1
|
Lowe AJ, Royer DL, Wieczynski DJ, Butrim MJ, Reichgelt T, Azevedo-Schmidt L, Peppe DJ, Enquist BJ, Kerkoff AJ, Michaletz ST, Strömberg CAE. Global patterns in community-scale leaf mass per area distributions of extant woody non-monocot angiosperms and their utility in the fossil record. AMERICAN JOURNAL OF BOTANY 2025; 112:e70019. [PMID: 40123060 DOI: 10.1002/ajb2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 03/25/2025]
Abstract
PREMISE Leaf mass per area (LMA) links leaf economic strategies, community assembly, and climate and can be reconstructed from woody non-monocot angiosperm (WNMA) fossils using the petiole metric (PM; petiole width2/leaf area). Reliable interpretation of LMA reconstructed from the fossil record is limited by an incomplete understanding of how PM and LMA are correlated at the community scale and what climatic parameters drive variation of both measured and reconstructed LMA of WNMAs globally. METHODS A modern, global, community-scale data set of in situ WNMA LMA and PM was compiled to test leading hypotheses for environmental drivers of LMA and quantify LMA-PM relationships. Correlations among PM, LMA, climate (Köppen types and continuous data), and leaf habit were assessed and quantified using several uni- and multivariate methods. RESULTS Community mean LMA increased under warmer and less seasonal temperatures. Drought-prone communities had the highest LMA variance, likely due to disparity between riparian and non-riparian microhabitats. PM and LMA were correlated for community mean and variance, and their correlations with climate were similar. These patterns indicate that climatic correlatives of modern LMA can inform relative trends in reconstructed fossil LMA. In contrast, matching "absolute" LMA distributions between fossil and modern sites does not allow reliable inference of analogous climate types. CONCLUSIONS This study furthers our understanding of processes influencing the assembly of WNMA leaf economic strategies in plant communities, highlighting the importance of temperature seasonality and habitat heterogeneity. We also provide a method to reconstruct, and refine the framework to interpret, community-scale LMA in the fossil record.
Collapse
Affiliation(s)
- Alexander J Lowe
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Dana L Royer
- Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT, USA
| | | | - Matthew J Butrim
- Department of Geology and Geophysics, Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Tammo Reichgelt
- Department of Earth Sciences, University of Connecticut, Storrs, CT, USA
| | | | - Daniel J Peppe
- Department of Geosciences, Baylor University, Waco, TX, USA
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, AZ, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Andrew J Kerkoff
- Department of Biology, University of Puget Sound, Tacoma, WA, USA
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, BC, Canada
| | | |
Collapse
|
2
|
Wu T, Tissue DT, Jiang M, Slot M, Crous KY, Yuan J, Liu J, Jin S, Wu C, Deng Y, Huang C, Shi F, Fang X, Li R, Mao R. Leaf Photosynthetic and Respiratory Thermal Acclimation in Terrestrial Plants in Response to Warming: A Global Synthesis. GLOBAL CHANGE BIOLOGY 2025; 31:e70026. [PMID: 39825386 DOI: 10.1111/gcb.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025]
Abstract
Leaf photosynthesis and respiration are two of the largest carbon fluxes between the atmosphere and biosphere. Although experiments examining the warming effects on photosynthetic and respiratory thermal acclimation have been widely conducted, the sensitivity of various ecosystem and vegetation types to warming remains uncertain. Here we conducted a meta-analysis on experimental observations of thermal acclimation worldwide. We found that the optimum temperature for photosynthetic rate (Topt) and the maximum rate of carboxylation of Rubisco (ToptV) in tropical forest plants increased by 0.51°C and 2.12°C per 1°C of warming, respectively. Similarly, Topt and the optimum temperature for maximum electron transport rate for RuBP regeneration (ToptJ) in temperate forest plants increased by 0.91°C and 0.15°C per 1°C of warming, respectively. However, reduced photosynthetic rates at optimum temperature (Aopt) were observed in tropical forest (17.2%) and grassland (16.5%) plants, indicating that they exhibited limited photosynthetic thermal acclimation to warming. Warming reduced respiration rate (R25) in boreal forest plants by 6.2%, suggesting that respiration can acclimate to warming. Photosynthesis and respiration of broadleaved deciduous trees may adapt to warming, as indicated by higher Aopt (7.5%) and Topt (1.08°C per 1°C of warming), but lower R25 (7.7%). We found limited photosynthetic thermal acclimation in needleleaved evergreen trees (-14.1%) and herbs (-16.3%), both associated with reduced Aopt. Respiration of needleleaved deciduous trees acclimated to warming (reduced R25 and temperature sensitivity of respiration (Q10)); however, broadleaved evergreen trees did not acclimate (increased R25). Plants in grasslands and herbaceous species displayed the weakest photosynthetic acclimation to warming, primarily due to the significant reductions in Aopt. Our global synthesis provides a comprehensive analysis of the divergent effects of warming on thermal acclimation across ecosystem and vegetation types, and provides a framework for modeling responses of vegetation carbon cycling to warming.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Richmond, New South Wales, Australia
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Richmond, New South Wales, Australia
| | - Mingkai Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Junfeng Yuan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shaofei Jin
- Department of Geography, Minjiang University, Fuzhou, China
| | - Chenxi Wu
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Yan Deng
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Chao Huang
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Fuxi Shi
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xiong Fang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, China
| | - Rui Li
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Rong Mao
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Garen JC, Michaletz ST. Acclimation Unifies the Scaling of Carbon Assimilation Across Climate Gradients and Levels of Organisation. Ecol Lett 2024; 27:e70004. [PMID: 39471058 DOI: 10.1111/ele.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024]
Abstract
The temperature dependence of carbon assimilation-from leaf photosynthesis to ecosystem productivity-is hypothesised to be driven by the kinetics of Rubisco-catalysed carboxylation and electron transport. However, photosynthetic physiology acclimates to changes in temperature, which may decouple temperature dependencies at higher levels of organisation from the acute temperature sensitivity of photosynthesis. Here, we integrate relative growth rate theory, metabolic theory and biochemical photosynthesis theory to develop a carbon budget model of plant growth that accounts for photosynthetic acclimation to temperature. We test its predictions using a novel experimental approach enabling concurrent measurement of the temperature sensitivity of acute photosynthesis, acclimated photosynthesis and growth rate. We demonstrate for the first time that photosynthetic acclimation mediates how carbon assimilation kinetics 'scale up' from leaf photosynthesis to whole-plant growth. We also find that existing models of photosynthetic acclimation are unable to predict features of growth rate responses to temperature in our system.
Collapse
Affiliation(s)
- Josef C Garen
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Hu Z, Fernández-Martínez M, He Q, Xu Z, Jiang L, Zhou G, Chen J, Nie M, Yu Q, Feng H, Huang Z, Michaletz ST. Fungal composition associated with host tree identity mediates nutrient addition effects on wood microbial respiration. Ecology 2024; 105:e4375. [PMID: 38924062 DOI: 10.1002/ecy.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/03/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Fungi are key decomposers of deadwood, but the impact of anthropogenic changes in nutrients and temperature on fungal community and its consequences for wood microbial respiration are not well understood. Here, we examined how nitrogen and phosphorus additions (field experiment) and warming (laboratory experiment) together influence fungal composition and microbial respiration from decomposing wood of angiosperms and gymnosperms in a subtropical forest. Nutrient additions significantly increased wood microbial respiration via fungal composition, but effects varied with nutrient types and taxonomic groups. Specifically, phosphorus addition significantly increased wood microbial respiration (65%) through decreased acid phosphatase activity and increased abundance of fast-decaying fungi (e.g., white rot), while nitrogen addition marginally increased it (30%). Phosphorus addition caused a greater increase in microbial respiration in gymnosperms than in angiosperms (83.3% vs. 46.9%), which was associated with an increase in Basidiomycota:Ascomycota operational taxonomic unit abundance in gymnosperms but a decrease in angiosperms. The temperature dependencies of microbial respiration were remarkably constant across nutrient levels, consistent with metabolic scaling theory hypotheses. This is because there was no significant interaction between temperature and wood phosphorus availability or fungal composition, or the interaction among the three factors. Our results highlight the key role of tree identity in regulating nutrient response of wood microbial respiration through controlling fungal composition. Given that the range of angiosperm species may expand under climate warming and forest management, our data suggest that expansion will decrease nutrient effects on forest carbon cycling in forests previously dominated by gymnosperm species.
Collapse
Affiliation(s)
- Zhenhong Hu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Marcos Fernández-Martínez
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- BEECA-UB, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Qinsi He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, China
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Zhiyuan Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs of China, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Guiyao Zhou
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, Xi'an, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiang Yu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Feng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqun Huang
- Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, Fuzhou, China
- School of Geographical Science, Fujian Normal University, Fuzhou, China
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Bison NN, Michaletz ST. Variation in leaf carbon economics, energy balance, and heat tolerance traits highlights differing timescales of adaptation and acclimation. THE NEW PHYTOLOGIST 2024. [PMID: 38532535 DOI: 10.1111/nph.19702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Multivariate leaf trait correlations are hypothesized to originate from natural selection on carbon economics traits that control lifetime leaf carbon gain, and energy balance traits governing leaf temperatures, physiological rates, and heat injury. However, it is unclear whether macroevolution of leaf traits primarily reflects selection for lifetime carbon gain or energy balance, and whether photosynthetic heat tolerance is coordinated along these axes. To evaluate these hypotheses, we measured carbon economics, energy balance, and photosynthetic heat tolerance traits for 177 species (157 families) in a common garden that minimizes co-variation of taxa and climate. We observed wide variation in carbon economics, energy balance, and heat tolerance traits. Carbon economics and energy balance (but not heat tolerance) traits were phylogenetically structured, suggesting macroevolution of leaf mass per area and leaf dry matter content reflects selection on carbon gain rather than energy balance. Carbon economics and energy balance traits varied along a common axis orthogonal to heat tolerance traits. Our results highlight a fundamental mismatch in the timescales over which morphological and heat tolerance traits respond to environmental variation. Whereas carbon economics and energy balance traits are constrained by species' evolutionary histories, photosynthetic heat tolerance traits are not and can acclimate readily to leaf microclimates.
Collapse
Affiliation(s)
- Nicole N Bison
- Department of Botany, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sean T Michaletz
- Department of Botany, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|