1
|
Xu Y, Fu T, You G, Yang S, Liu S, Huang W, Peng D, Ji J, Zhang J, Zhang J, Hou J. Niche differentiation shaped the evolution of rhizobacterial antibiotic resistance in paddy fields: Evidences from spatial-temporal and chemical-biological scaling. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137924. [PMID: 40086243 DOI: 10.1016/j.jhazmat.2025.137924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The rhizosphere serves as both a hotspot and an entry point for the proliferation and transformation of antibiotic resistance genes (ARGs). However, the ecological mechanisms governing the evolution of ARGs in rhizosphere soils remain poorly understood. This study showed that ARGs associated with efflux pumps were found to be significantly enriched in the rice rhizosphere, compared to bulk soils, with a deterministic assembly process. Notably, soil habitat specialization, dominated by turnover processes and the accelerated succession of microbial evolution in rhizosphere soils, profoundly influenced the spatial-temporal composition and expression of ARGs. Furthermore, ARGs involved in carbohydrate and proton transport showed higher activity in the rhizosphere, conductive to the adaptation of chemical niche differentiation. The genetic-level impacts stemming from biological niche warfare significantly shaped the evolutionary trajectory of ARG. Overall, rhizosphere effects led to 20.2-41.3 % of ARGs been enriched or depleted across various rice growth and under different irrigation conditions. These findings offer a comprehensive understanding of the essential ecological roles of ARGs evolution in rhizosphere soils, which is critical for ARGs risks analysis in the context of plant recruitment and growth promotion.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Tinghong Fu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Wanyong Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China; Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Zhejiang 310000, PR China
| | - Dengyun Peng
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Jiahao Ji
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Jianwei Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Jie Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
2
|
Jiang T, Ren J, Li D, Luo Y, Huang Y, Gao T, Yang J, Yu J, Liu L, Yuan H. Pseudomonas syringae exacerbates apple replant disease caused by Fusarium. Microbiol Res 2025; 296:128124. [PMID: 40054134 DOI: 10.1016/j.micres.2025.128124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
Apple replant disease (ARD) causes significant economic losses globally, including in China. Analyzing the causes of this replant disease from the perspective of rhizosphere microecology is therefore essential. In this study, we examined rhizosphere soils from apple trees subjected to continuous cropping. The mechanisms underlying ARD were elucidated through high-throughput sequencing of the soil microbiome, co-occurrence network analysis using NetShift, and correlation analyses. Core bacterial microbes were isolated, and their roles in altering the microecological environment were verified through reinoculation experiments. The results indicated that the disease indices for apple seedlings cultivated increased in continuously cropped soils. Bacterial diversity decreased in continuously cropped apple orchards for 10 years (R10) and 15 years (R15), but the relative abundance of Pseudomonas increased. In contrast, fungal diversity increased, with the relative abundance of Fusarium also increasing. As a dominant genus, Pseudomonas exhibited significant network variation after 10 years of consecutive cultivation, suggesting that this microorganism may play a key role in the occurrence of ARD. Moreover, the correlation analysis revealed, for the first time, that Pseudomonas is negatively correlated with bacterial diversity but positively correlated with the relative abundance of Fusarium, indicating a close relationship between Pseudomonas and Fusarium in continuously cropped soil. Four key Pseudomonas amplicon sequence variants (ASVs) strains were isolated from the continuously cropped rhizosphere soil of apple trees, and reinoculation experiments verified that introducing Pseudomonas exacerbated the occurrence of replant diseases in both strawberry and apple, with significantly higher disease indices compared to single Fusarium inoculation. The findings of this study provide new and timely insights into the mechanism underlying the occurrence of ARD.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaxi Ren
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Dongmei Li
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Luo
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaru Huang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tongguo Gao
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiayi Yu
- Beijing Siliang Technology Limited Company, Beijing 100193, China
| | - Liang Liu
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Gu S, Shao Z, Qu Z, Zhu S, Shao Y, Zhang D, Allen R, He R, Shao J, Xiong G, Jousset A, Friman VP, Wei Z, Kümmerli R, Li Z. Siderophore synthetase-receptor gene coevolution reveals habitat- and pathogen-specific bacterial iron interaction networks. SCIENCE ADVANCES 2025; 11:eadq5038. [PMID: 39813347 PMCID: PMC11734721 DOI: 10.1126/sciadv.adq5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025]
Abstract
Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members. Siderophores are chemically diverse and can be stimulatory or inhibitory depending on whether bacteria have or lack corresponding uptake receptors. We focused on 1928 representative Pseudomonas genomes and developed an experimentally validated coevolution algorithm to match encoded siderophore synthetases to corresponding receptor groups. We derived community-level iron interaction networks to show that siderophore-mediated interactions differ across habitats and lifestyles. Specifically, dense networks of siderophore sharing and competition were observed among environmental and nonpathogenic species, while small, fragmented networks occurred among human-associated and pathogenic species. Together, our sequence-to-ecology approach empowers the analyses of social interactions among thousands of bacterial strains and offers opportunities for targeted intervention to microbial communities.
Collapse
Affiliation(s)
- Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zhengying Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zeyang Qu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shenyue Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yuanzhe Shao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Richard Allen
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Ruolin He
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guanyue Xiong
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ville-Petri Friman
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Kramer J, Maréchal S, Figueiredo ART, Kümmerli R. Strain identity effects contribute more to Pseudomonas community functioning than strain interactions. THE ISME JOURNAL 2025; 19:wraf025. [PMID: 39921663 PMCID: PMC11879211 DOI: 10.1093/ismejo/wraf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Microbial communities can shape key ecological services, but the determinants of their functioning often remain little understood. While traditional research predominantly focuses on effects related to species identity (community composition and species richness), recent work increasingly explores the impact of species interactions on community functioning. Here, we conducted experiments with replicated small communities of Pseudomonas bacteria to quantify the relative importance of strain identity versus interaction effects on two important functions, community productivity and siderophore production. By combining supernatant and competition assays with an established linear model method, we show that both factors have significant effects on functioning, but identity effects generally outweigh strain interaction effects. These results hold irrespective of whether strain interactions are inferred statistically or approximated experimentally. Our results have implications for microbiome engineering, as the success of approaches aiming to induce beneficial (probiotic) strain interactions will be sensitive to strain identity effects in many communities.
Collapse
Affiliation(s)
- Jos Kramer
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Environmental Systems Sciences, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Simon Maréchal
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alexandre R T Figueiredo
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Biology, University of Oxford, 11a Mansfield Road OX1 3SZ, Oxford, United Kingdom
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Vollenweider V, Rehm K, Chepkirui C, Pérez-Berlanga M, Polymenidou M, Piel J, Bigler L, Kümmerli R. Antimicrobial activity of iron-depriving pyoverdines against human opportunistic pathogens. eLife 2024; 13:RP92493. [PMID: 39693130 DOI: 10.7554/elife.92493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
The global rise of antibiotic resistance calls for new drugs against bacterial pathogens. A common approach is to search for natural compounds deployed by microbes to inhibit competitors. Here, we show that the iron-chelating pyoverdines, siderophores produced by environmental Pseudomonas spp., have strong antibacterial properties by inducing iron starvation and growth arrest in pathogens. A screen of 320 natural Pseudomonas isolates used against 12 human pathogens uncovered several pyoverdines with particularly high antibacterial properties and distinct chemical characteristics. The most potent pyoverdine effectively reduced growth of the pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus in a concentration- and iron-dependent manner. Pyoverdine increased survival of infected Galleria mellonella host larvae and showed low toxicity for the host, mammalian cell lines, and erythrocytes. Furthermore, experimental evolution of pathogens combined with whole-genome sequencing revealed limited resistance evolution compared to an antibiotic. Thus, pyoverdines from environmental strains have the potential to become a new class of sustainable antibacterials against specific human pathogens.
Collapse
Affiliation(s)
- Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karoline Rehm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | | | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Chen JZ, Junker A, Zheng I, Gerardo NM, Vega NM. A strong priority effect in the assembly of a specialized insect-microbe symbiosis. Appl Environ Microbiol 2024; 90:e0081824. [PMID: 39291984 PMCID: PMC11497811 DOI: 10.1128/aem.00818-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Specialized host-microbe symbioses are ecological communities, whose composition is shaped by various processes. Microbial community assembly in these symbioses is determined in part by interactions between taxa that colonize ecological niches available within habitat patches. The outcomes of these interactions, and by extension the trajectory of community assembly, can display priority effects-dependency on the order in which taxa first occupy these niches. The underlying mechanisms of these phenomena vary from system to system and are often not well resolved. Here, we characterize priority effects in colonization of the squash bug (Anasa tristis) by bacterial symbionts from the genus Caballeronia, using pairs of strains that are known to strongly compete during host colonization, as well as strains that are isogenic and thus functionally identical. By introducing symbiont strains into individual bugs in a sequential manner, we show that within-host populations established by the first colonist are extremely resistant to invasion, regardless of strain identity and competitive interactions. By knocking down the population of an initial colonist with antibiotics, we further show that colonization success by the second symbiont is still diminished even when space in the symbiotic organ is available and ostensibly accessible for colonization. We speculate that resident symbionts exclude subsequent infections by manipulating the host environment, partially but not exclusively by eliciting tissue remodeling of the symbiont organ. IMPORTANCE Host-associated microbial communities underpin critical ecosystem processes and human health, and their ability to do so is determined in turn by the various processes that shape their composition. While selection deterministically acts on competing genotypes and species during community assembly, the manner by which selection determines the trajectory of community assembly can differ depending on the sequence by which taxa are established within that community. We document this phenomenon, known as a priority effect, during experimental colonization of a North American insect pest, the squash bug Anasa tristis, by its betaproteobacterial symbionts in the genus Caballeronia. Our study demonstrates how stark, strain-level variation can emerge in specialized host-microbe symbioses simply through differences in the order by which strains colonize the host. Understanding the mechanistic drivers of community structure in host-associated microbiomes can highlight both pitfalls and opportunities for the engineering of these communities and their constituent taxa for societal benefit.
Collapse
Affiliation(s)
- Jason Z. Chen
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Anthony Junker
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Iris Zheng
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | | | - Nic M. Vega
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Department of Physics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Gu S, Shao Y, Rehm K, Bigler L, Zhang D, He R, Xu R, Shao J, Jousset A, Friman VP, Bian X, Wei Z, Kümmerli R, Li Z. Feature sequence-based genome mining uncovers the hidden diversity of bacterial siderophore pathways. eLife 2024; 13:RP96719. [PMID: 39352117 PMCID: PMC11444679 DOI: 10.7554/elife.96719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Microbial secondary metabolites are a rich source for pharmaceutical discoveries and play crucial ecological functions. While tools exist to identify secondary metabolite clusters in genomes, precise sequence-to-function mapping remains challenging because neither function nor substrate specificity of biosynthesis enzymes can accurately be predicted. Here, we developed a knowledge-guided bioinformatic pipeline to solve these issues. We analyzed 1928 genomes of Pseudomonas bacteria and focused on iron-scavenging pyoverdines as model metabolites. Our pipeline predicted 188 chemically different pyoverdines with nearly 100% structural accuracy and the presence of 94 distinct receptor groups required for the uptake of iron-loaded pyoverdines. Our pipeline unveils an enormous yet overlooked diversity of siderophores (151 new structures) and receptors (91 new groups). Our approach, combining feature sequence with phylogenetic approaches, is extendable to other metabolites and microbial genera, and thus emerges as powerful tool to reconstruct bacterial secondary metabolism pathways based on sequence data.
Collapse
Affiliation(s)
- Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuanzhe Shao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Karoline Rehm
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Laurent Bigler
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ruolin He
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ruichen Xu
- School of Life Science, Shandong University, Qingdao, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, China
| | | | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, China
| | - Rolf Kümmerli
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
8
|
Hesse E, Luján AM, O'Brien S, Newbury A, McAvoy T, Soria Pascual J, Bayer F, Hodgson DJ, Buckling A. Parallel ecological and evolutionary responses to selection in a natural bacterial community. Proc Natl Acad Sci U S A 2024; 121:e2403577121. [PMID: 39190353 PMCID: PMC11388356 DOI: 10.1073/pnas.2403577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Evolution can occur over ecological timescales, suggesting a potentially important role for rapid evolution in shaping community trait distributions. However, evidence of concordant eco-evolutionary dynamics often comes from in vitro studies of highly simplified communities, and measures of ecological and evolutionary dynamics are rarely directly comparable. Here, we quantified how ecological species sorting and rapid evolution simultaneously shape community trait distributions by tracking within- and between-species changes in a key trait in a complex bacterial community. We focused on the production of siderophores; bacteria use these costly secreted metabolites to scavenge poorly soluble iron and to detoxify environments polluted with toxic nonferrous metals. We found that responses to copper-imposed selection within and between species were ultimately the same-intermediate siderophore levels were favored-and occurred over similar timescales. Despite being a social trait, this level of siderophore production was selected regardless of whether species evolved in isolation or in a community context. Our study suggests that evolutionary selection can play a pivotal role in shaping community trait distributions within natural, highly complex, bacterial communities. Furthermore, trait evolution may not always be qualitatively affected by interactions with other community members.
Collapse
Affiliation(s)
- Elze Hesse
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Adela M Luján
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Católica de Córdoba, Córdoba X5016DHK, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba X5004ASK, Argentina
| | - Siobhan O'Brien
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Arthur Newbury
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Terence McAvoy
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Jesica Soria Pascual
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Florian Bayer
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - David J Hodgson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Angus Buckling
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
9
|
Graña-Miraglia L, Geney Higuita JL, Salazar JC, Guaya Iñiguez D, Alcolado León C, García-Angulo VA. Total substitution and partial modification of the set of non-ribosomal peptide synthetases clusters lead to pyoverdine diversity in the Pseudomonas fluorescens complex. Front Microbiol 2024; 15:1421749. [PMID: 39224222 PMCID: PMC11366639 DOI: 10.3389/fmicb.2024.1421749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Pyoverdines are high affinity siderophores produced by most Pseudomonas with a wide role in microbial interspecies interactions. They are primarily composed of a conserved chromophore moiety, an acyl side chain and a peptide backbone which may be highly variable among strains. Upon ferric iron sequestration, pyoverdines are internalized through specialized receptors. The peptide precursor of pyoverdine, termed ferribactin, is synthesized by a set of non-ribosomal peptide synthetase (NRPS) enzymes and further modified by tailoring enzymes. While PvdL, the NRPS responsible for the synthesis of the peptide moiety that derives into the chromophore is conserved, the NRPSs for the peptide backbone are different across fluorescent Pseudomonas. Although the variation of pyoverdine is a widely recognized characteristic within the genus, the evolutionary events associated with the diversity and distribution of this trait remain mostly unknown. This study analyzed the NRPSs clusters for the biosynthesis of the peptide backbone of ferribactin in the genomes of a representative subset of strains of the Pseudomonas fluorescens complex. Bioinformatic analysis of the specificity of adenylation domains of the NRPSs allowed the prediction of 30 different pyoverdine variants. Phylogenetic reconstruction and mapping of the NRPS clusters pinpointed two different general levels of modifications. In the first level, a complete replacement of the set of NRPRs by horizontal transfer occurs. In the second level, the original set of NRPSs is modified through different mechanisms, including partial substitution of the NRPS genes by horizontal transfer, adenylation domain specificity change or NRPS accessory domain gain/loss.
Collapse
Affiliation(s)
- Lucía Graña-Miraglia
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jorge Luis Geney Higuita
- Bacterial Metabolism Laboratory, Instituto de Ciencias Biomédicas, Microbiology and Mycology Program, University of Chile, Santiago, Chile
| | - Juan Carlos Salazar
- Laboratory of Enteropathogens, Instituto de Ciencias Biomédicas, Microbiology and Mycology Program, University of Chile, Santiago, Chile
| | - Diana Guaya Iñiguez
- Bacterial Metabolism Laboratory, Instituto de Ciencias Biomédicas, Microbiology and Mycology Program, University of Chile, Santiago, Chile
| | - Carlos Alcolado León
- Bacterial Metabolism Laboratory, Instituto de Ciencias Biomédicas, Microbiology and Mycology Program, University of Chile, Santiago, Chile
| | - Víctor A. García-Angulo
- Bacterial Metabolism Laboratory, Instituto de Ciencias Biomédicas, Microbiology and Mycology Program, University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Leinweber A, Laffont C, Lardi M, Eberl L, Pessi G, Kümmerli R. RNA-Seq reveals that Pseudomonas aeruginosa mounts growth medium-dependent competitive responses when sensing diffusible cues from Burkholderia cenocepacia. Commun Biol 2024; 7:995. [PMID: 39143311 PMCID: PMC11324955 DOI: 10.1038/s42003-024-06618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Most habitats host diverse bacterial communities, offering opportunities for inter-species interactions. While competition might often dominate such interactions, little is known about whether bacteria can sense competitors and mount adequate responses. The competition sensing hypothesis proposes that bacteria can use cues such as nutrient stress and cell damage to prepare for battle. Here, we tested this hypothesis by measuring transcriptome changes in Pseudomonas aeruginosa exposed to the supernatant of its competitor Burkholderia cenocepacia. We found that P. aeruginosa exhibited significant growth-medium-dependent transcriptome changes in response to competition. In an iron-rich medium, P. aeruginosa upregulated genes encoding the type-VI secretion system and the siderophore pyoverdine, whereas genes encoding phenazine toxins and hydrogen cyanide were upregulated under iron-limited conditions. Moreover, general stress response and quorum sensing regulators were upregulated upon supernatant exposure. Altogether, our results reveal nuanced competitive responses of P. aeruginosa when confronted with B. cenocepacia supernatant, integrating both environmental and social cues.
Collapse
Affiliation(s)
- Anne Leinweber
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Clémentine Laffont
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
11
|
Stulanovic N, Kerdel Y, Rezende L, Deflandre B, Burguet P, Belde L, Denoel R, Tellatin D, Rigolet A, Hanikenne M, Quinton L, Ongena M, Rigali S. Nitrogen sources enhance siderophore-mediated competition for iron between potato common scab and late blight causative agents. Metallomics 2024; 16:mfae004. [PMID: 38244228 DOI: 10.1093/mtomcs/mfae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
How do pathogens affecting the same host interact with each other? We evaluated here the types of microbe-microbe interactions taking place between Streptomyces scabiei and Phytophthora infestans, the causative agents of common scab and late blight diseases in potato crops, respectively. Under most laboratory culture conditions tested, S. scabiei impaired or completely inhibited the growth of P. infestans by producing either soluble and/or volatile compounds. Increasing peptone levels correlated with increased inhibition of P. infestans. Comparative metabolomics showed that production of S. scabiei siderophores (desferrioxamines, pyochelin, scabichelin, and turgichelin) increased with the quantity of peptone, thereby suggesting that they participate in the inhibition of the oomycete growth. Mass spectrometry imaging further uncovered that the zones of secreted siderophores and of P. infestans growth inhibition coincided. Moreover, either the repression of siderophore production or the neutralization of their iron-chelating activity led to a resumption of P. infestans growth. Replacement of peptone by natural nitrogen sources such as ammonium nitrate, sodium nitrate, ammonium sulfate, and urea also triggered siderophore production in S. scabiei. Interestingly, nitrogen source-induced siderophore production also inhibited the growth of Alternaria solani, the causative agent of the potato early blight. Overall, our work further emphasizes the importance of competition for iron between microorganisms that colonize the same niche. As common scab never alters the vegetative propagation of tubers, we propose that S. scabiei, under certain conditions, could play a protective role for its hosts against much more destructive pathogens through exploitative iron competition and volatile compound production.
Collapse
Affiliation(s)
- Nudzejma Stulanovic
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Yasmine Kerdel
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Lucas Rezende
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liège, Belgium
| | - Benoit Deflandre
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Pierre Burguet
- Molecular Systems (MolSys), Department of Chemistry, University of Liège, B-4000 Liège, Belgium
| | - Loïc Belde
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Romane Denoel
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Déborah Tellatin
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Augustin Rigolet
- Microbial Processes and Interactions, TERRA Teaching and Research Center, BioEcoAgro, Joint Research Unit/UMR transfrontalière 1158, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000 Liège, Belgium
| | - Loïc Quinton
- Molecular Systems (MolSys), Department of Chemistry, University of Liège, B-4000 Liège, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions, TERRA Teaching and Research Center, BioEcoAgro, Joint Research Unit/UMR transfrontalière 1158, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Sébastien Rigali
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
12
|
Wang N, Wang T, Chen Y, Wang M, Lu Q, Wang K, Dou Z, Chi Z, Qiu W, Dai J, Niu L, Cui J, Wei Z, Zhang F, Kümmerli R, Zuo Y. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize. Nat Commun 2024; 15:839. [PMID: 38287073 PMCID: PMC10825131 DOI: 10.1038/s41467-024-45207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
Intercropping has the potential to improve plant nutrition as well as crop yield. However, the exact mechanism promoting improved nutrient acquisition and the role the rhizosphere microbiome may play in this process remains poorly understood. Here, we use a peanut/maize intercropping system to investigate the role of root-associated microbiota in iron nutrition in these crops, combining microbiome profiling, strain and substance isolation and functional validation. We find that intercropping increases iron nutrition in peanut but not in maize plants and that the microbiota composition changes and converges between the two plants tested in intercropping experiments. We identify a Pseudomonas secreted siderophore, pyoverdine, that improves iron nutrition in glasshouse and field experiments. Our results suggest that the presence of siderophore-secreting Pseudomonas in peanut and maize intercropped plays an important role in iron nutrition. These findings could be used to envision future intercropping practices aiming to improve plant nutrition.
Collapse
Affiliation(s)
- Nanqi Wang
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Tianqi Wang
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, 210014, Nanjing, Jiangsu, China
| | - Ming Wang
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qiaofang Lu
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Kunguang Wang
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Zhechao Dou
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Zhiguang Chi
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Wei Qiu
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Jing Dai
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Lei Niu
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Jianyu Cui
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Yuanmei Zuo
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
13
|
Du X, Liu N, Yan B, Li Y, Liu M, Huang Y. Proximity-based defensive mutualism between Streptomyces and Mesorhizobium by sharing and sequestering iron. THE ISME JOURNAL 2024; 18:wrad041. [PMID: 38366066 PMCID: PMC10881299 DOI: 10.1093/ismejo/wrad041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/25/2023] [Accepted: 12/26/2024] [Indexed: 02/18/2024]
Abstract
Microorganisms living in soil maintain intricate interactions among themselves, forming the soil microbiota that influences the rhizosphere microbiome and plant growth. However, the mechanisms underlying the soil microbial interactions remain unclear. Streptomyces and Mesorhizobium are commonly found in soil and serve as plant growth-promoting rhizobacteria (PGPR). Here, we identified an unprecedented interaction between the colonies of red-soil-derived Streptomyces sp. FXJ1.4098 and Mesorhizobium sp. BAC0120 and referred to it as "proximity-based defensive mutualism (PBDM)." We found that metabolite-mediated iron competition and sharing between the two microorganisms were responsible for PBDM. Streptomyces sp. FXJ1.4098 produced a highly diffusible siderophore, desferrioxamine, which made iron unavailable to co-cultured Mesorhizobium sp. BAC0120, thereby inhibiting its growth. Streptomyces sp. FXJ1.4098 also released poorly diffusible iron-porphyrin complexes, which could be utilized by Mesorhizobium sp. BAC0120, thereby restoring the growth of nearby Mesorhizobium sp. BAC0120. Furthermore, in ternary interactions, the PBDM strategy contributed to the protection of Mesorhizobium sp. BAC0120 close to Streptomyces sp. FXJ1.4098 from other microbial competitors, resulting in the coexistence of these two PGPR. A scale-up pairwise interaction screening suggested that the PBDM strategy may be common between Mesorhizobium and red-soil-derived Streptomyces. These results demonstrate the key role of iron in complex microbial interactions and provide novel insights into the coexistence of PGPR in soil.
Collapse
Affiliation(s)
- Xueyuan Du
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing 101408, P. R. China
- National Engineering Laboratory for Site Remediation Technologies, BCEG Environmental Remediation Co., Ltd., Beijing 100015, P. R. China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
| | - Bingfa Yan
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing 101408, P. R. China
| | - Yisong Li
- School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing 101408, P. R. China
| |
Collapse
|
14
|
Smith P, Schuster M. The fitness benefit of pyoverdine cross-feeding by Pseudomonas protegens Pf-5. Environ Microbiol 2024; 26:e16554. [PMID: 38097191 DOI: 10.1111/1462-2920.16554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Under iron-limiting conditions, fluorescent pseudomonads acquire iron from the environment by secreting strain-specific, iron-chelating siderophores termed pyoverdines (PVD). The rhizosphere bacterium Pseudomonas protegens Pf-5 produces its own PVD but also can cross-feed on PVDs produced by other species. Previous work has found that Pf-5 continues to produce its own PVD when allowed to cross-feed, raising questions about the benefit of heterologous PVD utilisation. Here, we investigate this question using a defined, unidirectional P. protegens Pf-5/Pseudomonas aeruginosa PAO1 cross-feeding model. Quantifying the production of PVD in the presence of heterologous PVD produced by PAO1, we show that cross-feeding Pf-5 strains reduce the production of their own PVD, while non-cross-feeding Pf-5 strains increase the production of PVD. Measuring the fitness of cross-feeding and non-cross-feeding Pf-5 strains in triple coculture with PAO1, we find that cross-feeding provides a fitness benefit to Pf-5 when the availability of heterologous PVD is high. We conclude that cross-feeding can reduce the costs of self-PVD production and may thus aid in the colonisation of iron-limited environments that contain compatible siderophores produced by other resident microbes. Taken together, these results expand our understanding of the mechanisms of interspecific competition for iron in microbial communities.
Collapse
Affiliation(s)
- Parker Smith
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
15
|
Corbett MK, Gifford A, Fimognari N, Watkin ELJ. Analysis of element yield, bacterial community structure and the impact of carbon sources for bioleaching rare earth elements from high grade monazite. Res Microbiol 2024; 175:104133. [PMID: 37683878 DOI: 10.1016/j.resmic.2023.104133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Rare earth element (REE) recovery from waste streams, mine tailings or recyclable components using bioleaching is gaining traction due to the shortage and security of REE supply as well as the environmental problems that occur from processing and refining. Four heterotrophic microbial species with known phosphate solubilizing capabilities were evaluated for their ability to leach REE from a high-grade monazite when provided with either galactose, fructose or maltose. Supplying fructose resulted in the greatest amount of REE leached from the ore due to the largest amount of organic acid produced. Gluconic acid was the dominant organic acid identified produced by the cultures, followed by acetic acid. The monazite proved difficult to leach with the different carbon sources, with preferential release of Ce over La, Nd and Pr.
Collapse
Affiliation(s)
- Melissa K Corbett
- Curtin Medical School, Curtin University GPO Box U1987, Perth, Australia.
| | - April Gifford
- Curtin Medical School, Curtin University GPO Box U1987, Perth, Australia.
| | - Nick Fimognari
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Australia.
| | - Elizabeth L J Watkin
- Curtin Medical School, Curtin University GPO Box U1987, Perth, Australia; School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Australia.
| |
Collapse
|
16
|
Schmitz DA, Wechsler T, Mignot I, Kümmerli R. Predicting bacterial interaction outcomes from monoculture growth and supernatant assays. ISME COMMUNICATIONS 2024; 4:ycae045. [PMID: 39081364 PMCID: PMC11287475 DOI: 10.1093/ismeco/ycae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 08/02/2024]
Abstract
How to derive principles of community dynamics and stability is a central question in microbial ecology. Bottom-up experiments, in which a small number of bacterial species are mixed, have become popular to address it. However, experimental setups are typically limited because co-culture experiments are labor-intensive and species are difficult to distinguish. Here, we use a four-species bacterial community to show that information from monoculture growth and inhibitory effects induced by secreted compounds can be combined to predict the competitive rank order in the community. Specifically, integrative monoculture growth parameters allow building a preliminary competitive rank order, which is then adjusted using inhibitory effects from supernatant assays. While our procedure worked for two different media, we observed differences in species rank orders between media. We then parameterized computer simulations with our empirical data to show that higher order species interactions largely follow the dynamics predicted from pairwise interactions with one important exception. The impact of inhibitory compounds was reduced in higher order communities because their negative effects were spread across multiple target species. Altogether, we formulated three simple rules of how monoculture growth and supernatant assay data can be combined to establish a competitive species rank order in an experimental four-species community.
Collapse
Affiliation(s)
- Désirée A Schmitz
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, United States
| | - Tobias Wechsler
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Ingrid Mignot
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
17
|
Chepsergon J, Moleleki LN. Rhizosphere bacterial interactions and impact on plant health. Curr Opin Microbiol 2023; 73:102297. [PMID: 37002974 DOI: 10.1016/j.mib.2023.102297] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
The rhizosphere is a chemically complex environment that harbors a strikingly diverse microbial community. The past few decades have seen a rapid growth in the body of literature on plant-microbe-microbe interactions and plant health. Thus, the aim of this paper is to review current knowledge on plant-microbe-microbe (specifically bacteria) interactions in the rhizosphere and how these influence rhizosphere microbiomes and impact plant health. This article discusses (i) how the plant recruits beneficial rhizosphere bacteria and ii) how competition between rhizosphere bacteria and mechanisms/weapons employed in bacteria-bacteria competition shapes rhizosphere microbiome and in turn affects plant heath. The discussion mainly focuses on interference competition, characterized by production of specialized metabolites (antibacterial compounds) and exploitative competition where a bacterial strain restricts the competitor's access to nutrients such as through secretion of siderophores that could allude to cooperation. Understanding mechanisms employed in bacteria-bacteria and plant-bacteria interactions could provide insights into how to manipulate microbiomes for improved agricultural outcomes.
Collapse
|
18
|
de la Fuente MC, Ageitos L, Lages MA, Martínez-Matamoros D, Forero AM, Balado M, Lemos ML, Rodríguez J, Jiménez C. Structural Requirements for Ga 3+ Coordination in Synthetic Analogues of the Siderophore Piscibactin Deduced by Chemical Synthesis and Density Functional Theory Calculations. Inorg Chem 2023; 62:7503-7514. [PMID: 37140938 DOI: 10.1021/acs.inorgchem.3c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Stereoselective total synthesis of several analogues of piscibactin (Pcb), the siderophore produced by different pathogenic Gram-negative bacteria, was performed. The acid-sensitive α-methylthiazoline moiety was replaced by a more stable thiazole ring, differing in the configuration of the OH group at the C-13 position. The ability of these Pcb analogues to form complexes with Ga3+ as a mimic of Fe3+ showed that the configuration of the hydroxyl group at C-13 as 13S is crucial for the chelation of Ga3+ to preserve the metal coordination, while the presence of a thiazole ring instead of the α-methylthiazoline moiety does not affect such coordination. A complete 1H and 13C NMR chemical shift assignment of the diastereoisomer mixtures around C9/C10 was done for diagnostic stereochemical disposition. Additionally, density functional theory calculations were performed not only for confirming the stereochemistry of the Ga3+ complex among the six possible diastereoisomers but also for deducing the ability of these to form octahedral coordination spheres with gallium. Finally, the lack of antimicrobial activity of Pcb and Pcb thiazole analogue Ga3+ complexes against Vibrio anguillarum agrees with one of the roles of siderophores in protecting pathogens from metal ion toxicity. The efficient metal coordination shown by this scaffold suggests its possible use as a starting point for the design of new chelating agents or vectors for the development of new antibacterials that exploit the "Trojan horse" strategy using the microbial iron uptake mechanisms. The results obtained will be of great help in the development of biotechnological applications for these types of compounds.
Collapse
Affiliation(s)
- M Carmen de la Fuente
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Lucía Ageitos
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Marta A Lages
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Diana Martínez-Matamoros
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Abel M Forero
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Miguel Balado
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Manuel L Lemos
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jaime Rodríguez
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Carlos Jiménez
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| |
Collapse
|
19
|
Rehm K, Vollenweider V, Kümmerli R, Bigler L. Rapid identification of pyoverdines of fluorescent Pseudomonas spp. by UHPLC-IM-MS. Biometals 2023; 36:19-34. [PMID: 36261676 PMCID: PMC9925543 DOI: 10.1007/s10534-022-00454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
Abstract
Siderophores are iron-chelating molecules produced by bacteria and other microbes. They are involved with virulence in infections and play key roles in bacterial community assembly and as plant protectants due to their pathogen control properties. Although assays exist to screen whether newly isolated bacteria can produce siderophores, the chemical structures of many of these bio-active molecules remain unidentified due to the lack of rapid analytical procedures. An important group of siderophores are pyoverdines. They consist of a structurally diverse group of chromopeptides, whose amino acid sequence is characteristic for the fluorescent Pseudomonas species that secrets them. Although over 60 pyoverdine structures have been described so far, their characterization is cumbersome and several methods (isoelectrofocusing, iron uptake measurement, mass determination) are typically combined as ambiguous results are often achieved by a single method. Those additional experiments consume valuable time and resources and prevent high-throughput analysis. In this work, we present a new pyoverdine characterisation option by recording their collision cross sections (CCS) using trapped ion mobility spectrometry. This can be done simultaneously in combination with UHPLC and high-resolution MS resulting in a rapid identification of pyoverdines. The high specificity of CCS values is presented for 17 pyoverdines secreted by different Pseudomonas strains. The pyoverdine mass determination by full scan MS was supported by fragments obtained from broadband collision induced dissociation (bbCID). As iron contaminations in laboratories are not uncommon, CCS values of ferripyoverdines were also evaluated. Thereby, unusual and highly characteristic ion mobility patterns were obtained that are suitable as an alternative identification marker.
Collapse
Affiliation(s)
- Karoline Rehm
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
20
|
Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 2022:10.1007/s10534-022-00480-8. [PMID: 36508064 PMCID: PMC10393863 DOI: 10.1007/s10534-022-00480-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
AbstractIron is important for bacterial growth and survival, as it is a common co-factor in essential enzymes. Although iron is very abundant in the earth crust, its bioavailability is low in most habitats because ferric iron is largely insoluble under aerobic conditions and at neutral pH. Consequently, bacteria have evolved a plethora of mechanisms to solubilize and acquire iron from environmental and host stocks. In this review, I focus on Pseudomonas spp. and first present the main iron uptake mechanisms of this taxa, which involve the direct uptake of ferrous iron via importers, the production of iron-chelating siderophores, the exploitation of siderophores produced by other microbial species, and the use of iron-chelating compounds produced by plants and animals. In the second part of this review, I elaborate on how these mechanisms affect interactions between bacteria in microbial communities, and between bacteria and their hosts. This is important because Pseudomonas spp. live in diverse communities and certain iron-uptake strategies might have evolved not only to acquire this essential nutrient, but also to gain relative advantages over competitors in the race for iron. Thus, an integrative understanding of the mechanisms of iron acquisition and the eco-evolutionary dynamics they drive at the community level might prove most useful to understand why Pseudomonas spp., in particular, and many other bacterial species, in general, have evolved such diverse iron uptake repertoires.
Collapse
|
21
|
Chen L, Cheng Q, Zhang X, Zhu M, Hartley W, Zhu F. Novel Plant Growth-Promoting Bacteria Isolated from Bauxite Residue: The Application for Revegetation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:3-12. [PMID: 35067726 DOI: 10.1007/s00128-021-03433-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Microbial inoculation with appropriate inorganic-organic amendments is a promising strategy for ecological rehabilitation at bauxite residue disposal areas. Nevertheless, research on screening suitable plant growth-promoting bacteria with tolerance to highly sodic-alkalinity is very limited in the literature. In this study, novel plant growth-promoting bacteria isolated from bauxite residue were used to investigate their potential for revegetation. Under high saline-alkalinity stress, inoculation of Z18 and Z28 increased the activity of antioxidative enzymes, whilst improving chlorophyll and carotenoid contents in ryegrass. Inoculation of the selected strains greatly reduced damage to organelles in ryegrass as observed by transmission electron microscopy. Based on 90-day soil incubation, inoculated strains improved physicochemical properties of bauxite residue and improved plant growth. These findings suggest that Z18 and Z28 may be selected as potential strains for vegetation establishment, aiding microbial remediation at bauxite disposal areas.
Collapse
Affiliation(s)
- Li Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Qingyu Cheng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xianchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Mingxing Zhu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - William Hartley
- Agriculture and Environment Department, Harper Adams University, Newport, TF10 8NB, Shropshire, UK
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| |
Collapse
|
22
|
Cavallaro A, Rhoads WJ, Huwiler SG, Stachler E, Hammes F. Potential probiotic approaches to control Legionella in engineered aquatic ecosystems. FEMS Microbiol Ecol 2022; 98:6604835. [PMID: 35679082 PMCID: PMC9333994 DOI: 10.1093/femsec/fiac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Opportunistic pathogens belonging to the genus Legionella are among the most reported waterborne-associated pathogens in industrialized countries. Legionella colonize a variety of engineered aquatic ecosystems and persist in biofilms where they interact with a multitude of other resident microorganisms. In this review, we assess how some of these interactions could be used to develop a biological-driven “probiotic” control approach against Legionella. We focus on: (i) mechanisms limiting the ability of Legionella to establish and replicate within some of their natural protozoan hosts; (ii) exploitative and interference competitive interactions between Legionella and other microorganisms; and (iii) the potential of predatory bacteria and phages against Legionella. This field is still emergent, and we therefore specifically highlight research for future investigations, and propose perspectives on the feasibility and public acceptance of a potential probiotic approach.
Collapse
Affiliation(s)
- Alessio Cavallaro
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.,Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - William J Rhoads
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Simona G Huwiler
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Elyse Stachler
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
23
|
Rehm K, Vollenweider V, Kümmerli R, Bigler L. A comprehensive method to elucidate pyoverdines produced by fluorescent Pseudomonas spp. by UHPLC-HR-MS/MS. Anal Bioanal Chem 2022; 414:2671-2685. [PMID: 35084507 PMCID: PMC8888394 DOI: 10.1007/s00216-022-03907-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 12/01/2022]
Abstract
Microbial secondary metabolites represent a rich source for drug discovery, plant protective agents, and biotechnologically relevant compounds. Among them are siderophores, iron-chelating molecules, that show a great influence on bacterial community assembly and the potential to control pathogen invasions. One of such a siderophore is pyoverdine that is produced by fluorescent Pseudomonas members and consists of different peptide chains specific to each bacterial species. The identification and structural elucidation of such suites of siderophores remain widely underexplored as general high-throughput analytical protocols are missing. Therefore, a dedicated method was established allowing a rapid localization and structural elucidation of pyoverdines. Liquid bacterial culture samples were purified by an easy small-scale solid-phase extraction (SPE). Ultra-high-performance liquid chromatography high-resolution tandem mass spectrometry (UHPLC-HR-MS/MS) separated highly polar pyoverdines and their derivatives. All ion fragmentation (AIF) generated mass spectra containing the characteristic fragments of the biological precursor of pyoverdine, ferribactin. This led to the revelation of the mass of secreted pyoverdines. Targeted MS/MS experiments at multiple collision energies accomplished the full structure elucidation of the pyoverdine peptide chain. A mass calculator and a fragmentation predictor facilitated greatly the interpretation of MS/MS spectra by providing accurate masses for a straightforward comparison of measured and theoretical values. The method was successfully validated using four well-known pyoverdines with various peptide chains. Finally, the applicability was proven by the analysis of 13 unknown pyoverdines secreted by sampled bacterial cultures. Among these, 4 novel pyoverdine peptide chains were discovered and are herein reported for the first time.
Collapse
Affiliation(s)
- Karoline Rehm
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|