1
|
Piross IS, Lecheval V, Powell S, Donaldson-Matasci MC, Robinson EJH. Strong and weak environmental perturbations cause contrasting restructure of ant transportation networks. Proc Biol Sci 2025; 292:20242342. [PMID: 40199354 PMCID: PMC11978439 DOI: 10.1098/rspb.2024.2342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
Dynamic transportation networks are embedded in all levels of biological organization. Ever-growing anthropogenic disturbances and an increasingly variable climate highlight the importance of understanding how these networks restructure under environmental perturbations. Polydomous wood ants provide a convenient model system to study the resilience of self-organizing multi-source, multi-sink transportation networks. We used 10 years of longitudinal empirical data on both unperturbed and experimentally manipulated colony networks to develop and validate a comprehensive dynamic simulation model to study network restructuring after resource removal. We performed simulation experiments to study the effects of excluding food sources with varying importance, either temporarily or permanently, imitating pulse and press perturbations of the networks. We found that removing heavily used resources, corresponding to a strong targeted perturbation, persistently decreased network efficiency, unlike random or weak perturbations. We also found that strong perturbations had excessively adverse effects on robustness and function, reducing the networks' ability to withstand potential future perturbations. When transportation networks develop around the efficient use of a few key resources, they may be unable to quickly recover from the loss of these through self-organized restructuring. Our findings highlight the importance of considering the interaction of perturbation strength and network structure in studying transportation network dynamics.
Collapse
Affiliation(s)
- Imre Sándor Piross
- Department of Biology, University of York, York, UK
- HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Budapest, Hungary
| | - Valentin Lecheval
- Department of Biology, Faculty of Life Sciences, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Scott Powell
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | | | | |
Collapse
|
2
|
Hao X, Holyoak M, Zhang Z, Yan C. Global Projection of Terrestrial Vertebrate Food Webs Under Future Climate and Land-Use Changes. GLOBAL CHANGE BIOLOGY 2025; 31:e70061. [PMID: 39895400 DOI: 10.1111/gcb.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025]
Abstract
Food webs represent an important nexus between biodiversity and ecosystem functioning, yet considering changes in food webs around the world has been limited by data availability. Previous studies have predicted food web collapses and coextinction, but changes in food web structure have been less investigated under climate warming and anthropogenic pressures on a global scale. We systematically amassed information about species' diets, traits, distributions, habitat use, and phylogenetics in the real world and used machine learning to predict changes in global meta-food webs of terrestrial vertebrates under climate and land-use changes. By year 2100, terrestrial vertebrate food webs are expected to decrease in web size by 32% and trophic links by 49%. Projections predict declines of over 25% in modularity, predator generality, and diversity of trophic groups. Increased species' dispersal could ameliorate these trends but indicate disproportionate vulnerability of regional food webs. Unlike many previous studies, this work combines extensive empirical data with advanced modeling techniques, providing a more detailed and spatially explicit prediction of how global food webs will respond to climate and land-use changes. Overall, our study predicts terrestrial vertebrate food webs will undergo drastic and spatially heterogeneous structural changes.
Collapse
Affiliation(s)
- Xiyang Hao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P.R. China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Zhicheng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P.R. China
| | - Chuan Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P.R. China
| |
Collapse
|
3
|
de Araújo WS, Bergamini LL, Almeida-Neto M. Global effects of land-use intensity and exotic plants on the structure and phylogenetic signal of plant-herbivore networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173949. [PMID: 38876343 DOI: 10.1016/j.scitotenv.2024.173949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Interactions between plants and herbivorous insects are often phylogenetically structured, with closely related insect species using similar sets of species or lineages of plants, while phylogenetically closer plants tend to share high proportions of their herbivore insect species. Notably, these phylogenetic constraints in plant-herbivore interactions tend to be more pronounced among internal plant-feeding herbivores (i.e., endophages) than among external feeders (i.e., exophages). In the context of growing human-induced habitat conversion and the global proliferation of exotic species, it is crucial to understand how ecological networks respond to land-use intensification and the increasing presence of exotic plants. In this study, we analyzed plant-herbivore network data from various locations of the World to ascertain the degree to which land-use intensity and the prevalence of exotic plants induce predictable changes in their network topology - measured by levels of nestedness and modularity - and phylogenetic structures. Additionally, we investigated whether the intimacy of plant-herbivore interactions, contrasting endophagous with exophagous networks, modulate changes in network structure. Our findings reveal that most plant-herbivore networks are characterized by significant phylogenetic and topological structures. However, neither these structures did not show consistent changes in response to increased levels of land-use intensify. On the other hand, for the networks composed of endophagous herbivores, the level of nestedness was higher in the presence of a high proportion of exotic plants. Additionally, for networks of exophagous herbivores, we observed an increase in the phylogenetic structure of interactions due to exotic host dominance. These results underscore the differential impacts of exotic species and land-use intensity on the phylogenetic and topological structures of plant-herbivore networks.
Collapse
Affiliation(s)
- Walter Santos de Araújo
- Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, MG 39401-089, Brazil..
| | - Leonardo Lima Bergamini
- Centro de Estudos Ambientais do Cerrado, Instituto Brasileiro de Geografia e Estatística, Reserva Ecológica do IBGE, Brasília, DF 70312-970, Brazil
| | - Mário Almeida-Neto
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO 74001-970, Brazil
| |
Collapse
|
4
|
Araújo MB, Alagador D. Expanding European protected areas through rewilding. Curr Biol 2024; 34:3931-3940.e5. [PMID: 39151433 DOI: 10.1016/j.cub.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/13/2024] [Accepted: 07/11/2024] [Indexed: 08/19/2024]
Abstract
Rewilding seeks to address biodiversity loss by restoring trophic interactions and fostering self-regulating ecosystems. Although gaining traction in Europe and North America, the extent to which rewilding can meet post-2020 protected-area targets remains uncertain. We formulated criteria to map suitable areas for rewilding by identifying large tracts of land with minimal human disturbances and the presence of key mammal species. We find that one-quarter of Europe, approximately 117 million hectares (ha), is compatible with our rewilding criteria. Of these, 70% are in cooler climates. Passive rewilding opportunities, focused on managing existing wilderness, are predominant in Scandinavia, Scotland, the Iberian Peninsula, and notably in the Baltic states, Ireland, and southeastern Europe. Active rewilding opportunities, marked by reintroduction of absent trophic guilds, are identified in Corsica, Sardinia, southern France, and parts of the Netherlands, Denmark, Sweden, and Norway. Our mapping supports European nations in leveraging land abandonment to expand areas for nature conservation, aligning with the European Biodiversity Strategy for 2030. Nevertheless, countries with limited potential for rewilding should consider alternative conservation strategies.
Collapse
Affiliation(s)
- Miguel B Araújo
- Department of Biogeography and Global Change, National Museum of Natural Sciences, CSIC, Calle José Gutiérrez Abascal, 2, 28806 Madrid, Spain; Rui Nabeiro Biodiversity Chair, MED - Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Largo dos Colegiais, 2, 7004-516 Évora, Portugal.
| | - Diogo Alagador
- Rui Nabeiro Biodiversity Chair, MED - Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Largo dos Colegiais, 2, 7004-516 Évora, Portugal
| |
Collapse
|
5
|
Chen Z, Cameron TC, Couce E, Garcia C, Hicks N, Thomas GE, Thompson MSA, Whitby C, O'Gorman EJ. Oil and gas platforms degrade benthic invertebrate diversity and food web structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172536. [PMID: 38643886 DOI: 10.1016/j.scitotenv.2024.172536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Oil and gas exploitation introduces toxic contaminants such as hydrocarbons and heavy metals to the surrounding sediment, resulting in deleterious impacts on marine benthic communities. This study combines benthic monitoring data over a 30-year period in the North Sea with dietary information on >1400 taxa to quantify the effects of active oil and gas platforms on benthic food webs using a multiple before-after control-impact experiment. Contamination from oil and gas platforms caused declines in benthic food web complexity, community abundance, and biodiversity. Fewer trophic interactions and increased connectance indicated that the community became dominated by generalists adapting to alternative resources, leading to simpler but more connected food webs in contaminated environments. Decreased mean body mass, shorter food chains, and the dominance of small detritivores such as Capitella capitata near to structures suggested a disproportionate loss of larger organisms from higher trophic levels. These patterns were associated with concentrations of hydrocarbons and heavy metals that exceed OSPAR's guideline thresholds of sediment toxicity. This study provides new evidence to better quantify and manage the environmental consequences of oil and gas exploitation at sea.
Collapse
Affiliation(s)
- Zelin Chen
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.
| | - Tom C Cameron
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Elena Couce
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Clement Garcia
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Natalie Hicks
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Gareth E Thomas
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom; Life Sciences, Natural History Museum, Cromwell Road, London SW7 5HD, United Kingdom
| | - Murray S A Thompson
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Corinne Whitby
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
6
|
Sporta Caputi S, Kabala JP, Rossi L, Careddu G, Calizza E, Ventura M, Costantini ML. Individual diet variability shapes the architecture of Antarctic benthic food webs. Sci Rep 2024; 14:12333. [PMID: 38811641 PMCID: PMC11137039 DOI: 10.1038/s41598-024-62644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Antarctic biodiversity is affected by seasonal sea-ice dynamics driving basal resource availability. To (1) determine the role of intraspecific dietary variability in structuring benthic food webs sustaining Antarctic biodiversity, and (2) understand how food webs and the position of topologically central species vary with sea-ice cover, single benthic individuals' diets were studied by isotopic analysis before sea-ice breakup and afterwards. Isotopic trophospecies (or Isotopic Trophic Units) were investigated and food webs reconstructed using Bayesian Mixing Models. As nodes, these webs used either ITUs regardless of their taxonomic membership (ITU-webs) or ITUs assigned to species (population-webs). Both were compared to taxonomic-webs based on taxa and their mean isotopic values. Higher resource availability after sea-ice breakup led to simpler community structure, with lower connectance and linkage density. Intra-population diet variability and compartmentalisation were crucial in determining community structure, showing population-webs to be more complex, stable and robust to biodiversity loss than taxonomic-webs. The core web, representing the minimal community 'skeleton' that expands opportunistically while maintaining web stability with changing resource availability, was also identified. Central nodes included the sea-urchin Sterechinus neumayeri and the bivalve Adamussium colbecki, whose diet is described in unprecedented detail. The core web, compartmentalisation and topologically central nodes represent crucial factors underlying Antarctica's rich benthic food web persistence.
Collapse
Affiliation(s)
- Simona Sporta Caputi
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Jerzy Piotr Kabala
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
| | - Loreto Rossi
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy.
| | - Giulio Careddu
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Edoardo Calizza
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Matteo Ventura
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
| | - Maria Letizia Costantini
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| |
Collapse
|
7
|
Botella C, Gaüzère P, O'Connor L, Ohlmann M, Renaud J, Dou Y, Graham CH, Verburg PH, Maiorano L, Thuiller W. Land-use intensity influences European tetrapod food webs. GLOBAL CHANGE BIOLOGY 2024; 30:e17167. [PMID: 38348640 DOI: 10.1111/gcb.17167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Land use intensification favours particular trophic groups which can induce architectural changes in food webs. These changes can impact ecosystem functions, services, stability and resilience. However, the imprint of land management intensity on food-web architecture has rarely been characterized across large spatial extent and various land uses. We investigated the influence of land management intensity on six facets of food-web architecture, namely apex and basal species proportions, connectance, omnivory, trophic chain lengths and compartmentalization, for 67,051 European terrestrial vertebrate communities. We also assessed the dependency of this influence of intensification on land use and climate. In addition to more commonly considered climatic factors, the architecture of food webs was notably influenced by land use and management intensity. Intensification tended to strongly lower the proportion of apex predators consistently across contexts. In general, intensification also tended to lower proportions of basal species, favoured mesopredators, decreased food webs compartmentalization whereas it increased their connectance. However, the response of food webs to intensification was different for some contexts. Intensification sharply decreased connectance in Mediterranean and Alpine settlements, and it increased basal tetrapod proportions and compartmentalization in Mediterranean forest and Atlantic croplands. Besides, intensive urbanization especially favoured longer trophic chains and lower omnivory. By favouring mesopredators in most contexts, intensification could undermine basal tetrapods, the cascading effects of which need to be assessed. Our results support the importance of protecting top predators where possible and raise questions about the long-term stability of food webs in the face of human-induced pressures.
Collapse
Affiliation(s)
- Christophe Botella
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Pierre Gaüzère
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Louise O'Connor
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Marc Ohlmann
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Julien Renaud
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Yue Dou
- Department of Natural Resources, Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
- Institute for Environmental Studies, VU University Amsterdam, The Netherlands
| | | | - Peter H Verburg
- Institute for Environmental Studies, VU University Amsterdam, The Netherlands
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Luigi Maiorano
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Roma, Italy
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
8
|
Galiana N, Arnoldi JF, Mestre F, Rozenfeld A, Araújo MB. Power laws in species' biotic interaction networks can be inferred from co-occurrence data. Nat Ecol Evol 2024; 8:209-217. [PMID: 38012361 PMCID: PMC11263125 DOI: 10.1038/s41559-023-02254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Inferring biotic interactions from species co-occurrence patterns has long intrigued ecologists. Yet recent research revealed that co-occurrences may not reliably represent pairwise biotic interactions. We propose that examining network-level co-occurrence patterns can provide valuable insights into community structure and assembly. Analysing ten bipartite networks of empirically sampled biotic interactions and associated species spatial distribution, we find that approximately 20% of co-occurrences correspond to actual interactions. Moreover, the degree distribution shifts from exponential in co-occurrence networks to power laws in networks of biotic interactions. This shift results from a strong interplay between species' biotic (their interacting partners) and abiotic (their environmental requirements) niches, and is accurately predicted by considering co-occurrence frequencies. Our work offers a mechanistic understanding of the assembly of ecological communities and suggests simple ways to infer fundamental biotic interaction network characteristics from co-occurrence data.
Collapse
Affiliation(s)
- Nuria Galiana
- Department of Biogeography and Global Change, National Museum of Natural Sciences, Madrid, Spain.
| | - Jean-François Arnoldi
- Centre National de la Recherche Scientifique, Experimental and Theoretical Ecology Station, Moulis, France
| | - Frederico Mestre
- Rui Nabeiro Biodiversity Chair, Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Évora, Portugal
| | - Alejandro Rozenfeld
- Rui Nabeiro Biodiversity Chair, Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Évora, Portugal
- INTELYMEC Group, Centro de Investigaciones en Física e Ingeniería del Centro Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires - Universidad Nacional del Centro de la Provincia de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Olavarría, Argentina
| | - Miguel B Araújo
- Department of Biogeography and Global Change, National Museum of Natural Sciences, Madrid, Spain
- Rui Nabeiro Biodiversity Chair, Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Évora, Portugal
| |
Collapse
|
9
|
Guerrieri A, Cantera I, Marta S, Bonin A, Carteron A, Ambrosini R, Caccianiga M, Anthelme F, Azzoni RS, Almond P, Alviz Gazitúa P, Cauvy-Fraunié S, Ceballos Lievano JL, Chand P, Chand Sharma M, Clague J, Cochachín Rapre JA, Compostella C, Cruz Encarnación R, Dangles O, Deline P, Eger A, Erokhin S, Franzetti A, Gielly L, Gili F, Gobbi M, Hågvar S, Khedim N, Meneses RI, Peyre G, Pittino F, Proietto A, Rabatel A, Urseitova N, Yang Y, Zaginaev V, Zerboni A, Zimmer A, Taberlet P, Diolaiuti GA, Poulenard J, Fontaneto D, Thuiller W, Ficetola GF. Local climate modulates the development of soil nematode communities after glacier retreat. GLOBAL CHANGE BIOLOGY 2024; 30:e17057. [PMID: 38273541 DOI: 10.1111/gcb.17057] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024]
Abstract
The worldwide retreat of glaciers is causing a faster than ever increase in ice-free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global-scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice-free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r-ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K-ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.
Collapse
Affiliation(s)
- Alessia Guerrieri
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Argaly, Bâtiment CleanSpace, Sainte-Hélène-du-Lac, France
| | - Isabel Cantera
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Silvio Marta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Institute of Geosciences and Earth Resources, CNR, Pisa, Italy
| | - Aurélie Bonin
- Argaly, Bâtiment CleanSpace, Sainte-Hélène-du-Lac, France
| | - Alexis Carteron
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Fabien Anthelme
- Laboratory AMAP, IRD, University of Montpellier, CIRAD, CNRS, INRA, Montpellier, France
| | - Roberto Sergio Azzoni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milano, Italy
| | - Peter Almond
- Department of Soil and Physical Sciences, Lincoln University, Lincoln, New Zealand
| | - Pablo Alviz Gazitúa
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| | | | | | - Pritam Chand
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Milap Chand Sharma
- Centre for the Study of Regional Development - School of Social Sciences, Jawaharlal Nehru University, New Delhi, India
| | - John Clague
- Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Chiara Compostella
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milano, Italy
| | | | - Olivier Dangles
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Philip Deline
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, EDYTEM, Chambéry, France
| | - Andre Eger
- Mannaki Whenua - Landcare Research, Soils and Landscapes, Lincoln, New Zealand
| | - Sergey Erokhin
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milano, Italy
| | - Ludovic Gielly
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Fabrizio Gili
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum, Corso del Lavoro e della Scienza, Trento, Italy
| | - Sigmund Hågvar
- Faculty of Environmental Sciences and Natural Resource Management (INA), Norwegian University of Life Sciences, Ås, Norway
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| | - Norine Khedim
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, EDYTEM, Chambéry, France
| | - Rosa Isela Meneses
- Herbario Nacional de Bolivia: La Paz, La Paz, Bolivia
- Universidad Católica del Norte, Antofagasta, Chile
| | - Gwendolyn Peyre
- Department of Civil and Environmental Engineering, University of the Andes, Bogotá, Colombia
| | - Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milano, Italy
| | - Angela Proietto
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milano, Italy
| | - Antoine Rabatel
- Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Géosciences de l'Environnement (IGE, UMR 5001), Grenoble, France
| | - Nurai Urseitova
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Yan Yang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Vitalii Zaginaev
- Mountain Societies Research Institute, University of Central Asia, Bishkek, Kyrgyzstan
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milano, Italy
| | - Anaïs Zimmer
- Department of Geography and the Environment, University of Texas at Austin, Austin, Texas, USA
| | - Pierre Taberlet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| | | | - Jerome Poulenard
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, EDYTEM, Chambéry, France
| | - Diego Fontaneto
- CNR - Water Research Institute, Verbania, Italy
- NBFC - National Biodiversity Future Center, Palermo, Italy
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Gentile Francesco Ficetola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
10
|
Modenutti B, Martyniuk N, Bastidas Navarro M, Balseiro E. Glacial Influence Affects Modularity in Bacterial Community Structure in Three Deep Andean North-Patagonian Lakes. MICROBIAL ECOLOGY 2023; 86:1869-1880. [PMID: 36735066 DOI: 10.1007/s00248-023-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
We analyze the bacteria community composition and the ecological processes structuring these communities in three deep lakes that receive meltwater from the glaciers of Mount Tronador (North-Patagonia, Argentina). Lakes differ in their glacial connectivity and in their turbidity due to glacial particles. Lake Ventisquero Negro is a recently formed proglacial lake and it is still in contact with the glacier. Lakes Mascardi and Frías lost their glacial connectivity during the Pleistocene-Holocene transition. Total dissolved solid concentration has a significant contribution to the environmental gradient determining the segregation of the three lakes. The newly formed lake Ventisquero Negro conformed a particular bacterial community that seemed to be more related to the microorganisms coming from glacier melting than to the other lakes of the basin. The net relatedness index (NRI) showed that the bacterial community of lake Ventisquero Negro is determined by environmental filtering, while in the other lakes, species interaction would be a more important driver. The co-occurrence network analysis showed an increase in modularity and in the number of modules when comparing Lake Ventisquero Negro with the two large glacier-fed lakes suggesting an increase in heterogeneity. At the same time, the presence of modules with phototrophic bacteria (Cyanobium strains) in lakes Frías and Mascardi would reflect the increase of this functional photosynthetic association. Overall, our results showed that the reduction in ice masses in Patagonia will affect downstream large deep Piedmont lakes losing the glacial influence in their bacterial communities.
Collapse
Affiliation(s)
- Beatriz Modenutti
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Nicolás Martyniuk
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Marcela Bastidas Navarro
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Esteban Balseiro
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina.
| |
Collapse
|