and fungal taxa remains limited. Here, soils were collected from more than 100 sites across southwestern China. Based on amplicon high-throughput sequencing and iCAMP analysis, we determined the subcommunity assembly mechanisms for various microbial taxa. The results showed that dispersal limitation and homogenous selection were the primary drivers of soil microbial community assembly in this region. However, the subcommunity assembly mechanisms of different soil microbial taxa were highly variable. For instance, the contribution of homogenous selection to Crenarchaeota subcommunity assembly was 70%, but it was only around 10% for the subcommunity assembly of Actinomycetes, Gemmatimonadetes and Planctomycetes. The assembly of subcommunities including microbial taxa with higher occurrence frequencies, average relative abundance and network degrees, as well as wider niches tended to be more influenced by homogenizing dispersal and drift, but less affected by heterogeneous selection and dispersal limitation. The subcommunity assembly mechanisms also varied substantially among different functional guilds. Notably, the subcommunity assembly of diazotrophs, nitrifiers, saprotrophs and some pathogens were predominantly controlled by homogenous selection, while that of denitrifiers and fungal pathogens were mainly affected by stochastic processes such as drift. These findings provide novel insights into understanding soil microbial diversity maintenance mechanisms, and the analysis pipeline holds significant value for future research.
Collapse
Affiliation(s)
- Qiuping Fan
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Kaifang Liu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Zelin Wang
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Dong Liu
- School of Life Sciences, Yunnan University, Kunming, China
| | - Ting Li
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Hou
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Zejin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Danhong Chen
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Song Zhang
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Anlan Yu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Yongcui Deng
- School of Geography Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| |
Collapse
|
24
|
Feng Z, Li N, Deng Y, Yu Y, Gao Q, Wang J, Chen S, Xing R. Biogeography and assembly processes of abundant and rare soil microbial taxa in the southern part of the Qilian Mountain National Park, China. Ecol Evol 2024; 14:e11001. [PMID: 38352203 PMCID: PMC10862184 DOI: 10.1002/ece3.11001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Soil microorganisms play vital roles in regulating multiple ecosystem functions. Recent studies have revealed that the rare microbial taxa (with extremely low relative abundances, which are still largely ignored) are also crucial in maintaining the health and biodiversity of the soil and may respond differently to environmental pressure. However, little is known about the soil community structures of abundant and rare taxa and their assembly processes in different soil layers on the Qinghai-Tibet Plateau (QTP). The present study investigated the community structure and assembly processes of soil abundant and rare microbial taxa on the northeastern edge of the QTP. Soil microbial abundance was defined by abundant taxa, whereas rare taxa contributed to soil microbial diversity. The results of null model show that the stochastic process ruled the assembly processes of all sub-communities. Dispersal limitation contributed more to the assembly of abundant microbial taxa in the different soil layers. In contrast, drift played a more critical role in the assembly processes of the rare microbial taxa. In addition, in contrast to previous studies, the abundant taxa played more important roles in co-occurrence networks, most likely because of the heterogeneity of the soil, the sparsity of amplicon sequencing, the sampling strategy, and the limited samples in the present study. The results of this study improve our understanding of soil microbiome assemblies on the QTP and highlight the role of abundant taxa in sustaining the stability of microbial co-occurrence networks in different soil layers.
Collapse
Affiliation(s)
- Zhilin Feng
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Na Li
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Yanfang Deng
- Service Center of Qilian Mountain National Park in Qinghai ProvinceXiningQinghaiChina
| | - Yao Yu
- Service Center of Qilian Mountain National Park in Qinghai ProvinceXiningQinghaiChina
| | - Qingbo Gao
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningQinghaiChina
| | - Jiuli Wang
- Qinghai Nationalities UniversityXiningQinghaiChina
| | - Shi‐long Chen
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningQinghaiChina
| | - Rui Xing
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningQinghaiChina
| |
Collapse
|
25
|
Yao H, Li Z, Geisen S, Qiao Z, Breed MF, Sun X. Degree of urbanization and vegetation type shape soil biodiversity in city parks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166437. [PMID: 37604369 DOI: 10.1016/j.scitotenv.2023.166437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Urbanization negatively impacts aboveground biodiversity, such as bird and insect communities. City parks can reduce these negative impacts by providing important habitat. However, it remains poorly understood how the degree of urbanization and vegetation types within city parks (e.g., lawns, woodland) impact soil biodiversity. Here we investigated the impact of the degree of urbanization (urban vs. suburban) and vegetation type (lawn, shrub-lawn, tree-lawn and tree-shrub mixtures) on soil biodiversity in parkland systems. We used eDNA metabarcoding to characterize soil biodiversity of bacteria, fungi, protists, nematodes, meso- and macrofauna across park vegetation types in urban and suburban regions in Xiamen, China. We observed a strong effect of the degree of urbanization on the richness of different soil biota groups, with higher species richness of protists and meso/macrofauna in urban compared to suburban areas, while the richness of bacteria and fungi did not differ, and the difference of nematode richness depended on vegetation type. At the functional level, increased degree of urbanization associated with greater species richness of bacterivores, plant pathogens and animal parasites. These urbanization effects were at least partly modulated by higher soil phosphorous levels in urban compared to suburban sites. Also, the vegetation type impacted soil biodiversity, particularly fungal richness, with the richness of pathogenic and saprotrophic fungi increasing from lawn to tree-shrub mixtures. Tree-shrub mixtures also had the highest connectedness between biotas and lowest variation in the soil community structure. Overall, we show that soil biodiversity is strongly linked to the degree of urbanization, with overall richness increasing with urbanization, especially in bacterivores, plant pathogens and animal parasites. Targeted management of vegetation types in urban areas should provide a useful way to help mitigate the negative effect of urbanization on soil biodiversity.
Collapse
Affiliation(s)
- Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Zhipeng Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Stefan Geisen
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, 6700 ES Wageningen, the Netherlands.
| | - Zhihong Qiao
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia.
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
26
|
Ren Z, Ye S, Li H, Huang X, Chen L, Cao S, Chen T. Biological Interactions and Environmental Influences Shift Microeukaryotes in Permafrost Active Layer Soil Across the Qinghai-Tibet Plateau. MICROBIAL ECOLOGY 2023; 86:2756-2769. [PMID: 37542537 DOI: 10.1007/s00248-023-02280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Permafrost active layer soils are harsh environments with thaw/freeze cycles and sub-zero temperatures, harboring diverse microorganisms. However, the distribution patterns, assembly mechanism, and driving forces of soil microeukaryotes in permafrost remain largely unknown. In this study, we investigated microeukaryotes in permafrost active layer across the Qinghai-Tibet Plateau (QTP) using 18S rRNA gene sequencing. The results showed that the microbial eukaryotic communities were dominated by Nematozoa, Ciliophora, Ascomycota, Cercozoa, Arthropoda, and Basidiomycota in terms of relative abundance and operational taxonomic unit (OTU) richness. Nematozoa had the highest relative abundance, while Ciliophora had the highest OTU richness. These phyla had strong interactions between each other. Their alpha diversity and community structure were differently influenced by the factors associated to location, climate, and soil properties, particularly the soil properties. Significant but weak distance-decay relationships with different slopes were established for the communities of these dominant phyla, except for Basidiomycota. According to the null model, community assemblies of Nematozoa and Cercozoa were dominated by heterogeneous selection, Ciliophora and Ascomycota were dominated by dispersal limitation, while Arthropoda and Basidiomycota were highly dominated by non-dominant processes. The assembly mechanisms can be jointly explained by biotic interactions, organism treats, and environmental influences. Modules in the co-occurrence network of the microeukaryotes were composed by members from different taxonomic groups. These modules also had interactions and responded to different environmental factors, within which, soil properties had strong influences on these modules. The results suggested the importance of biological interactions and soil properties in structuring microbial eukaryotic communities in permafrost active layer soil across the QTP.
Collapse
Affiliation(s)
- Ze Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 Beijing East Road, Nanjing, 210008, China.
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China.
| | - Shudan Ye
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Hongxuan Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Xilei Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Luyao Chen
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shengkui Cao
- School of Geographical Science, Qinghai Normal University, Xining, 810008, China
| | - Tao Chen
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, 768 Jiayuguan W Road, Lanzhou, 730020, China.
| |
Collapse
|
27
|
Larsen S, Coleine C, Albanese D, Stegen JC, Selbmann L, Donati C. Geology and elevation shape bacterial assembly in Antarctic endolithic communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168050. [PMID: 39491194 DOI: 10.1016/j.scitotenv.2023.168050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Ice free areas of continental Antarctica are among the coldest and driest environments on Earth, and yet, they support surprisingly diverse and highly adapted microbial communities. Endolithic growth is one of the key adaptations to such extreme environments and often represents the dominant life-form. Despite growing scientific interest, little is known of the mechanisms that influence the assembly of endolithic microbiomes across these harsh environments. Here, we used metagenomics to examine the diversity and assembly of endolithic bacterial communities across Antarctica within different rock types and over a large elevation range. While granite supported richer and more heterogeneous communities than sandstone, elevation had no apparent effect on taxonomic richness, regardless of rock type. Conversely, elevation was clearly associated with turnover in community composition, with the deterministic process of variable selection driving microbial assembly along the elevation gradient. The turnover associated with elevation was modulated by geology, whereby for a given elevation difference, turnover was consistently larger between communities inhabiting different rock types. Overall, selection imposed by elevation and geology appeared stronger than turnover related to other spatially-structured environmental drivers. Our findings indicate that at the cold-arid limit of life on Earth, geology and elevation are key determinants of endolithic bacterial heterogeneity. This also suggests that warming temperatures may threaten the persistence of such extreme-adapted organisms.
Collapse
Affiliation(s)
- Stefano Larsen
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - James C Stegen
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; Mycological Section, Italian Antarctic National Museum (MNA), Genoa, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
28
|
Wu B, Jiao X, Sun A, Li F, He JZ, Hu HW. Precipitation seasonality and soil pH drive the large-scale distribution of soil invertebrate communities in agricultural ecosystems. FEMS Microbiol Ecol 2023; 99:fiad131. [PMID: 37838473 DOI: 10.1093/femsec/fiad131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023] Open
Abstract
Soil invertebrates contribute significantly to vital ecosystem functions such as the breakdown of organic matter and cycling of essential nutrients, but our knowledge of their large-scale distribution in agricultural systems is limited, which hinders our ability to robustly predict how they will respond to future global change scenarios. Here, we employed metabarcoding analysis of eukaryotic 18S rRNA genes to examine the diversity and community composition of invertebrates in 528 sorghum rhizosphere and bulk soils, collected from 53 experimental field sites across China. Our results revealed that Nematoda, Arthropoda and Annelida were the dominant soil invertebrate groups in agroecosystems. Among all the climatic and soil parameters we examined, precipitation seasonality (i.e. the irregular distribution of precipitation during a normal year) had the strongest relationship with the richness of soil invertebrates, with an increase in soil invertebrate richness predicted with increasing precipitation seasonality. Mean annual precipitation and soil pH were the most important predictors of soil invertebrate community structure, with numerous invertebrate phylotypes showing either significantly positive or negative relationships with these two variables. Our findings suggest that shifts in precipitation patterns and soil pH, induced by future climate change and agricultural practices, will have important consequences for the distribution of soil invertebrate communities, with implications for agricultural ecosystem sustainability.
Collapse
Affiliation(s)
- Bingxue Wu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiaoyan Jiao
- College of Resource and Environment, Shanxi Agricultural University, Taiyuan 03003, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fangfang Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Ji-Zheng He
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
29
|
Li P, Tedersoo L, Crowther TW, Wang B, Shi Y, Kuang L, Li T, Wu M, Liu M, Luan L, Liu J, Li D, Li Y, Wang S, Saleem M, Dumbrell AJ, Li Z, Jiang J. Global diversity and biogeography of potential phytopathogenic fungi in a changing world. Nat Commun 2023; 14:6482. [PMID: 37838711 PMCID: PMC10576792 DOI: 10.1038/s41467-023-42142-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Phytopathogenic fungi threaten global food security but the ecological drivers of their global diversity and biogeography remain unknown. Here, we construct and analyse a global atlas of potential phytopathogenic fungi from 20,312 samples across all continents and major oceanic island regions, eleven land cover types, and twelve habitat types. We show a peak in the diversity of phytopathogenic fungi in mid-latitude regions, in contrast to the latitudinal diversity gradients observed in aboveground organisms. Our study identifies climate as an important driver of the global distribution of phytopathogenic fungi, and our models suggest that their diversity and invasion potential will increase globally by 2100. Importantly, phytopathogen diversity will increase largely in forest (37.27-79.12%) and cropland (34.93-82.51%) ecosystems, and this becomes more pronounced under fossil-fuelled industry dependent future scenarios. Thus, we recommend improved biomonitoring in forests and croplands, and optimised sustainable development approaches to reduce potential threats from phytopathogenic fungi.
Collapse
Affiliation(s)
- Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu Kuang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Ting Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Songhan Wang
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Alex J Dumbrell
- School of Life Sciences, University of Essex, Colchester, Essex, UK.
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| |
Collapse
|
30
|
Köninger J, Ballabio C, Panagos P, Jones A, Schmid MW, Orgiazzi A, Briones MJI. Ecosystem type drives soil eukaryotic diversity and composition in Europe. GLOBAL CHANGE BIOLOGY 2023; 29:5706-5719. [PMID: 37449367 DOI: 10.1111/gcb.16871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Soil eukaryotes play a crucial role in maintaining ecosystem functions and services, yet the factors driving their diversity and distribution remain poorly understood. While many studies focus on some eukaryotic groups (mostly fungi), they are limited in their spatial scale. Here, we analyzed an unprecedented amount of observational data of soil eukaryomes at continental scale (787 sites across Europe) to gain further insights into the impact of a wide range of environmental conditions (climatic and edaphic) on their community composition and structure. We found that the diversity of fungi, protists, rotifers, tardigrades, nematodes, arthropods, and annelids was predominantly shaped by ecosystem type (annual and permanent croplands, managed and unmanaged grasslands, coniferous and broadleaved woodlands), and higher diversity of fungi, protists, nematodes, arthropods, and annelids was observed in croplands than in less intensively managed systems, such as coniferous and broadleaved woodlands. Also in croplands, we found more specialized eukaryotes, while the composition between croplands was more homogeneous compared to the composition of other ecosystems. The observed high proportion of overlapping taxa between ecosystems also indicates that DNA has accumulated from previous land uses, hence mimicking the land transformations occurring in Europe in the last decades. This strong ecosystem-type influence was linked to soil properties, and particularly, soil pH was driving the richness of fungi, rotifers, and annelids, while plant-available phosphorus drove the richness of protists, tardigrades, and nematodes. Furthermore, the soil organic carbon to total nitrogen ratio crucially explained the richness of fungi, protists, nematodes, and arthropods, possibly linked to decades of agricultural inputs. Our results highlighted the importance of long-term environmental variables rather than variables measured at the time of the sampling in shaping soil eukaryotic communities, which reinforces the need to include those variables in addition to ecosystem type in future monitoring programs and conservation efforts.
Collapse
Affiliation(s)
- Julia Köninger
- Departamento de Ecología y Biología Animal, Universidade de Vigo, Vigo, Spain
- European Commission, Joint Research Centre, Ispra, Italy
| | | | - Panos Panagos
- European Commission, Joint Research Centre, Ispra, Italy
| | - Arwyn Jones
- European Commission, Joint Research Centre, Ispra, Italy
| | | | | | - Maria J I Briones
- Departamento de Ecología y Biología Animal, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
31
|
Geisen S, Lara E, Mitchell E. Contemporary issues, current best practice and ways forward in soil protist ecology. Mol Ecol Resour 2023; 23:1477-1487. [PMID: 37259890 DOI: 10.1111/1755-0998.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/23/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Soil protists are increasingly studied due to a release from previous methodological constraints and the acknowledgement of their immense diversity and functional importance in ecosystems. However, these studies often lack sufficient depth in knowledge, which is visible in the form of falsely used terms and false- or over-interpreted data with conclusions that cannot be drawn from the data obtained. As we welcome that also non-experts include protists in their still mostly bacterial and/or fungal-focused studies, our aim here is to help avoid some common errors. We provide suggestions for current terms to use when working on soil protists, like protist instead of protozoa, predator instead of grazer, microorganisms rather than microflora and other terms to be used to describe the prey spectrum of protists. We then highlight some dos and don'ts in soil protist ecology including challenges related to interpreting 18S rRNA gene amplicon sequencing data. We caution against the use of standard bioinformatic settings optimized for bacteria and the uncritical reliance on incomplete and partly erroneous reference databases. We also show why causal inferences cannot be drawn from sequence-based correlation analyses or any sampling/monitoring, study in the field without thorough experimental confirmation and sound understanding of the biology of taxa. Together, we envision this work to help non-experts to more easily include protists in their soil ecology analyses and obtain more reliable interpretations from their protist data and other biodiversity data that, in the end, will contribute to a better understanding of soil ecology.
Collapse
Affiliation(s)
- Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | | | - Edward Mitchell
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
32
|
Qiao H, Gao D, Yuan T. Differences in rhizosphere soil fungal communities of wild and cultivated Paeonia ludlowii species. FRONTIERS IN PLANT SCIENCE 2023; 14:1194598. [PMID: 37767294 PMCID: PMC10520497 DOI: 10.3389/fpls.2023.1194598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023]
Abstract
Introduction Paeonia ludlowii is a rare and endangered plant species with a high application value. However, its low cultivation success rate in China has severely limited its protection, development, and utilization. In addition to natural factors, microorganisms in the rhizosphere play an important role in determining its cultivation success. Methods In this study, growth indexes and soil physicochemical properties of both wild (origin: Nyingchi) and cultivated (introduction: Luanchuan) species of P. ludlowii were measured during the flowering, fruiting, and autumn foliage stages. ITS high-throughput sequencing technology was employed to detect rhizosphere soil fungi, and the diversity, community structure, functional prediction, molecular network, and ecological processes of the microbial community assembly were examined by multidirectional analysis. Results and discussion The results indicated that: both wild and cultivated P. ludlowii species were able to flower and fruit normally, although the wild species had a higher number of flowers and fruits and higher soil available phosphorus and available potassium contents than those of the cultivated species. Ascomycota and Basidiomycota were the dominant rhizosphere soil fungal phyla in both P. ludlowii species. However, our network analysis showed that Ascomycota as the key fungal phylum of the wild species, whereas the cultivated species lacked key fungi. The community assembly mechanisms of rhizosphere soil fungi in both wild and cultivated species were primarily stochasticity, with no significant differences between them. Based on the results of FUNGuild and molecular network analyses, cultivated species had a higher proportion of fungi, such as Soil Saprotroph, that can easily cause diseases. Additionally, the network connections among fungi were weaker in the cultivated species than those in the wild species, which increased the cultivated species susceptibility to external environmental interferences. Therefore, from a soil microorganism perspective, this study suggests that, after the introduction and cultivation of P. ludlowii, if rhizosphere soil fungi fail to gradually form a close network relationship and instead promote the growth of pathogenic fungi, the fungal ecosystem would become vulnerable.
Collapse
Affiliation(s)
- Hongyong Qiao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Danlei Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Science and Technology Development Center, National Forestry and Grassland Administration, Beijing, China
| | - Tao Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
33
|
Chen C, Yin G, Hou L, Jiang Y, Sun D, Liang X, Han P, Zheng Y, Liu M. Reclamation of tidal flats to paddy soils reshuffles the soil microbiomes along a 53-year reclamation chronosequence: Evidence from assembly processes, co-occurrence patterns and multifunctionality. ENVIRONMENT INTERNATIONAL 2023; 179:108151. [PMID: 37603994 DOI: 10.1016/j.envint.2023.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
Coastal soil microbiomes play a key role in coastal ecosystem functioning and are intensely threatened by land reclamation. However, the impacts of coastal reclamation on soil microbial communities, particularly on their assembly processes, co-occurrence patterns, and the multiple soil functions they support, remain poorly understood. This impedes our capability to comprehensively evaluate the impacts of coastal reclamation on soil microbiomes and to restore coastal ecosystem functions degraded by reclamation. Here, we investigated the temporal dynamics of bacterial and fungal communities, community assembly processes, co-occurrence patterns, and ecosystem multifunctionality along a 53-year chronosequence of paddy soil following reclamation from tidal flats. Reclamation of tidal flats to paddy soils resulted in decreased β-diversity, increased homogeneous selection, and decreased network complexity and robustness of both bacterial and fungal communities, but caused contrasting α-diversity response patterns of them. Reclamation of tidal flats to paddy soils also decreased the multifunctionality of coastal ecosystems, which was largely associated with the fungal network complexity and α-diversity. Collectively, this work demonstrates that coastal reclamation strongly reshaped the soil microbiomes at the level of assembly mechanisms, interaction patterns, and functionality level, and highlights that soil fungal community complexity should be considered as a key factor in restoring coastal ecosystem functions deteriorated by land reclamation.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yinghui Jiang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022 Jiangxi, China
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| |
Collapse
|
34
|
Yang J, Yun J, Liu X, Du W, Xiang M. Niche and ecosystem preference of earliest diverging fungi in soils. Mycology 2023; 14:239-255. [PMID: 37583459 PMCID: PMC10424602 DOI: 10.1080/21501203.2023.2237047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Within the supergroup Rotosphaeromycetes, or "Holomycota"/"Nucletmycea", there are several well-recognised unicellular clades in the earliest diverging fungi (EDF). However, we know little about their occurrence. Here, we investigated EDF in the rhizosphere and bulk soils from cropland, forest, orchard, and wetland ecosystems around the Beijing-Hebei area, China, to illustrate their niche and ecosystem preference. More than 500 new operational taxonomic units (OTUs) of EDF were detected based on the 18S rRNA genes. Microsporida and Aphelida constitute dominant groups, whereas Rozellosporida was quite rare. Although the EDF community was site-specific, the soil chemical characteristics, vegetation, and other eukaryotic microorganisms were the key factors driving the occurrence of EDF. Moreover, the stochastic process consisted the most of the EDF community assembly.
Collapse
Affiliation(s)
- Jiarui Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Matheri F, Kambura AK, Mwangi M, Karanja E, Adamtey N, Wanjau K, Mwangi E, Tanga CM, Bautze D, Runo S. Evolution of fungal and non-fungal eukaryotic communities in response to thermophilic co-composting of various nitrogen-rich green feedstocks. PLoS One 2023; 18:e0286320. [PMID: 37256894 DOI: 10.1371/journal.pone.0286320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
Thermophilic composting is a promising soil and waste management approach involving diverse micro and macro-organisms, including eukaryotes. Due to sub-optimal amounts of nutrients in manure, supplemental feedstock materials such as Lantana camara, and Tithonia diversifolia twigs are used in composting. These materials have, however, been reported to have antimicrobial activity in in-vitro experiments. Furthermore, the phytochemical analysis has shown differences in their complexities, thus possibly requiring various periods to break down. Therefore, it is necessary to understand these materials' influence on the biological and physical-chemical stability of compost. Most compost microbiome studies have been bacterial-centric, leaving out eukaryotes despite their critical role in the environment. Here, the influence of different green feedstock on the fungal and non-fungal eukaryotic community structure in a thermophilic compost environment was examined. Total community fungal and non-fungal eukaryotic DNA was recovered from triplicate compost samples of four experimental regimes. Sequencing for fungal ITS and non-fungal eukaryotes; 18S rDNA was done under the Illumina Miseq platform, and bioinformatics analysis was done using Divisive Amplicon Denoising Algorithm version 2 workflow in R version 4.1. Samples of mixed compost and composting day 84 recorded significantly (P<0.05) higher overall fungal populations, while Lantana-based compost and composting day 84 revealed the highest fungal community diversity. Non-fungal eukaryotic richness was significantly (P< 0.05) more abundant in Tithonia-based compost and composting day 21. The most diverse non-fungal eukaryotic biome was in the Tithonia-based compost and composting day 84. Sordariomycetes and Holozoa were the most contributors to the fungal and non-fungal community interactions in the compost environment, respectively. The findings of this study unravel the inherent influence of diverse composting materials and days on the eukaryotic community structure and compost's biological and chemical stability.
Collapse
Affiliation(s)
- Felix Matheri
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Anne Kelly Kambura
- Department of Agricultural Sciences, Taita Taveta University (TTU), Voi, Kenya
| | - Maina Mwangi
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
| | - Edward Karanja
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Noah Adamtey
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Kennedy Wanjau
- International Livestock Research Institute (ILRI), Department Animal and Human Health, Nairobi, Kenya
| | - Edwin Mwangi
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | - David Bautze
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Steven Runo
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
| |
Collapse
|
36
|
Wang B, Chen X, Xiong X, Wu W, He Q, Hu H, Wu C. Spatial analysis of the influence on "microplastic communities" in the water at a medium scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163788. [PMID: 37149188 DOI: 10.1016/j.scitotenv.2023.163788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
The issue of microplastics in freshwater has been growing in concern. Besides their abundance, the characteristics of microplastics are also important issues. The concept of "microplastic communities" has been utilized to assess differences in microplastic characteristics. In this study, we utilized the "microplastic community" approach to evaluate the impact of land use on microplastic characteristics in water at a provincial scale in China. The abundance of microplastics in water bodies in Hubei Province varied between 0.33 items/L and 5.40 items/L, with an average of 1.74 items/L. Microplastics were significantly more abundant in rivers than in lakes and reservoirs, and their abundance was negatively correlated with the distance from the nearest residential district of sampling sites. Similarities of microplastic communities were significantly different in mountainous and plain areas. Anthropogenic surfaces increased microplastic abundance and tended to decrease the size of microplastics, whereas natural vegetation had the opposite effect. The effect of land use on microplastic community similarity was greater than that of geographic distance. However, spatial scale limits the effect of various factors on microplastic community similarity. This study revealed the comprehensive influence of land use on microplastic characteristics in water and emphasized the importance of spatial scale in the study of microplastic characteristics.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Chen
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Weiju Wu
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Qiankun He
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
37
|
Gao P, Wang P, Ding M, Zhang H, Huang G, Nie M, Wang G. A meta-analysis reveals that geographical factors drive the bacterial community variation in Chinese lakes. ENVIRONMENTAL RESEARCH 2023; 224:115561. [PMID: 36828247 DOI: 10.1016/j.envres.2023.115561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The biogeographical distribution of plants and animals has been extensively studied, however, the biogeographical patterns and the factors that influence bacterial communities in lakes over large scales are yet to be fully understood, even though they play critical roles in biogeochemical cycles. Here, bacterial community compositional data, geographic information, and environmental factors were integrated for 326 Chinese lakes based on previously published studies to determine the underlying factors that shape bacterial diversity among Chinese lakes. The composition of bacterial communities significantly varied among the three primary climatic regions of China (Northern China, NC; Southern China, SC; and the Tibetan Plateau, TIP), and across two different lake habitats (waters and sediments). Sediment bacterial communities exhibited significantly higher alpha-diversity and distance-decay relationships compared to water communities. The results indicate that the "scale-dependent patterns" of controlling factors, primarily influenced by geographical factors, become increasingly pronounced as the spatial scale increases. At a national scale, geographical factors exerted a dominant influence on both the water and sediment communities across all lakes, as geographical barriers restrict the dispersal of individuals. At smaller spatial scales, temperature-driven selection effects played a greater role in shaping water bacterial community variation in the NC, SC, and TIP, while geographical factors had a stronger association with sediment bacterial community variation in the lakes of the three regions. This synthesis offers novel insights into the ecological factors that determine the distribution of bacteria in Chinese lakes.
Collapse
Affiliation(s)
- Pengfei Gao
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China.
| | - Mingjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Guangwei Wang
- Graduate School of Horticulture, Chiba University, Chiba, 648 Matsudo, Matsudo-City, 271-8510, Japan; Guangzhou South Surveying & Mapping Technology Co., Ltd., South Geo-information Industrial Park, No.39 Si Cheng Rd, Guangzhou, China
| |
Collapse
|
38
|
Saraiva JP, Bartholomäus A, Toscan RB, Baldrian P, Nunes da Rocha U. Recovery of 197 eukaryotic bins reveals major challenges for eukaryote genome reconstruction from terrestrial metagenomes. Mol Ecol Resour 2023. [PMID: 36847735 DOI: 10.1111/1755-0998.13776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
As most eukaryotic genomes are yet to be sequenced, the mechanisms underlying their contribution to different ecosystem processes remain untapped. Although approaches to recovering Prokaryotic genomes have become common in genome biology, few studies have tackled the recovery of eukaryotic genomes from metagenomes. This study assessed the reconstruction of microbial eukaryotic genomes using 6000 metagenomes from terrestrial and some transition environments using the EukRep pipeline. Only 215 metagenomic libraries yielded eukaryotic bins. From a total of 447 eukaryotic bins recovered 197 were classified at the phylum level. Streptophytes and fungi were the most represented clades with 83 and 73 bins, respectively. More than 78% of the obtained eukaryotic bins were recovered from samples whose biomes were classified as host-associated, aquatic, and anthropogenic terrestrial. However, only 93 bins were taxonomically assigned at the genus level and 17 bins at the species level. Completeness and contamination estimates were obtained for a total of 193 bins and consisted of 44.64% (σ = 27.41%) and 3.97% (σ = 6.53%), respectively. Micromonas commoda was the most frequent taxon found while Saccharomyces cerevisiae presented the highest completeness, probably because more reference genomes are available. Current measures of completeness are based on the presence of single-copy genes. However, mapping of the contigs from the recovered eukaryotic bins to the chromosomes of the reference genomes showed many gaps, suggesting that completeness measures should also include chromosome coverage. Recovering eukaryotic genomes will benefit significantly from long-read sequencing, development of tools for dealing with repeat-rich genomes, and improved reference genomes databases.
Collapse
Affiliation(s)
- Joao Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ GmbH, Leipzig, Germany
| | | | - Rodolfo Brizola Toscan
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ GmbH, Leipzig, Germany
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ GmbH, Leipzig, Germany
| |
Collapse
|
39
|
Wang J, Shi X. Soil biodiversity in natural forests potentially exhibits higher resistance than planted forests under global warming. FRONTIERS IN PLANT SCIENCE 2023; 14:1135549. [PMID: 37188321 PMCID: PMC10177395 DOI: 10.3389/fpls.2023.1135549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Jianqing Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Xiuzhen Shi
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Xiuzhen Shi,
| |
Collapse
|
40
|
Tedersoo L, Mikryukov V, Zizka A, Bahram M, Hagh‐Doust N, Anslan S, Prylutskyi O, Delgado‐Baquerizo M, Maestre FT, Pärn J, Öpik M, Moora M, Zobel M, Espenberg M, Mander Ü, Khalid AN, Corrales A, Agan A, Vasco‐Palacios A, Saitta A, Rinaldi AC, Verbeken A, Sulistyo BP, Tamgnoue B, Furneaux B, Ritter CD, Nyamukondiwa C, Sharp C, Marín C, Gohar D, Klavina D, Sharmah D, Dai DQ, Nouhra E, Biersma EM, Rähn E, Cameron E, De Crop E, Otsing E, Davydov EA, Albornoz F, Brearley FQ, Buegger F, Zahn G, Bonito G, Hiiesalu I, Barrio IC, Heilmann‐Clausen J, Ankuda J, Kupagme JY, Maciá‐Vicente JG, Fovo JD, Geml J, Alatalo JM, Alvarez‐Manjarrez J, Põldmaa K, Runnel K, Adamson K, Bråthen KA, Pritsch K, Tchan KI, Armolaitis K, Hyde KD, Newsham K, Panksep K, Lateef AA, Tiirmann L, Hansson L, Lamit LJ, Saba M, Tuomi M, Gryzenhout M, Bauters M, Piepenbring M, Wijayawardene N, Yorou NS, Kurina O, Mortimer PE, Meidl P, Kohout P, Nilsson RH, Puusepp R, Drenkhan R, Garibay‐Orijel R, Godoy R, Alkahtani S, Rahimlou S, Dudov SV, Põlme S, Ghosh S, Mundra S, Ahmed T, Netherway T, Henkel TW, Roslin T, Nteziryayo V, Fedosov VE, Onipchenko V, Yasanthika WAE, Lim YW, et alTedersoo L, Mikryukov V, Zizka A, Bahram M, Hagh‐Doust N, Anslan S, Prylutskyi O, Delgado‐Baquerizo M, Maestre FT, Pärn J, Öpik M, Moora M, Zobel M, Espenberg M, Mander Ü, Khalid AN, Corrales A, Agan A, Vasco‐Palacios A, Saitta A, Rinaldi AC, Verbeken A, Sulistyo BP, Tamgnoue B, Furneaux B, Ritter CD, Nyamukondiwa C, Sharp C, Marín C, Gohar D, Klavina D, Sharmah D, Dai DQ, Nouhra E, Biersma EM, Rähn E, Cameron E, De Crop E, Otsing E, Davydov EA, Albornoz F, Brearley FQ, Buegger F, Zahn G, Bonito G, Hiiesalu I, Barrio IC, Heilmann‐Clausen J, Ankuda J, Kupagme JY, Maciá‐Vicente JG, Fovo JD, Geml J, Alatalo JM, Alvarez‐Manjarrez J, Põldmaa K, Runnel K, Adamson K, Bråthen KA, Pritsch K, Tchan KI, Armolaitis K, Hyde KD, Newsham K, Panksep K, Lateef AA, Tiirmann L, Hansson L, Lamit LJ, Saba M, Tuomi M, Gryzenhout M, Bauters M, Piepenbring M, Wijayawardene N, Yorou NS, Kurina O, Mortimer PE, Meidl P, Kohout P, Nilsson RH, Puusepp R, Drenkhan R, Garibay‐Orijel R, Godoy R, Alkahtani S, Rahimlou S, Dudov SV, Põlme S, Ghosh S, Mundra S, Ahmed T, Netherway T, Henkel TW, Roslin T, Nteziryayo V, Fedosov VE, Onipchenko V, Yasanthika WAE, Lim YW, Soudzilovskaia NA, Antonelli A, Kõljalg U, Abarenkov K. Global patterns in endemicity and vulnerability of soil fungi. GLOBAL CHANGE BIOLOGY 2022; 28:6696-6710. [PMID: 36056462 PMCID: PMC9826061 DOI: 10.1111/gcb.16398] [Show More Authors] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 05/29/2023]
Abstract
Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | | | | | - Mohammad Bahram
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Sten Anslan
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Oleh Prylutskyi
- Department of Mycology and Plant Resistance, School of BiologyV.N. Karazin Kharkiv National UniversityKharkivUkraine
| | - Manuel Delgado‐Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, and Unidad Asociada CSIC‐UPO (BioFun)Universidad Pablo de OlavideSevillaSpain
| | - Fernando T. Maestre
- Departamento de Ecología, Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’Universidad de AlicanteAlicanteSpain
| | - Jaan Pärn
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Maarja Öpik
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Mari Moora
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Martin Zobel
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Mikk Espenberg
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Ülo Mander
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | | | - Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología‐UR (CIMBIUR)Universidad del RosarioBogotáColombia
| | - Ahto Agan
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | - Aída‐M. Vasco‐Palacios
- BioMicro, Escuela de MicrobiologíaUniversidad de Antioquia UdeAMedellinAntioquiaColombia
| | - Alessandro Saitta
- Department of Agricultural, Food and Forest SciencesUniversity of PalermoPalermoItaly
| | - Andrea C. Rinaldi
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | | | - Bobby P. Sulistyo
- Department of BiomedicineIndonesia International Institute for Life SciencesJakartaIndonesia
| | - Boris Tamgnoue
- Department of Crop ScienceUniversity of DschangDschangCameroon
| | - Brendan Furneaux
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | | | - Casper Nyamukondiwa
- Department of Biological Sciences and BiotechnologyBotswana International University of Science and TechnologyPalapyeBotswana
| | - Cathy Sharp
- Natural History Museum of ZimbabweBulawayoZimbabwe
| | - César Marín
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC)Universidad SantoTomásSantiagoChile
| | - Daniyal Gohar
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Darta Klavina
- Latvian State Forest Research Insitute SilavaSalaspilsLatvia
| | - Dipon Sharmah
- Department of Botany, Jawaharlal Nehru Rajkeeya MahavidyalayaPondicherry UniversityPort BlairIndia
| | - Dong Qin Dai
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingChina
| | - Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal (CONICET)Universidad Nacional de CórdobaCordobaArgentina
| | | | - Elisabeth Rähn
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | - Erin K. Cameron
- Department of Environmental ScienceSaint Mary's UniversityHalifaxCanada
| | | | - Eveli Otsing
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | | | | | - Francis Q. Brearley
- Department of Natural SciencesManchester Metropolitan UniversityManchesterUK
| | | | | | - Gregory Bonito
- Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Inga Hiiesalu
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Isabel C. Barrio
- Faculty of Natural and Environmental SciencesAgricultural University of IcelandHvanneyriIceland
| | | | - Jelena Ankuda
- Department of Silviculture and EcologyInstitute of Forestry of Lithuanian Research Centre for Agriculture and Forestry (LAMMC)GirionysLithuania
| | - John Y. Kupagme
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Jose G. Maciá‐Vicente
- Plant Ecology and Nature ConservationWageningen University & ResearchWageningenThe Netherlands
| | | | - József Geml
- ELKH‐EKKE Lendület Environmental Microbiome Research GroupEszterházy Károly Catholic UniversityEgerHungary
| | | | | | - Kadri Põldmaa
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Kadri Runnel
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Kalev Adamson
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | - Kari Anne Bråthen
- Department of Arctic and Marine BiologyThe Arctic University of NorwayTromsøNorway
| | | | - Kassim I. Tchan
- Research Unit Tropical Mycology and Plants‐Soil Fungi InteractionsUniversity of ParakouParakouBenin
| | - Kęstutis Armolaitis
- Department of Silviculture and EcologyInstitute of Forestry of Lithuanian Research Centre for Agriculture and Forestry (LAMMC)GirionysLithuania
| | - Kevin D. Hyde
- Center of Excellence in Fungal ResearchMae Fah Luang UniversityChiang RaiThailand
| | | | - Kristel Panksep
- Chair of Hydrobiology and FisheryEstonian University of Life SciencesTartuEstonia
| | | | - Liis Tiirmann
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Linda Hansson
- Gothenburg Centre for Sustainable DevelopmentGothenburgSweden
| | - Louis J. Lamit
- Department of BiologySyracuse UniversitySyracuseNew YorkUSA
- Department of Environmental and Forest BiologyState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Malka Saba
- Department of Plant SciencesQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Maria Tuomi
- Department of Arctic and Marine BiologyThe Arctic University of NorwayTromsøNorway
| | - Marieka Gryzenhout
- Department of GeneticsUniversity of the Free StateBloemfonteinSouth Africa
| | | | - Meike Piepenbring
- Mycology Working GroupGoethe University Frankfurt am MainFrankfurt am MainGermany
| | - Nalin Wijayawardene
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingChina
| | - Nourou S. Yorou
- Research Unit Tropical Mycology and Plants‐Soil Fungi InteractionsUniversity of ParakouParakouBenin
| | - Olavi Kurina
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Peter E. Mortimer
- Center For Mountain Futures, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Peter Meidl
- Institut für BiologieFreie Universität BerlinBerlinGermany
| | - Petr Kohout
- Institute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
| | - Rolf Henrik Nilsson
- Gothenburg Global Biodiversity CentreUniversity of GothenburgGothenburgSweden
| | - Rasmus Puusepp
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Rein Drenkhan
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | | | - Roberto Godoy
- Instituto Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Saad Alkahtani
- College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Saleh Rahimlou
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Sergey V. Dudov
- Department of Ecology and Plant GeographyMoscow Lomonosov State UniversityMoscowRussia
| | - Sergei Põlme
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Soumya Ghosh
- Department of GeneticsUniversity of the Free StateBloemfonteinSouth Africa
| | - Sunil Mundra
- Department of Biology, College of ScienceUnited Arab Emirates UniversityAbu DhabiUAE
| | - Talaat Ahmed
- Environmental Science CenterQatar UniversityDohaQatar
| | - Tarquin Netherway
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Terry W. Henkel
- Department of Biological SciencesCalifornia State Polytechnic UniversityArcataCaliforniaUSA
| | - Tomas Roslin
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Vincent Nteziryayo
- Department of Food Science and TechnologyUniversity of BurundiBujumburaBurundi
| | - Vladimir E. Fedosov
- Department of Ecology and Plant GeographyMoscow Lomonosov State UniversityMoscowRussia
| | | | | | - Young Woon Lim
- School of Biological Sciences and Institute of MicrobiologySeoul National UniversitySeoulSouth Korea
| | | | | | - Urmas Kõljalg
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | | |
Collapse
|
41
|
Gu S, Xiong X, Tan L, Deng Y, Du X, Yang X, Hu Q. Soil microbial community assembly and stability are associated with potato ( Solanum tuberosum L.) fitness under continuous cropping regime. FRONTIERS IN PLANT SCIENCE 2022; 13:1000045. [PMID: 36262646 PMCID: PMC9574259 DOI: 10.3389/fpls.2022.1000045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Continuous cropping obstacles caused by the over-cultivation of a single crop trigger soil degradation, yield reduction and the occurrence of plant disease. However, the relationships among stability, complexity and the assembly process of soil microbial community with continuous cropping obstacles remains unclear. In this study, molecular ecological networks analysis (MENs) and inter-domain ecological networks analysis (IDENs), and a new index named cohesion tools were used to calculate the stability and complexity of soil microbial communities from eight potato cultivars grown under a continuous cropping regime by using the high-throughput sequencing data. The results showed that the stability (i.e., robustness index) of the bacterial and fungal communities for cultivar ZS5 was significantly higher, and that the complexity (i.e., cohesion values) was also significantly higher in the bacterial, fungal and inter-domain communities (i.e., bacterial-fungal community) of cultivar ZS5 than other cultivars. Network analysis also revealed that Actinobacteria and Ascomycota were the dominant phyla within intra-domain networks of continuous cropping potato soil communities, while the phyla Proteobacteria and Ascomycota dominated the correlation of the bacterial-fungal network. Infer community assembly mechanism by phylogenetic-bin-based null model analysis (iCAMP) tools were used to calculate the soil bacterial and fungal communities' assembly processes of the eight potato cultivars under continuous cropping regime, and the results showed that the bacterial community was mainly dominated by deterministic processes (64.19% - 81.31%) while the fungal community was mainly dominated by stochastic processes (78.28% - 98.99%), indicating that the continuous-cropping regime mainly influenced the potato soil bacterial community assembly process. Moreover, cultivar ZS5 possessed a relatively lower homogeneous selection, and a higher TP, TN, AP and yield than other cultivars. Our results indicated that the soil microbial network stability and complexity, and community assemble might be associated with yield and soil properties, which would be helpful in the study for resistance to potato continuous cropping obstacles.
Collapse
Affiliation(s)
- Songsong Gu
- Hunan Agricultural University, Changsha, China
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xingyao Xiong
- Hunan Agricultural University, Changsha, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lin Tan
- Hunan Agricultural University, Changsha, China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiongfeng Du
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xingxing Yang
- Hunan Center of Crop Germplasm Resources and Breeding Crop, Changsha, China
| | - Qiulong Hu
- Hunan Agricultural University, Changsha, China
| |
Collapse
|
42
|
Lara E, Singer D, Geisen S. Discrepancies between prokaryotes and eukaryotes need to be considered in soil DNA-based studies. Environ Microbiol 2022; 24:3829-3839. [PMID: 35437903 PMCID: PMC9790305 DOI: 10.1111/1462-2920.16019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/30/2022]
Abstract
Metabarcoding approaches are exponentially increasing our understanding of soil biodiversity, with a major focus on the bacterial part of the microbiome. Part of the soil diversity are also eukaryotes that include fungi, algae, protists and Metazoa. Nowadays, soil eukaryotes are targeted with the same approaches developed for bacteria and archaea (prokaryotes). However, fundamental differences exist between domains. After providing a short historical overview of the developments of metabarcoding applied to environmental microbiology, we compile the most important differences between domains that prevent direct method transfers between prokaryotic and eukaryotic soil metabarcoding approaches, currently dominated by short-read sequencing. These include the existence of divergent diversity concepts and the variations in eukaryotic morphology that affect sampling and DNA extraction. Furthermore, eukaryotes experienced much more variable evolutionary rates than prokaryotes, which prevent capturing the entire eukaryotic diversity in a soil with a single amplification protocol fit for short-read sequencing. In the final part we focus on future potentials for optimization of eukaryotic metabarcoding that include superior possibility of functionally characterizing eukaryotes and to extend the current information obtained, such as by adding a real quantitative component. This review should optimize future metabarcoding approaches targeting soil eukaryotes and kickstart this promising research direction.
Collapse
Affiliation(s)
- Enrique Lara
- Real Jardín Botánico‐CSIC, Plaza de Murillo 2Madrid28014Spain
| | - David Singer
- UMR CNRS 6112 LPG‐BIAFAngers University, 2 Boulevard LavoisierAngers49045France
| | - Stefan Geisen
- Laboratory of NematologyWageningen UniversityWageningen6700 AAThe Netherlands
| |
Collapse
|
43
|
Shi Y, Xu M, Zhao Y, Cheng L, Chu H. Soil pH Determines the Spatial Distribution, Assembly Processes, and Co-existence Networks of Microeukaryotic Community in Wheat Fields of the North China Plain. Front Microbiol 2022; 13:911116. [PMID: 35958140 PMCID: PMC9358722 DOI: 10.3389/fmicb.2022.911116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022] Open
Abstract
Soil microeukaryotes play a pivotal role in soil nutrient cycling and crop growth in agroecosystems. However, knowledge of microeukaryotic community distribution patterns, assembly processes, and co-existence networks is greatly limited. Here, microbial eukaryotes in bulk and rhizosphere soils of the North China Plain were investigated. The results showed that soil pH was the driving factor for the microeukaryotic community composition in the bulk and rhizosphere soils. The soil microeukaryotic community could significantly differ between alkaline and acidic soils. The results indicated that the soil pH had a stronger effect than niche differences on community composition. Partial Mantel tests showed that soil pH and spatial distance had similar effects on the microeukaryotic community composition in the bulk soil. However, in the rhizosphere soil, spatial distance had a stronger effect than soil pH. Infer Community Assembly Mechanisms by Phylogenetic bin-based null model (iCAMP) analysis revealed that drift was the most important process driving microeukaryotic community assembly, with an average relative importance of 37.4-71.1%. Dispersal limitation displayed slightly greater importance in alkaline rhizosphere than in alkaline bulk soils. Meanwhile, the opposite trend was observed in acidic soils. In addition, the contribution of each assembly process to each iCAMP lineage "bin" varied according to the acidic or alkaline conditions of the soil and the niche environment. High proportions of positive links were found within the four ecological networks. Alkaline soil networks, especially the alkaline bulk soil network, showed greater complexity than the acidic soil networks. Natural connectivity analysis revealed that the rhizosphere community had a greater stability than the bulk soil community in alkaline soil. This study provides a foundation for understanding the potential roles of microbial eukaryotes in agricultural soil ecosystem functioning.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Mengwei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yige Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Liang Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Larsen S, Albanese D, Stegen J, Franceschi P, Coller E, Zanzotti R, Ioriatti C, Stefani E, Pindo M, Cestaro A, Donati C. Distinct and Temporally Stable Assembly Mechanisms Shape Bacterial and Fungal Communities in Vineyard Soils. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02065-x. [PMID: 35835965 DOI: 10.1007/s00248-022-02065-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities in agricultural soils are fundamental for plant growth and in vineyard ecosystems contribute to defining regional wine quality. Managing soil microbes towards beneficial outcomes requires knowledge of how community assembly processes vary across taxonomic groups, spatial scales, and through time. However, our understanding of microbial assembly remains limited. To quantify the contributions of stochastic and deterministic processes to bacterial and fungal assembly across spatial scales and through time, we used 16 s rRNA gene and ITS sequencing in the soil of an emblematic wine-growing region of Italy.Combining null- and neutral-modelling, we found that assembly processes were consistent through time, but bacteria and fungi were governed by different processes. At the within-vineyard scale, deterministic selection and homogenising dispersal dominated bacterial assembly, while neither selection nor dispersal had clear influence over fungal assembly. At the among-vineyard scale, the influence of dispersal limitation increased for both taxonomic groups, but its contribution was much larger for fungal communities. These null-model-based inferences were supported by neutral modelling, which estimated a dispersal rate almost two orders-of-magnitude lower for fungi than bacteria.This indicates that while stochastic processes are important for fungal assembly, bacteria were more influenced by deterministic selection imposed by the biotic and/or abiotic environment. Managing microbes in vineyard soils could thus benefit from strategies that account for dispersal limitation of fungi and the importance of environmental conditions for bacteria. Our results are consistent with theoretical expectations whereby larger individual size and smaller populations can lead to higher levels of stochasticity.
Collapse
Affiliation(s)
- Stefano Larsen
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - James Stegen
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Pietro Franceschi
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - E Coller
- Technology Transfer Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italia
| | - Roberto Zanzotti
- Technology Transfer Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italia
| | - Claudio Ioriatti
- Technology Transfer Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italia
| | - Erika Stefani
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
- Pacific Northwest National Laboratory, Richland, WA, USA
- Technology Transfer Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italia
| |
Collapse
|
45
|
Jiao C, Zhao D, Zeng J, Wu QL. Eutrophication in subtropical lakes reinforces the dominance of balanced-variation component in temporal bacterioplankton community heterogeneity by lessening stochastic processes. FEMS Microbiol Ecol 2022; 98:6576326. [PMID: 35488869 DOI: 10.1093/femsec/fiac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 11/14/2022] Open
Abstract
Unveiling the rules of bacterioplankton community assembly in anthropogenically disturbed lakes is a crucial issue in aquatic ecology. However, it is unclear how the ecological processes underlying the seasonally driven bacterioplankton community structure respond to varying degrees of lake eutrophication. We therefore collected water samples from three subtropical freshwater lakes with various trophic states (i.e. oligo-mesotrophic, mesotrophic and eutrophic states) on a quarterly basis between 2017 and 2018. To innovatively increase our understanding of bacterioplankton community assembly along the trophic state gradient, the total bacterioplankton community dissimilarity was subdivided into balanced variation in abundances and abundance gradients. The results indicated that balanced-variation component rather than abundance-gradient component dominated the total temporal β-diversity of bacterioplankton communities across all trophic categories. Ecological stochasticity contributed more to the overall bacterioplankton community assembly in the oligo-mesotrophic and mesotrophic lakes than in the eutrophic lake. The reduced bacterioplankton network complexity at the eutrophic level was closely associated with the enhancement of environmental filtering, showing that bacterioplankton communities in eutrophic lakes are likely to be less stable and more vulnerable to water quality degradation. Together, this study offers essential clues for biodiversity conservation in subtropical lakes under future intensified eutrophication.
Collapse
Affiliation(s)
- Congcong Jiao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
46
|
Jassey VEJ, Walcker R, Kardol P, Geisen S, Heger T, Lamentowicz M, Hamard S, Lara E. Contribution of soil algae to the global carbon cycle. THE NEW PHYTOLOGIST 2022; 234:64-76. [PMID: 35103312 DOI: 10.1111/nph.17950] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Soil photoautotrophic prokaryotes and micro-eukaryotes - known as soil algae - are, together with heterotrophic microorganisms, a constitutive part of the microbiome in surface soils. Similar to plants, they fix atmospheric carbon (C) through photosynthesis for their own growth, yet their contribution to global and regional biogeochemical C cycling still remains quantitatively elusive. Here, we compiled an extensive dataset on soil algae to generate a better understanding of their distribution across biomes and predict their productivity at a global scale by means of machine learning modelling. We found that, on average, (5.5 ± 3.4) × 106 algae inhabit each gram of surface soil. Soil algal abundance especially peaked in acidic, moist and vegetated soils. We estimate that, globally, soil algae take up around 3.6 Pg C per year, which corresponds to c. 6% of the net primary production of terrestrial vegetation. We demonstrate that the C fixed by soil algae is crucial to the global C cycle and should be integrated into land-based efforts to mitigate C emissions.
Collapse
Affiliation(s)
- Vincent E J Jassey
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, 31062, Toulouse, France
| | - Romain Walcker
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, 31062, Toulouse, France
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, 6708 PB, Wageningen, the Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology NIOO-KNAW, 6708 PB, Wageningen, the Netherlands
| | - Thierry Heger
- Soil Science and Environment Group, Changins, HES-SO University of Applied Sciences and Arts Western, 1260, Nyon, Switzerland
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Adam Mickiewicz University, 60-001, Poznań, Poland
| | - Samuel Hamard
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, 31062, Toulouse, France
| | - Enrique Lara
- Real Jardin Botanico, CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| |
Collapse
|