1
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic retinitis pigmentosa. Prog Retin Eye Res 2024; 107:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP, including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as miscellaneous. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam Reproduction & Development, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam, the Netherlands; Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marion M Brands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Clara D M van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Human Genetics, Section Ophthalmogenetics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maria M van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Suppiej A, Ceccato C, Tzekov R, Cermakova I, Parmeggiani F, Bellucci G, Salvetti M, Zesiewicz T, Ristori G, Romano S. Long-Term Follow-Up before and during Riluzole Treatment in Six Patients from Two Families with Spinocerebellar Ataxia Type 7. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2226-2235. [PMID: 38976217 PMCID: PMC11585522 DOI: 10.1007/s12311-024-01714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Currently no curative treatment exists for spinocerebellar ataxias (SCAs). Riluzole repurposing was proposed as a symptomatic treatment in different types of cerebellar ataxia. We report a long-term-follow up under riluzole treatment in SCA type 7. METHODS Six patients received Riluzole 50 mg twice daily on a compassionate use program for a mean of 4.8 years (range 3.5-9). We measured ataxia onset and progression through the Scale for the Assessment and Rating of Ataxia (SARA), and collected extensive ophthalmological data before and after Riluzole treatment. Electrocardiogram and laboratory profile for drug safety were performed every six months. RESULTS Riluzole treatment showed no effect on visual function in two patients with an advanced retinal damage. Improvements of visual function occurred in four patients followed by ophthalmologic stability up to 5 years after starting treatment. Two patients had a less steep deterioration of ataxia after treatment compared to pre-treatment, during the first 2,5 years of therapy. One showed soon after therapy an improvement of the SARA score, and then overall stability lasting 3,5 years, followed by ataxia worsening. One visually impaired patient without neurological impairment did not worse until the last visit after 3,5 years of follow-up. The remaining 2 patients showed an improvement of SARA scores soon after therapy, and an overall stability lasting respectively 5 and 3 years. No adverse event was registered during the observation period. DISCUSSION This study suggests a possible beneficial action of Riluzole in SCA7 and provides a detailed description of the ophthalmologic profile of these patients.
Collapse
Affiliation(s)
- Agnese Suppiej
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Robert Hollman Foundation, Padova, Italy.
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Camposampiero (Padova), Italy.
| | - Chiara Ceccato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Robert Hollman Foundation, Padova, Italy
| | - Radouil Tzekov
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | | | - Francesco Parmeggiani
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Camposampiero (Padova), Italy
- Department of Translational Medicine for Romagna, University of Ferrara, Ferrara, Italy
| | - Gianmarco Bellucci
- Center for Experimental Neurological Therapies, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Center for Experimental Neurological Therapies, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed (M.S.), Pozzilli, IS, Italy
| | - Theresa Zesiewicz
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Giovanni Ristori
- Center for Experimental Neurological Therapies, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, Fondazione Santa Lucia, Rome, Italy
| | - Silvia Romano
- Center for Experimental Neurological Therapies, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Yoon JG, Lee S, Cho J, Kim N, Kim S, Kim MJ, Kim SY, Moon J, Chae JH. Diagnostic uplift through the implementation of short tandem repeat analysis using exome sequencing. Eur J Hum Genet 2024; 32:584-587. [PMID: 38308084 PMCID: PMC11061289 DOI: 10.1038/s41431-024-01542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
To date, approximately 50 short tandem repeat (STR) disorders have been identified; yet, clinical laboratories rarely conduct STR analysis on exomes. To assess its diagnostic value, we analyzed STRs in 6099 exomes from 2510 families with mostly suspected neurogenetic disorders. We employed ExpansionHunter and REViewer to detect pathogenic repeat expansions, confirming them using orthogonal methods. Genotype-phenotype correlations led to the diagnosis of thirteen individuals in seven previously undiagnosed families, identifying three autosomal dominant disorders: dentatorubral-pallidoluysian atrophy (n = 3), spinocerebellar ataxia type 7 (n = 2), and myotonic dystrophy type 1 (n = 2), resulting in a diagnostic gain of 0.28% (7/2510). Additionally, we found expanded ATXN1 alleles (≥39 repeats) with varying patterns of CAT interruptions in twelve individuals, accounting for approximately 0.19% in the Korean population. Our study underscores the importance of integrating STR analysis into exome sequencing pipeline, broadening the application of exome sequencing for STR assessments.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Jaeso Cho
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Narae Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Jangsup Moon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Moraes DBV, Coradine TLC, Silva EVL, Sobreira-Neto MA, Marques W, Gitaí LLG, Tumas V. Genetic Epidemiology and Clinical Characteristics of Patients with Spinocerebellar Ataxias in an Unexplored Brazilian State, Using Strategies for Resource-Limited Settings. CEREBELLUM (LONDON, ENGLAND) 2024; 23:609-619. [PMID: 37454040 DOI: 10.1007/s12311-023-01581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Spinocerebellar ataxias (SCAs) have a worldwide average prevalence of 2.7 cases per 100,000 individuals, with significant geographic variability. This study aimed to develop resource-limited strategies to detect and characterize the frequency and genetic-clinical profile of SCAs in an unexplored population from Alagoas State, a low Human Development Index state in northeastern Brazil. Active search strategies were employed to identify individuals with a diagnosis or clinical suspicion of SCAs, and a protocol for clinical and molecular evaluation was applied in collaboration with a reference center in Neurogenetics. A total of 73 individuals with SCAs were identified, with a minimum estimated prevalence of 2.17 cases per 100,000 inhabitants. SCA3 was the most common type (75.3%), followed by SCA7 (15.1%), SCA1 (6.8%), and SCA2 (2.7%). Patients with SCA3 subphenotype 2 were the most predominant. Detailed analysis of patients with SCA3 and SCA7 revealed age at onset and clinical features congruent with other studies, with gait disturbance and reduced visual capacity in SCA7 as the main initial manifestations. The study also identified many asymptomatic individuals at risk of developing SCAs. These findings demonstrate that simple and collaborative strategies can enhance the detection capacity of rare diseases such as SCAs in resource-limited settings and that Alagoas State has a minimum estimated prevalence of SCAs similar to the world average.
Collapse
Affiliation(s)
- Débora Beserra Vilar Moraes
- Postgraduate Program, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Campus Universitário - Rua Bernardino de Campos, 1000 - Centro, Ribeirão Preto, SP, 65470-000, Brazil
| | - Tácio Luis Cavalcante Coradine
- Graduation Course, Faculty of Medicine, Federal University of Alagoas, Campus Universitário, Avenida Lourival Melo Mota S/N, Tabuleiro dos Martins, CEP 57.072-900, Maceió, Alagoas, Brazil
| | - Everton Vieira Lopes Silva
- Graduation Course, Faculty of Medicine, Federal University of Alagoas, Campus Universitário, Avenida Lourival Melo Mota S/N, Tabuleiro dos Martins, CEP 57.072-900, Maceió, Alagoas, Brazil
| | - Manoel Alves Sobreira-Neto
- Division of Neurology, Faculty of Medicine, Federal University of Ceará, Rua Prof. Costa Mendes, 1408 - 4°, Andar, CEP: 60.430-140, Fortaleza, Brazil
| | - Wilson Marques
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Campus Universitário - Rua Bernardino de Campos, 1000 - Centro, Ribeirão Preto, SP, 65470-000, Brazil
| | - Lívia Leite Góes Gitaí
- Division of Neurology, Faculty of Medicine, Federal University of Alagoas, Campus Universitário, Avenida Lourival Melo Mota S/N, Tabuleiro dos Martins, CEP 57.072-900, Maceió, Alagoas, Brazil.
- , Maceió, Brazil.
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Campus Universitário - Rua Bernardino de Campos, 1000 - Centro, Ribeirão Preto, SP, 65470-000, Brazil.
| |
Collapse
|
5
|
Coarelli G, Coutelier M, Durr A. Autosomal dominant cerebellar ataxias: new genes and progress towards treatments. Lancet Neurol 2023; 22:735-749. [PMID: 37479376 DOI: 10.1016/s1474-4422(23)00068-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 07/23/2023]
Abstract
Dominantly inherited spinocerebellar ataxias (SCAs) are associated with phenotypes that range from pure cerebellar to multisystemic. The list of implicated genes has lengthened in the past 5 years with the inclusion of SCA37/DAB1, SCA45/FAT2, SCA46/PLD3, SCA47/PUM1, SCA48/STUB1, SCA50/NPTX1, SCA25/PNPT1, SCA49/SAM9DL, and SCA27B/FGF14. In some patients, co-occurrence of multiple potentially pathogenic variants can explain variable penetrance or more severe phenotypes. Given this extreme clinical and genetic heterogeneity, genome sequencing should become the diagnostic tool of choice but is still not available in many clinical settings. Treatments tested in phase 2 and phase 3 studies, such as riluzole and transcranial direct current stimulation of the cerebellum and spinal cord, have given conflicting results. To enable early intervention, preataxic carriers of pathogenic variants should be assessed with biomarkers, such as neurofilament light chain and brain MRI; these biomarkers could also be used as outcome measures, given that clinical outcomes are not useful in the preataxic phase. The development of bioassays measuring the concentration of the mutant protein (eg, ataxin-3) might facilitate monitoring of target engagement by gene therapies.
Collapse
Affiliation(s)
- Giulia Coarelli
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Coutelier
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Durr
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
6
|
Cunha P, Petit E, Coutelier M, Coarelli G, Mariotti C, Faber J, Van Gaalen J, Damasio J, Fleszar Z, Tosi M, Rocca C, De Michele G, Minnerop M, Ewenczyk C, Santorelli FM, Heinzmann A, Bird T, Amprosi M, Indelicato E, Benussi A, Charles P, Stendel C, Romano S, Scarlato M, Le Ber I, Bassi MT, Serrano M, Schmitz-Hübsch T, Doss S, Van Velzen GAJ, Thomas Q, Trabacca A, Ortigoza-Escobar JD, D'Arrigo S, Timmann D, Pantaleoni C, Martinuzzi A, Besse-Pinot E, Marsili L, Cioffi E, Nicita F, Giorgetti A, Moroni I, Romaniello R, Casali C, Ponger P, Casari G, De Bot ST, Ristori G, Blumkin L, Borroni B, Goizet C, Marelli C, Boesch S, Anheim M, Filla A, Houlden H, Bertini E, Klopstock T, Synofzik M, Riant F, Zanni G, Magri S, Di Bella D, Nanetti L, Sequeiros J, Oliveira J, Van de Warrenburg B, Schöls L, Taroni F, Brice A, Durr A. Extreme phenotypic heterogeneity in non-expansion spinocerebellar ataxias. Am J Hum Genet 2023; 110:1098-1109. [PMID: 37301203 PMCID: PMC10357418 DOI: 10.1016/j.ajhg.2023.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.
Collapse
Affiliation(s)
- Paulina Cunha
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Emilien Petit
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Marie Coutelier
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Giulia Coarelli
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Caterina Mariotti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Jennifer Faber
- German Center for Neurodegenerative Disease (DZNE), 53127 Bonn, Germany; Department of Neurology, University Hospital of Bonn, 53111 Bonn, Germany
| | - Judith Van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Joana Damasio
- Neurology Department, Hospital de Santo António, Centro Hospitalar Universitário de Santo António, 4099-001 Porto, Portugal; CGPP, IBMC-Institute for Molecular and Cell Biology & UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Zofia Fleszar
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Michele Tosi
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen's Square Institute of Neurology, Queen's Square House, Queen's Square, WC1N 3BG London, UK
| | - Giovanna De Michele
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology and Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Claire Ewenczyk
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Filippo M Santorelli
- Molecular Medicine & Neurogenetics, IRCCS Fondazione Stella Maris, 56128 Calambrone, Italy
| | - Anna Heinzmann
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Thomas Bird
- University of Washington, Seattle, WA 98195, USA
| | - Matthias Amprosi
- Center for Rare Movement Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elisabetta Indelicato
- Center for Rare Movement Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Perrine Charles
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Claudia Stendel
- German Center for Neurodegenerative Disease (DZNE), München, Germany; Department of Neurology, Friedrich-Baur Institute, University Hospital of Ludwig-Maximilians-University, Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Silvia Romano
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, S. Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Marina Scarlato
- San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Maria Teresa Bassi
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | - Mercedes Serrano
- Pediatric Neurology Department, Sant Joan de Déu Hospital, 08950 Barcelona, Spain
| | - Tanja Schmitz-Hübsch
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sarah Doss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Gijs A J Van Velzen
- Department of Neurology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Quentin Thomas
- Department of Clinical Genetics, Dijon University Hospital, 21000 Dijon, France
| | - Antonio Trabacca
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | | | - Stefano D'Arrigo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Chiara Pantaleoni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Andrea Martinuzzi
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | - Elsa Besse-Pinot
- Department of Neurology, Clermont-Ferrand University Hospital, 63000 Clermont-Ferrand, France
| | - Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Ettore Cioffi
- Sapienza University of Rome, Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, 04100 Latina, Italy
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; Department of Biotechnology, Università degli Studi di Verona, 37134 Verona, Italy
| | - Isabella Moroni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Romina Romaniello
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | - Carlo Casali
- Sapienza University of Rome, Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, 04100 Latina, Italy
| | - Penina Ponger
- Neurology Department, Tel-Aviv Sourasky Medical Center, 6329302 Tel-Aviv, Israel; Sackler School of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Giorgio Casari
- San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Susanne T De Bot
- Department of Neurology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Giovanni Ristori
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, S. Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Lubov Blumkin
- Sackler School of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel; Pediatric Movement Disorders Clinic, Pediatric Neurology Unit, Wolfson Medical Center, 5822012 Holon, Israel
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Cyril Goizet
- University Bordeaux, Equipe « Neurogénétique Translationnelle - NRGEN », INCIA CNRS UMR5287 Université Bordeaux and Centre de Reference Maladies Rares « Neurogénétique », Service de Génétique Médicale, Bordeaux University Hospital (CHU Bordeaux), 33000 Bordeaux, France
| | - Cecilia Marelli
- MMDN, University Montpellier, EPHE, INSERM and Expert Center for Neurogenetic Diseases, CHU, 34095 Montpellier, France
| | - Sylvia Boesch
- Center for Rare Movement Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mathieu Anheim
- Department of Neurology, Strasbourg University Hospital, 67098 Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964; CNRS-UMR7104; University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Alessandro Filla
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen's Square Institute of Neurology, Queen's Square House, Queen's Square, WC1N 3BG London, UK
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Thomas Klopstock
- German Center for Neurodegenerative Disease (DZNE), München, Germany; Department of Neurology, Friedrich-Baur Institute, University Hospital of Ludwig-Maximilians-University, Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Florence Riant
- Department of Neurovascular Molecular Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Stefania Magri
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniela Di Bella
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Lorenzo Nanetti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Jorge Sequeiros
- CGPP, IBMC-Institute for Molecular and Cell Biology & UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jorge Oliveira
- CGPP, IBMC-Institute for Molecular and Cell Biology & UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bart Van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Ludger Schöls
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Franco Taroni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France.
| |
Collapse
|
7
|
Tan D, Wei C, Chen Z, Huang Y, Deng J, Li J, Liu Y, Bao X, Xu J, Hu Z, Wang S, Fan Y, Jiang Y, Wu Y, Wu Y, Wang S, Liu P, Zhang Y, Yang Z, Jiang Y, Zhang H, Hong D, Zhong N, Jiang H, Xiong H. CAG Repeat Expansion in THAP11 Is Associated with a Novel Spinocerebellar Ataxia. Mov Disord 2023. [PMID: 37148549 DOI: 10.1002/mds.29412] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND More than 50 loci are associated with spinocerebellar ataxia (SCA), and the most frequent subtypes share nucleotide repeats expansion, especially CAG expansion. OBJECTIVE The objective of this study was to confirm a novel SCA subtype caused by CAG expansion. METHODS We performed long-read whole-genome sequencing combined with linkage analysis in a five-generation Chinese family, and the finding was validated in another pedigree. The three-dimensional structure and function of THAP11 mutant protein were predicted. Polyglutamine (polyQ) toxicity of THAP11 gene with CAG expansion was assessed in skin fibroblasts of patients, human embryonic kidney 293 and Neuro-2a cells. RESULTS We identified THAP11 as the novel causative SCA gene with CAG repeats ranging from 45 to 100 in patients with ataxia and from 20 to 38 in healthy control subjects. Among the patients, the number of CAA interruptions within CAG repeats was decreased to 3 (up to 5-6 in controls), whereas the number of 3' pure CAG repeats was up to 32 to 87 (4-16 in controls), suggesting that the toxicity of polyQ protein was length dependent on the pure CAG repeats. Intracellular aggregates were observed in cultured skin fibroblasts from patients. THAP11 polyQ protein was more intensely distributed in the cytoplasm of cultured skin fibroblasts from patients, which was replicated with in vitro cultured neuro-2a transfected with 54 or 100 CAG repeats. CONCLUSIONS This study identified a novel SCA subtype caused by intragenic CAG repeat expansion in THAP11 with intracellular aggregation of THAP11 polyQ protein. Our findings extended the spectrum of polyQ diseases and offered a new perspective in understanding polyQ-mediated toxic aggregation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dandan Tan
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Cuijie Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yu Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, P.R. China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, P.R. China
| | | | - Yidan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| | - Jin Xu
- Center of Ultrastructural Pathology, Lab of Electron Microscopy, Peking University First Hospital, Beijing, P.R. China
| | - Zhengmao Hu
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, P.R. China
| | - Suxia Wang
- Center of Ultrastructural Pathology, Lab of Electron Microscopy, Peking University First Hospital, Beijing, P.R. China
| | - Yanbin Fan
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Yizheng Jiang
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, P.R. China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| | - Yuan Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Shuang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Panyan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| | - Hong Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, P.R. China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, P.R. China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| |
Collapse
|
8
|
Miller W, Pruett CLH, Stone W, Eide C, Riddle M, Popp C, Yousefzadeh M, Lees C, Seelig D, Thompson E, Orr H, Niedernhofer L, Tolar J. Accumulation of senescence observed in spinocerebellar ataxia type 7 mouse model. PLoS One 2022; 17:e0275580. [PMID: 36251631 PMCID: PMC9576077 DOI: 10.1371/journal.pone.0275580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease caused by a trinucleotide CAG repeat. SCA7 predominantly causes a loss of photoreceptors in the retina and Purkinje cells of the cerebellum. Severe infantile-onset SCA7 also causes renal and cardiac irregularities. Previous reports have shown that SCA7 results in increased susceptibility to DNA damage. Since DNA damage can lead to accumulation of senescent cells, we hypothesized that SCA7 causes an accumulation of senescent cells over the course of disease. A 140-CAG repeat SCA7 mouse model was evaluated for signs of disease-specific involvement in the kidney, heart, and cerebellum, tissues that are commonly affected in the infantile form. We found evidence of significant renal abnormality that coincided with an accumulation of senescent cells in the kidneys of SCA7140Q/5Q mice, based on histology findings in addition to RT-qPCR for the cell cycle inhibitors p16Ink4a and p21Cip1 and senescence-associated ß-galactosidase (SA-ßgal) staining, respectively. The Purkinje layer in the cerebellum of SCA7140Q/5Q mice also displayed SA-ßgal+ cells. These novel findings offer evidence that senescent cells accumulate in affected tissues and may possibly contribute to SCA7’s specific phenotype.
Collapse
Affiliation(s)
- William Miller
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | | | - William Stone
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Cindy Eide
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Megan Riddle
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Courtney Popp
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Matthew Yousefzadeh
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Christopher Lees
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Davis Seelig
- Comparative Pathology Shared Resource, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Elizabeth Thompson
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Jakub Tolar
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
9
|
Bouzidi A, Charoute H, Charif M, Amalou G, Kandil M, Barakat A, Lenaers G. Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet J Rare Dis 2022; 17:197. [PMID: 35551639 PMCID: PMC9097391 DOI: 10.1186/s13023-022-02340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly heterogeneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and mutations encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants. Main body We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, represented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respectively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many founder mutations in small endogamous communities. Short conclusion As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, together with the scarcity of tools for the molecular diagnosis represent major political, economic and health challenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02340-7.
Collapse
Affiliation(s)
- Aymane Bouzidi
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, Oujda, Morocco
| | - Ghita Amalou
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
10
|
Sena LS, Dos Santos Pinheiro J, Hasan A, Saraiva-Pereira ML, Jardim LB. Spinocerebellar ataxia type 2 from an evolutionary perspective: Systematic review and meta-analysis. Clin Genet 2021; 100:258-267. [PMID: 33960424 DOI: 10.1111/cge.13978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 01/27/2023]
Abstract
Dominant diseases due to expanded CAG repeat tracts, such as spinocerebellar ataxia type 2 (SCA2), are prone to anticipation and worsening of clinical picture in subsequent generations. There is insufficient data about selective forces acting on the maintenance of these diseases in populations. We made a systematic review and meta-analysis on the effect of the CAG length over age at onset, instability of transmissions, anticipation, de novo or sporadic cases, fitness, segregation of alleles, and ancestral haplotypes. The correlation between CAG expanded and age at onset was r2 = 0.577, and transmission of the mutant allele was associated with an increase of 2.42 CAG repeats in the next generation and an anticipation of 14.62 years per generation, on average. One de novo and 18 sporadic cases were detected. Affected SCA2 individuals seem to have more children than controls. The expanded allele was less segregated than the 22-repeat allele in children of SCA2 subjects. Several ancestral SCA2 haplotypes were published. Data suggest that SCA2 lineages may tend to disappear eventually, due to strong anticipation phenomena. Whether or not the novel cases come from common haplotypes associated with a predisposition to further expansions is a question that needs to be addressed by future studies.
Collapse
Affiliation(s)
- Lucas Schenatto Sena
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jordânia Dos Santos Pinheiro
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ali Hasan
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|