1
|
Trugman AT, Anderegg LDL. Source vs sink limitations on tree growth: from physiological mechanisms to evolutionary constraints and terrestrial carbon cycle implications. THE NEW PHYTOLOGIST 2025; 245:966-981. [PMID: 39607008 DOI: 10.1111/nph.20294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
The potential for widespread sink-limited plant growth has received increasing attention in the literature in the past few years. Despite recent evidence for sink limitations to plant growth, there are reasons to be cautious about a sink-limited world view. First, source-limited vegetation models do a reasonable job at capturing geographic patterns in plant productivity and responses to resource limitations. Second, from an evolutionary perspective, it is nonadaptive for plants to invest in increasing carbon assimilation if growth is primarily sink-limited. In this review, we synthesize the potential evidence for and underlying physiology of sink limitation across terrestrial ecosystems and contrast mechanisms of sink limitation with those of source-limited productivity. We highlight evolutionary restrictions on the magnitude of sink limitation at the organismal level. We also detail where mechanisms regulating sink limitation at the organismal and ecosystem scale (e.g. the terrestrial carbon sink) diverge. Although we find that there is currently no direct evidence for widespread organismal sink limitation, we propose a series of follow-up growth chamber manipulations, systematized measurements, and modeling experiments targeted at diagnosing nonadaptive buildup of excess nonstructural carbohydrates that will help illuminate the prevalence and magnitude of organismal sink limitation.
Collapse
Affiliation(s)
- Anna T Trugman
- Department of Geography, University of California, Santa Barbara, CA, 93016, USA
| | - Leander D L Anderegg
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93016, USA
| |
Collapse
|
2
|
Quetin GR, Anderegg LDL, Boving I, Trugman AT. A moving target: trade-offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate. THE NEW PHYTOLOGIST 2024; 244:1788-1800. [PMID: 39327813 DOI: 10.1111/nph.20127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown. Here, we use a trait-based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity. Allocating leaf area to maximize carbon gain increased productivity with high CO2, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions. Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets.
Collapse
Affiliation(s)
- Gregory R Quetin
- Department of Geography, University of California, Santa Barbara, CA, 93016, USA
| | - Leander D L Anderegg
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93016, USA
| | - Indra Boving
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93016, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, CA, 93016, USA
| |
Collapse
|
3
|
Ding H, Shi X, Yuan Z, Chen X, Zhang D, Chen F. Does vegetation greening have a positive effect on global vegetation carbon and water use efficiency? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175589. [PMID: 39173764 DOI: 10.1016/j.scitotenv.2024.175589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Terrestrial ecosystems have undergone significant changes as a result of climate change, profoundly affecting global carbon and water cycling processes. Notably, the synergistic changes in vegetation carbon use efficiency (CUE) and water use efficiency (WUE) and their response to patterns of climate change over the last 40 years are unknown. Therefore, in this study, global vegetation WUE and CUE were inverted using Gross primary productivity (GPP), Net primary productivity (NPP) and total evaporation (ET) data from 1981 to 2019 to reveal their temporal and spatial patterns of change through trend analysis and stability analysis. A stepwise regression algorithm was used to reveal the potential driving law of environmental factors on vegetation WUE and CUE. The results shows that (1) From 1981 to 2019, the global vegetation WUE and CUE showed in a relatively stable state, and the trends of WUE and CUE were -0.00004/year and 0.006 g C m-2 mm-1/year, respectively; (2) the greening of vegetation was the most important cause of the changes in WUE and CUE, and the driving force of rain and heat conditions on the CUE of vegetation was smaller than that of solar radiation and soil water, the regions where CO2 is the dominant factor affecting CUE and WUE are mainly in the north temperate zone; (3) the region of synergistic growth of WUE and CUE accounts for about 31.38 % of the global terrestrial area, and this pattern of change suggests that the global vegetation carbon sink potential is huge, and the popularization of vegetation planting patterns under the synergistic growth of CUE and WUE should be strengthened. The research has shown that vegetation greening is a key factor influencing changes in the WUE and CUE of vegetation, therefore, the implementation of ecological engineering will be an important step in combating climate change.
Collapse
Affiliation(s)
- Hao Ding
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiaoliang Shi
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Zhe Yuan
- Changjiang River Scientific Research Institute, Changjiang Water Resources Commission of the Ministry of Water Resources of China, Wuhan 430010, China; Hubei Key Laboratory of Water Resources & Eco-Environmental Sciences, Wuhan 430010, China.
| | - Xi Chen
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Dan Zhang
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Fei Chen
- Shaanxi Information Engineering Research Institute, Xi'an 710054, China
| |
Collapse
|
4
|
Wang K, She D, Zhang X, Wang Y, Wen H, Yu J, Wang Q, Han S, Wang W. Tree richness increased biomass carbon sequestration and ecosystem stability of temperate forests in China: Interacted factors and implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122214. [PMID: 39191057 DOI: 10.1016/j.jenvman.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Biodiversity loss and forest degradation have received increasing attention worldwide, and their effects on forest biomass carbon storage and stability have not yet been well defined. This study examined 1275 tree plots using the field survey method to quantify the effects of tree diversity, tree sizes, and mycorrhizal symbiont abundance on biomass carbon storages (Cs) and NDVI (Normalized Difference Vegetation Index)-based ecosystem stability (standard deviation/mean NDVI = NDVI_S) during the field survey period from 2008 to 2018. Our data showed Cs and NDVI_S averaged at 31-108 t ha-1 and 32.04-49.28, respectively, and positive relations between Cs and NDVI_S were observed (p < 0.05). Large forest-type and regional variations were found in these two parameters. Broadleaf forests had 74% of Cs (p < 0.05) of the conifer forests, but no differences were in NDVI_S. Cold regions at high latitudes had 71% of NDVI_S in the warm regions at low latitudes, while no differences were in Cs. Moist regions at high longitudes had 2.04 and 1.28-fold higher Cs and NDVI_S (p < 0.05). The >700 m a.s.l. regions had 1.24-fold higher Cs (p < 0.01) than the <700 m a.s.l. regions, but similar NDVI_S (p > 0.05). Nature Reserves had 1.94-fold higher Cs but 30% lower NDVI_S than outside Reserves (p < 0.001). > 40-year-old forests had 1.3- and 2-fold higher Cs and NDVI_S than the young forests. Structural equation modeling and hierarchical partitioning revealed the driving paths responsible for these variations. Tree richness was positively associated with Cs and ecosystem stability, contributing 21.6%-30.6% to the total effects on them; tree sizes significantly promoted the Cs, but had negligible impacts on NDVI_S. MAT's total effects on NDVI_S of conifer forests were 40% higher than that of broadleaf forests, MAP's total effects on Cs varied with forest types; arbuscular mycorrhizal tree dominance exhibited a smaller positive impact on Cs and ecosystem stability in comparison to other factors. Our findings underscore that the significance of climatic-adapted forest management, diversity conservation, and big-sized tree protections can support the achievement of carbon neutrality in China from biomass carbon sequestration and ecosystem stability.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; School of Tourism, Bohai University, Jinzhou, Liaoning, 121000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danqi She
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Forest Plant Ecology (MOE), College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Xiting Zhang
- Key Laboratory of Forest Plant Ecology (MOE), College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Leshan Normal University, School of Life Science, Leshan, 614000, China
| | - Yuanyuan Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Hui Wen
- Key Laboratory of Forest Plant Ecology (MOE), College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Jinghua Yu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Qinggui Wang
- College of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Shijie Han
- College of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Wenjie Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
5
|
Graven HD, Warren H, Gibbs HK, Khatiwala S, Koven C, Lester J, Levin I, Spawn-Lee SA, Wieder W. Bomb radiocarbon evidence for strong global carbon uptake and turnover in terrestrial vegetation. Science 2024; 384:1335-1339. [PMID: 38900872 DOI: 10.1126/science.adl4443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/09/2024] [Indexed: 06/22/2024]
Abstract
Vegetation and soils are taking up approximately 30% of anthropogenic carbon dioxide emissions because of small imbalances in large gross carbon exchanges from productivity and turnover that are poorly constrained. We combined a new budget of radiocarbon produced by nuclear bomb testing in the 1960s with model simulations to evaluate carbon cycling in terrestrial vegetation. We found that most state-of-the-art vegetation models used in the Coupled Model Intercomparison Project underestimated the radiocarbon accumulation in vegetation biomass. Our findings, combined with constraints on vegetation carbon stocks and productivity trends, imply that net primary productivity is likely at least 80 petagrams of carbon per year presently, compared with the 43 to 76 petagrams per year predicted by current models. Storage of anthropogenic carbon in terrestrial vegetation is likely more short-lived and vulnerable than previously predicted.
Collapse
Affiliation(s)
| | - Hamish Warren
- Department of Physics, Imperial College London, London, UK
| | - Holly K Gibbs
- Nelson Institute for Environmental Studies and the Department of Geography, University of Wisconsin-Madison, Madison, WI, USA
| | - Samar Khatiwala
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Charles Koven
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joanna Lester
- Department of Physics, Imperial College London, London, UK
| | - Ingeborg Levin
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| | - Seth A Spawn-Lee
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- The Nature Conservancy, Arlington, VA, USA
| | - Will Wieder
- Climate & Global Dynamics, National Center for Atmospheric Research, and Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
| |
Collapse
|
6
|
Huang X, Luo G, Ma Z, Yao B, Du Y, Yang Y. Modeling the effect of grazing on carbon and water use efficiencies in grasslands on the Qinghai-Tibet Plateau. BMC Ecol Evol 2024; 24:26. [PMID: 38408884 PMCID: PMC10898080 DOI: 10.1186/s12862-024-02215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Carbon and water use efficiencies (CUE and WUE, respectively) are vital indicators of the adaptability of plants to environmental conditions. However, the effects of grazing and climate change on the spatiotemporal changes in CUE and WUE in Qinghai-Tibet Plateau grasslands (QTPG) are still unclear. RESULTS Using the enhanced Biome-BGCMuSo model in combination with observed data, we estimated and analyzed the spatiotemporal variations in CUE and WUE and their responses to grazing in QTPG from 1979 to 2018. The mean annual CUE was 0.7066 in QTPG from 1979 to 2018 under the actual climate scenario. In general, the grassland CUE was low in the southeast and high in the northwest. Grazing generally decreased CUE in QTPG from 1979 to 2018, and there was an increasing trend in the difference in CUE between the grazing and nongrazing scenarios. The difference in CUE was generally greater in the northwest than in the southeast. The mean annual WUE was 0.5591 g C/kg H2O in QTPG from 1979 to 2018 under the actual climate scenario. After 2000, the grassland WUE exhibited a fluctuating upward trend. In general, the grassland WUE was greater in the southeast than in the northwest. Grazing generally decreased WUE in QTPG from 1979 to 2018, and there was an increasing trend in the difference in WUE between the grazing and nongrazing scenarios. The difference in WUE was generally greater in the northwest than in the southeast. CONCLUSIONS The findings of this study suggested that the spatiotemporal changes in CUE and WUE in QTPG were closely related to changes in the natural environment and grazing management.
Collapse
Affiliation(s)
- Xiaotao Huang
- School of Geographical Sciences and Tourism, Zhaotong University, 657000, Zhaotong, Yunnan, China
| | - Geping Luo
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, Xinjiang, China.
| | - Zhen Ma
- Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Buqing Yao
- Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China.
| | - Yangong Du
- Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Yongsheng Yang
- Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| |
Collapse
|
7
|
Zhou Y, Chang S, Huang X, Wang W, Hou F, Wang Y, Nan Z. Assembly of typical steppe community and functional groups along the precipitation gradient from 1985 to 2022. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167545. [PMID: 37793455 DOI: 10.1016/j.scitotenv.2023.167545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Long-term observations have shown that structure and function of grasslands have changed due to climate change over the past decades. However, little is known about how grasslands respond to climate change along the precipitation gradient, and potential mechanisms remain elusive. Here, we utilize a long-term experiment in typical steppe to explore universal and differential mechanisms of community and functional groups assembly along the precipitation gradient. Our results indicated that the sensitivity of community and functional groups assembly to climate change was related to local precipitation. The strength of the positive effects of climate change on aboveground biomass, species richness, and their relationship of community decreased modestly with local precipitation. The mechanism behind this was the change in plant community composition of the precipitation-induced, annuals that was more responsive to climate change decreased as increased local precipitation. Furthermore, current and past climate both drove community and functional group assembly, and the role of past climate diminished with increasing local precipitation. Among them, climate fluctuation, average climate and current climate were the most critical climate indicators affecting community and functional groups assembly in low, medium and high precipitation sites, respectively. In conclusion, climatic change do not always exert identical effects on grasslands along the precipitation gradient. This could be critical importance for improving our ability to predict future changes in grassland ecosystems.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Xiaojuan Huang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Wenjun Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China.
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
8
|
Quetin GR, Anderegg LDL, Boving I, Anderegg WRL, Trugman AT. Observed forest trait velocities have not kept pace with hydraulic stress from climate change. GLOBAL CHANGE BIOLOGY 2023; 29:5415-5428. [PMID: 37421154 DOI: 10.1111/gcb.16847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 07/09/2023]
Abstract
The extent to which future climate change will increase forest stress and the amount to which species and forest ecosystems can acclimate or adapt to increased stress is a major unknown. We used high-resolution maps of hydraulic traits representing the diversity in tree drought tolerance across the United States, a hydraulically enabled tree model, and forest inventory observations of demographic shifts to quantify the ability for within-species acclimation and between-species range shifts to mediate climate stress. We found that forests are likely to experience increases in both acute and chronic hydraulic stress with climate change. Based on current species distributions, regional hydraulic trait diversity was sufficient to buffer against increased stress in 88% of forested areas. However, observed trait velocities in 81% of forested areas are not keeping up with the rate required to ameliorate projected future stress without leaf area acclimation.
Collapse
Affiliation(s)
- G R Quetin
- Department of Geography, University of California, Santa Barbara, California, USA
| | - L D L Anderegg
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - I Boving
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - W R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - A T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| |
Collapse
|