1
|
Ma X, Ma Y, Lin Z, Ji M. The role of the TGF-β1 signaling pathway in the process of amelogenesis. Front Physiol 2025; 16:1586769. [PMID: 40271211 PMCID: PMC12014465 DOI: 10.3389/fphys.2025.1586769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Amelogenesis is a highly regulated process involving multiple signaling pathways, among which the transforming growth factor-β1 (TGF-β1) signaling pathway plays a pivotal role in enamel formation. This review firstly elucidates the critical functions of TGF-β1 in regulating ameloblast behavior and enamel development, encompassing ameloblast proliferation, differentiation, apoptosis, enamel matrix protein synthesis, and mineralization. Secondly, based on emerging evidence, we further discuss potential interactions between TGF-β signaling and circadian regulation in enamel formation, although this relationship requires further experimental validation. Finally, future research directions are proposed to further investigate the relationship between TGF-β1 and the circadian clock in the context of amelogenesis.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Yunjing Ma
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Zhiyong Lin
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mei Ji
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Morandini AC, Adeogun O, Black M, Holman E, Collins K, James W, Lally L, Fordyce A, Dobbs R, McDaniel E, Putnam H, Milano M. Ectodermal dysplasia: a narrative review of the clinical and biological aspects relevant to oral health. Front Pediatr 2025; 13:1523313. [PMID: 40083426 PMCID: PMC11903481 DOI: 10.3389/fped.2025.1523313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Ectodermal dysplasias (ED) are disorders that affect ectodermal-derived tissues during embryonic development. These disorders occur when the ectoderm, the outermost layer of embryonic tissue does not develop normally. Patients present abnormalities of two or more ectoderm-derived structures and the clinical presentation can vary greatly depending on the type a patient has. The authors compiled and provided their perspective on articles describing the classification, molecular signaling pathways, systemic and dental implications, genetic diagnosis and dental treatment considerations for patients with ED. Emphasis was placed on the main signaling pathways affecting tooth development and the relevant signs that ED patients can present including dental anomalies. Sources included original or review articles written in English that had an ED focus from PubMed and also information available in National Foundation of Ectodermal Dysplasias website. A broad and flexible narrative review is provided regarding ED which represents a diverse array of systemic symptoms that are often present with dental-related issues. The genetic diagnosis of this condition has evolved significantly during the last decade but is still an adjunct to clinical presentation. The treatment of ED involves a multidisciplinary team encompassing primary care physicians, pediatricians, nutritionists, speech therapists, dental professionals, and geneticists. Evidence from the last decade has significantly expanded our understanding of the classification and molecular signaling pathways involved in the etiology of ED. The dental professional is a critical, essential part of the team of healthcare professionals and often the first step involved in providing personalized and humanistic care and better quality of life to the patients affected by this condition.
Collapse
Affiliation(s)
- Ana Carolina Morandini
- Department of Oral Biology & Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Oluwatomisin Adeogun
- DMD Program, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Megan Black
- DMD Program, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Emily Holman
- DMD Program, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Kaitlyn Collins
- DMD Program, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Wesley James
- DMD Program, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Laura Lally
- DMD Program, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Ashley Fordyce
- DMD Program, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Rachel Dobbs
- DMD Program, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Eve McDaniel
- DMD Program, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Hannah Putnam
- DMD Program, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Michael Milano
- Department of Pediatric Dentistry, Dental College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Tantibhaedhyangkul W, Tantrapornpong J, Yutchawit N, Theerapanon T, Intarak N, Thaweesapphithak S, Porntaveetus T, Shotelersuk V. Dental characteristics of patients with four different types of skeletal dysplasias. Clin Oral Investig 2023; 27:5827-5839. [PMID: 37548766 PMCID: PMC10560164 DOI: 10.1007/s00784-023-05194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE Skeletal dysplasia (SD) comprises more than 450 separate disorders. We hypothesized that their dental features would be distinctive and investigated the tooth characteristics of four patients with different SDs. MATERIAL AND METHODS Four SD patients with molecularly confirmed diagnoses, Pt-1 acromicric dysplasia, Pt-2 hypophosphatasia and hypochondroplasia, Pt-3 cleidocranial dysplasia, and Pt-4 achondroplasia, were recruited. A tooth from each patient was evaluated for mineral density (micro-computerized tomography), surface roughness (surface profilometer), microhardness, mineral contents (energy-dispersive X-ray), and ultrastructure (scanning electron microscopy and histology), and compared with three tooth-type matched controls. RESULTS Pt-1 and Pt-3 had several unerupted teeth. Pt-2 had an intact-root-exfoliated tooth at 2 years old. The lingual surfaces of the patients' teeth were significantly smoother, while their buccal surfaces were rougher, than controls, except for Pt-1's buccal surface. The patients' teeth exhibited deep grooves around the enamel prisms and rough intertubular dentin. Pt-3 demonstrated a flat dentinoenamel junction and Pt-2 had an enlarged pulp, barely detectable cementum layer, and ill-defined cemento-dentinal junction. Reduced microhardnesses in enamel, dentin, and both layers were observed in Pt-3, Pt-4, and Pt-1, respectively. Pt-1 showed reduced Ca/P ratio in dentin, while both enamel and dentin of Pt-2 and Pt-3 showed reduced Ca/P ratio. CONCLUSION Each SD has distinctive dental characteristics with changes in surface roughness, ultrastructure, and mineral composition of dental hard tissues. CLINICAL RELEVANCE In this era of precision dentistry, identifying the specific potential dental problems for each patient with SD would help personalize dental management guidelines.
Collapse
Affiliation(s)
- Worasap Tantibhaedhyangkul
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jenjira Tantrapornpong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuttanun Yutchawit
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Narin Intarak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sermporn Thaweesapphithak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
4
|
Kantaputra P, Guven Y, Kalayci T, Özer PK, Panyarak W, Intachai W, Olsen B, Carlson BM, Praditsap O, Tongsima S, Ngamphiw C, Jatooratthawichot P, Tucker AS, Ketudat Cairns JR. Expanding genotypic and phenotypic spectrums of LTBP3 variants in dental anomalies and short stature syndrome. Clin Genet 2022; 102:66-71. [PMID: 35352826 DOI: 10.1111/cge.14134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
Mutations in LTBP3 are associated with Dental Anomalies and Short Stature syndrome (DASS; MIM 601216), which is characterized by hypoplastic type amelogenesis imperfecta, hypodontia, underdeveloped maxilla, short stature, brachyolmia, aneurysm and dissection of the thoracic aorta. Here we report a novel (p.Arg545ProfsTer22) and a recurrent (c.3107-2A > G) LTBP3 variants, in a Turkish family affected with DASS. The proband, who carried compound heterozygous variant c.3107-2A > G, p.Arg545ProfsTer22, was most severely affected with DASS. The proband's father, who carried the heterozygous variant c.3107-2A > G had short stature and prognathic mandible. The mother and brother of the proband carried the heterozygous variant p.Arg545ProfsTer22, but only the mother showed any DASS characteristics. The c.3107-2A > G and the p.Arg545ProfsTer22 variants are expected to result in abnormal LTPB3 protein, failure of TGFβ-LAP-LTBP3 complex formation, and subsequent disruption of TGFβ secretion and activation. This is the first report of heterozygous carriers of LTBP3 variants showing phenotypes. The new findings of DASS found in this family include taurodontism, single-rooted molars, abnormal dentin, calcified dental pulp blood vessels, prognathic mandible, failure of mandibular tooth eruption, interatrial septal aneurysm, secundum atrial septal defect, tricuspid valve prolapse, and a recurrent glenohumeral joint dislocation.
Collapse
Affiliation(s)
- Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Yeliz Guven
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Tugba Kalayci
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pelin Karaca Özer
- Istanbul Medical Faculty, Department of Cardiology, Istanbul University, Istanbul, Turkey
| | - Wannakamon Panyarak
- Division of Oral and Maxillofacial Radiology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
| | - Bruce M Carlson
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Oranud Praditsap
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, UK
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
5
|
Mj S, N M, Jm C, Dj M, R S, Mc S, Dp B, J L, Nm K, Jl H, Kj S, S L. DNA methylation in childhood dental caries and hypomineralization. J Dent 2021; 117:103913. [PMID: 34875274 DOI: 10.1016/j.jdent.2021.103913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Epigenetic modulation of gene expression may be important in dental conditions, including dental caries and enamel hypomineralisation. The aims of this study were to assess associations between DNA methylation in cord blood leucocytes at birth, and caries experience and enamel hypomineralisation at six years of age. METHOD The study sample was from a birth cohort study of twins. Dental examinations at six years identified the presence/absence of (i) 'any caries' (untreated and treated caries), (ii) 'advanced caries' (untreated, advanced caries and/or past treatment) and (iii) hypomineralised second primary molars (HSPM). Genome-wide analysis of DNA methylation was performed on cord blood of 27 twin pairs (14 dizygotic and 13 monozygotic) using the Illumina Infinium MethylationEPIC BeadChip array. Differentially methylated CpGs (DMCpGs) and regions (DMRs) associated with each dental outcome were investigated, while accounting for the relatedness of twins. Results with a false discovery rate <0.05 were treated as statistically significant. RESULTS 19 children had 'any caries', 15 had 'advanced' caries, and 18 had HSPM. No DMCpGs were associated with 'any caries', 16 and 19 DMCpGs were associated with 'advanced caries' and HSPM, respectively. DMRs were identified in association with all three outcomes. Genes implicated by these analyses included PBX1, ACAT2, LTBP3 and DDR1 which have been linked with dental tissue development in genetic studies. CONCLUSION This exploratory study identified differential methylation in several genes at birth associated with dental caries and HSPM at six years. Further research may provide valuable insights into aetiology of dental disease and/or reveal novel molecular-based approaches for early risk stratification. CLINICAL SIGNIFICANCE Epigenetic differences at birth are likely to be associated with dental health at six years and may be valuable biomarkers of early influences on dental health.
Collapse
Affiliation(s)
- Silva Mj
- Inflammatory Origins, Murdoch Children's Research Institute, Melbourne, Australia; Melbourne Dental School, University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Mohandas N
- Epigenetics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Craig Jm
- Epigenetics, Murdoch Children's Research Institute, Melbourne, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Manton Dj
- Melbourne Dental School, University of Melbourne, Melbourne, Australia; Centrum voor Tandheelkunde en Mondzorgkunde, UMCG, University of Groningen, Groningen, The Netherlands
| | - Saffery R
- Epigenetics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Southey Mc
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Burgner Dp
- Inflammatory Origins, Murdoch Children's Research Institute, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Paediatrics, Monash University, Clayton, Australia
| | - Lucas J
- Melbourne Dental School, University of Melbourne, Melbourne, Australia
| | - Kilpatrick Nm
- Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Facial Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Hopper Jl
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Scurrah Kj
- Facial Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Li S
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, United Kingdom
| |
Collapse
|
6
|
Su CT, Urban Z. LTBP4 in Health and Disease. Genes (Basel) 2021; 12:genes12060795. [PMID: 34071145 PMCID: PMC8224675 DOI: 10.3390/genes12060795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Latent transforming growth factor β (TGFβ)-binding protein (LTBP) 4, a member of the LTBP family, shows structural homology with fibrillins. Both these protein types are characterized by calcium-binding epidermal growth factor-like repeats interspersed with 8-cysteine domains. Based on its domain composition and distribution, LTBP4 is thought to adopt an extended structure, facilitating the linear deposition of tropoelastin onto microfibrils. In humans, mutations in LTBP4 result in autosomal recessive cutis laxa type 1C, characterized by redundant skin, pulmonary emphysema, and valvular heart disease. LTBP4 is an essential regulator of TGFβ signaling and is related to development, immunity, injury repair, and diseases, playing a central role in regulating inflammation, fibrosis, and cancer progression. In this review, we focus on medical disorders or diseases that may be manipulated by LTBP4 in order to enhance the understanding of this protein.
Collapse
Affiliation(s)
- Chi-Ting Su
- Department of Internal Medicine, Renal Division, National Taiwan University Hospital Yunlin Branch, Douliu 640, Taiwan;
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei 106, Taiwan
| | - Zsolt Urban
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: ; Tel.: +1-412-648-8269
| |
Collapse
|
7
|
Rohde S, Zafar MA, Ziganshin BA, Elefteriades JA. Thoracic aortic aneurysm gene dictionary. Asian Cardiovasc Thorac Ann 2020; 29:682-696. [PMID: 32689806 DOI: 10.1177/0218492320943800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm is typically clinically silent, with a natural history of progressive enlargement until a potentially lethal complication such as rupture or dissection occurs. Underlying genetic predisposition strongly influences the risk of thoracic aortic aneurysm and dissection. Familial cases are more virulent, have a higher rate of aneurysm growth, and occur earlier in life. To date, over 30 genes have been associated with syndromic and non-syndromic thoracic aortic aneurysm and dissection. The causative genes and their specific variants help to predict the disease phenotype, including age at presentation, risk of dissection at small aortic sizes, and risk of other cardiovascular and systemic manifestations. This genetic "dictionary" is already a clinical reality, allowing us to personalize care based on specific causative mutations for a substantial proportion of these patients. Widespread genetic sequencing of thoracic aortic aneurysm and dissection patients has been and continues to be crucial to the rapid expansion of this dictionary and ultimately, the delivery of truly personalized care to every patient.
Collapse
Affiliation(s)
- Stefanie Rohde
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Mohammad A Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA.,Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, Kazan, Russia
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Lodyga M, Hinz B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol 2019; 101:123-139. [PMID: 31879265 DOI: 10.1016/j.semcdb.2019.12.010] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
'Jack of all trades, master of everything' is a fair label for transforming growth factor β1 (TGF-β) - a cytokine that controls our life at many levels. In the adult organism, TGF-β1 is critical for the development and maturation of immune cells, maintains immune tolerance and homeostasis, and regulates various aspects of immune responses. Following acute tissue damages, TGF-β1 becomes a master regulator of the healing process with impacts on about every cell type involved. Divergence from the tight control of TGF-β1 actions, for instance caused by chronic injury, severe trauma, or infection can tip the balance from regulated physiological to excessive pathological repair. This condition of fibrosis is characterized by accumulation and stiffening of collagenous scar tissue which impairs organ functions to the point of failure. Fibrosis and dysregulated immune responses are also a feature of cancer, in which tumor cells escape immune control partly by manipulating TGF-β1 regulation and where immune cells are excluded from the tumor by fibrotic matrix created during the stroma 'healing' response. Despite the obvious potential of TGF-β-signalling therapies, globally targeting TGF-β1 receptor, downstream pathways, or the active growth factor have proven to be extremely difficult if not impossible in systemic treatment regimes. However, TGF-β1 binding to cell receptors requires prior activation from latent complexes that are extracellularly presented on the surface of immune cells or within the extracellular matrix. These different locations have led to some divergence in the field which is often either seen from the perspective of an immunologists or a fibrosis/matrix researcher. Despite these human boundaries, there is considerable overlap between immune and tissue repair cells with respect to latent TGF-β1 presentation and activation. Moreover, the mechanisms and proteins employed by different cells and spatiotemporal control of latent TGF-β1 activation provide specificity that is amenable to drug development. This review aims at synthesizing the knowledge on TGF-β1 extracellular activation in the immune system and in fibrosis to further stimulate cross talk between the two research communities in solving the TGF-β conundrum.
Collapse
Affiliation(s)
- Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada.
| |
Collapse
|
9
|
Faggion Vinholo T, Brownstein AJ, Ziganshin BA, Zafar MA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA. Genes Associated with Thoracic Aortic Aneurysm and Dissection: 2019 Update and Clinical Implications. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2019; 7:99-107. [PMID: 31842235 PMCID: PMC6914358 DOI: 10.1055/s-0039-3400233] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm is a typically silent disease characterized by a lethal natural history. Since the discovery of the familial nature of thoracic aortic aneurysm and dissection (TAAD) almost 2 decades ago, our understanding of the genetics of this disorder has undergone a transformative amplification. To date, at least 37 TAAD-causing genes have been identified and an estimated 30% of the patients with familial nonsyndromic TAAD harbor a pathogenic mutation in one of these genes. In this review, we present our yearly update summarizing the genes associated with TAAD and the ensuing clinical implications for surgical intervention. Molecular genetics will continue to bolster this burgeoning catalog of culprit genes, enabling the provision of personalized aortic care.
Collapse
Affiliation(s)
- Thais Faggion Vinholo
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Adam J Brownstein
- Department of Medicine, Johns Hopkins Hospital and Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut.,Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, Kazan, Russia
| | - Mohammad A Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, and Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Simon C Body
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
10
|
Camerota L, Ritelli M, Wischmeijer A, Majore S, Cinquina V, Fortugno P, Monetta R, Gigante L, Sangiuolo FC, Novelli G, Colombi M, Brancati F. Genotypic Categorization of Loeys-Dietz Syndrome Based on 24 Novel Families and Literature Data. Genes (Basel) 2019; 10:genes10100764. [PMID: 31569402 PMCID: PMC6826414 DOI: 10.3390/genes10100764] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022] Open
Abstract
Loeys-Dietz syndrome (LDS) is a connective tissue disorder first described in 2005 featuring aortic/arterial aneurysms, dissections, and tortuosity associated with craniofacial, osteoarticular, musculoskeletal, and cutaneous manifestations. Heterozygous mutations in 6 genes (TGFBR1/2, TGFB2/3, SMAD2/3), encoding components of the TGF-β pathway, cause LDS. Such genetic heterogeneity mirrors broad phenotypic variability with significant differences, especially in terms of the age of onset, penetrance, and severity of life-threatening vascular manifestations and multiorgan involvement, indicating the need to obtain genotype-to-phenotype correlations for personalized management and counseling. Herein, we report on a cohort of 34 LDS patients from 24 families all receiving a molecular diagnosis. Fifteen variants were novel, affecting the TGFBR1 (6), TGFBR2 (6), SMAD3 (2), and TGFB2 (1) genes. Clinical features were scored for each distinct gene and matched with literature data to strengthen genotype-phenotype correlations such as more severe vascular manifestations in TGFBR1/2-related LDS. Additional features included spontaneous pneumothorax in SMAD3-related LDS and cervical spine instability in TGFB2-related LDS. Our study broadens the clinical and molecular spectrum of LDS and indicates that a phenotypic continuum emerges as more patients are described, although genotype-phenotype correlations may still contribute to clinical management.
Collapse
Affiliation(s)
- Letizia Camerota
- Human Genetics Institute, Department of Life, Health, and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Anita Wischmeijer
- Clinical Genetics Unit, Department of Pediatrics, Regional Hospital of Bolzano, 39100 Bolzano, Italy.
| | - Silvia Majore
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy.
- San Camillo-Forlanini Hospital, 00152 Rome, Italy.
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Paola Fortugno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy.
| | - Rosanna Monetta
- Human Genetics Institute, Department of Life, Health, and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy.
| | - Laura Gigante
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy.
- Medical Genetics Unit, Policlinico Tor Vergata University Hospital, 00133 Rome, Italy.
| | - Federica Carla Sangiuolo
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy.
- Medical Genetics Unit, Policlinico Tor Vergata University Hospital, 00133 Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
- Medical Genetics Unit, Policlinico Tor Vergata University Hospital, 00133 Rome, Italy
- IRCCS Neuromed Institute, 86077 Pozzilli, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Francesco Brancati
- Human Genetics Institute, Department of Life, Health, and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy.
| |
Collapse
|
11
|
Fibrillin microfibrils and elastic fibre proteins: Functional interactions and extracellular regulation of growth factors. Semin Cell Dev Biol 2018; 89:109-117. [PMID: 30016650 PMCID: PMC6461133 DOI: 10.1016/j.semcdb.2018.07.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023]
Abstract
Fibrillin microfibrils are extensible polymers that endow connective tissues with long-range elasticity and have widespread distributions in both elastic and non-elastic tissues. They act as a template for elastin deposition during elastic fibre formation and are essential for maintaining the integrity of tissues such as blood vessels, lung, skin and ocular ligaments. A reduction in fibrillin is seen in tissues in vascular ageing, chronic obstructive pulmonary disease, skin ageing and UV induced skin damage, and age-related vision deterioration. Most mutations in fibrillin cause Marfan syndrome, a genetic disease characterised by overgrowth of the long bones and other skeletal abnormalities with cardiovascular and eye defects. However, mutations in fibrillin and fibrillin-binding proteins can also cause short-stature pathologies. All of these diseases have been linked to dysregulated growth factor signalling which forms a major functional role for fibrillin.
Collapse
|
12
|
Morkmued S, Hemmerle J, Mathieu E, Laugel-Haushalter V, Dabovic B, Rifkin DB, Dollé P, Niederreither K, Bloch-Zupan A. Enamel and dental anomalies in latent-transforming growth factor beta-binding protein 3 mutant mice. Eur J Oral Sci 2018; 125:8-17. [PMID: 28084688 PMCID: PMC5260799 DOI: 10.1111/eos.12328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 01/31/2023]
Abstract
Latent‐transforming growth factor beta‐binding protein 3 (LTBP‐3) is important for craniofacial morphogenesis and hard tissue mineralization, as it is essential for activation of transforming growth factor‐β (TGF‐β). To investigate the role of LTBP‐3 in tooth formation we performed micro‐computed tomography (micro‐CT), histology, and scanning electron microscopy analyses of adult Ltbp3‐/‐ mice. The Ltbp3‐/‐ mutants presented with unique craniofacial malformations and reductions in enamel formation that began at the matrix formation stage. Organization of maturation‐stage ameloblasts was severely disrupted. The lateral side of the incisor was affected most. Reduced enamel mineralization, modification of the enamel prism pattern, and enamel nodules were observed throughout the incisors, as revealed by scanning electron microscopy. Molar roots had internal irregular bulbous‐like formations. The cementum thickness was reduced, and microscopic dentinal tubules showed minor nanostructural changes. Thus, LTBP‐3 is required for ameloblast differentiation and for the formation of decussating enamel prisms, to prevent enamel nodule formation, and for proper root morphogenesis. Also, and consistent with the role of TGF‐β signaling during mineralization, almost all craniofacial bone components were affected in Ltbp3‐/‐ mice, especially those involving the upper jaw and snout. This mouse model demonstrates phenotypic overlap with Verloes Bourguignon syndrome, also caused by mutation of LTBP3, which is hallmarked by craniofacial anomalies and amelogenesis imperfecta phenotypes.
Collapse
Affiliation(s)
- Supawich Morkmued
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,CNRS UMR_7104, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre Européen de Recherche en Biologie et en Médecine (CERBM), Université de Strasbourg, Illkirch, France.,Faculty of Dentistry, Pediatric Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Joseph Hemmerle
- Biomaterials and Bioengineering, Inserm UMR1121 Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Eric Mathieu
- Biomaterials and Bioengineering, Inserm UMR1121 Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Virginie Laugel-Haushalter
- CNRS UMR_7104, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre Européen de Recherche en Biologie et en Médecine (CERBM), Université de Strasbourg, Illkirch, France
| | - Branka Dabovic
- Department of Cell Biology, New York University Medical Center, New York, NY, USA
| | - Daniel B Rifkin
- Department of Cell Biology, New York University Medical Center, New York, NY, USA
| | - Pascal Dollé
- CNRS UMR_7104, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre Européen de Recherche en Biologie et en Médecine (CERBM), Université de Strasbourg, Illkirch, France
| | - Karen Niederreither
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,CNRS UMR_7104, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre Européen de Recherche en Biologie et en Médecine (CERBM), Université de Strasbourg, Illkirch, France
| | - Agnès Bloch-Zupan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,CNRS UMR_7104, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre Européen de Recherche en Biologie et en Médecine (CERBM), Université de Strasbourg, Illkirch, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Manifestations Odontologiques des Maladies Rares, O Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Guo DC, Regalado ES, Pinard A, Chen J, Lee K, Rigelsky C, Zilberberg L, Hostetler EM, Aldred M, Wallace SE, Prakash SK, Leal SM, Bamshad MJ, Nickerson DA, Natowicz M, Rifkin DB, Milewicz DM, Milewicz DM. LTBP3 Pathogenic Variants Predispose Individuals to Thoracic Aortic Aneurysms and Dissections. Am J Hum Genet 2018; 102:706-712. [PMID: 29625025 DOI: 10.1016/j.ajhg.2018.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/20/2018] [Indexed: 01/30/2023] Open
Abstract
The major diseases affecting the thoracic aorta are aneurysms and acute dissections, and pathogenic variants in 11 genes are confirmed to lead to heritable thoracic aortic disease. However, many families in which multiple members have thoracic aortic disease do not have alterations in the known aortopathy genes. Genes highly expressed in the aorta were assessed for rare variants in exome sequencing data from such families, and compound rare heterozygous variants (p.Pro45Argfs∗25 and p.Glu750∗) in LTBP3 were identified in affected members of one family. A homozygous variant (p.Asn678_Gly681delinsThrCys) that introduces an additional cysteine into an epidermal growth factor (EGF)-like domain in the corresponding protein, latent TGF-β binding protein (LTBP-3), was identified in a second family. Individuals with compound heterozygous or homozygous variants in these families have aneurysms and dissections of the thoracic aorta, as well as aneurysms of the abdominal aorta and other arteries, along with dental abnormalities and short stature. Heterozygous carriers of the p.Asn678_Gly681delinsThrCys variant have later onset of thoracic aortic disease, as well as dental abnormalities. In these families, LTBP3 variants segregated with thoracic aortic disease with a combined LOD score of 3.9. Additionally, heterozygous rare LTBP3 variants were found in individuals with early onset of acute aortic dissections, and some of these variants disrupted LTBP-3 levels or EGF-like domains. When compared to wild-type mice, Ltbp3-/- mice have enlarged aortic roots and ascending aortas. In summary, homozygous LTBP3 pathogenic variants predispose individuals to thoracic aortic aneurysms and dissections, along with the previously described skeletal and dental abnormalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
14
|
LTBPs in biology and medicine: LTBP diseases. Matrix Biol 2017; 71-72:90-99. [PMID: 29217273 DOI: 10.1016/j.matbio.2017.11.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
The latent transforming growth factor (TGF) β binding proteins (LTBP) are crucial mediators of TGFβ function, as they control growth factor secretion, matrix deposition, presentation and activation. Deficiencies in specific LTBP isoforms yield discrete phenotypes representing defects in bone, lung and cardiovascular development mediated by loss of TGFβ signaling. Additional phenotypes represent loss of unique TGFβ-independent features of LTBP effects on elastogenesis and microfibril assembly. Thus, the LTBPs act as sensors for the regulation of both growth factor activity and matrix function.
Collapse
|
15
|
Abstract
The number of exotic companion pet rodents seen in veterinary practices is growing very rapidly. According to the American Veterinary Medical Association's surveys, more than 2,093,000 pet rodents were kept in US households in 2007 and in 2012 it was more than 2,349,000 animals. This article summarizes the most important evidence-based knowledge in exotic pet rodents (diagnostics of the hyperadrenocorticism in guinea pigs, pituitary tumors in rats, urolithiasis in guinea pigs, use of itopride as prokinetics, use of deslorelin acetate in rodents, cause of dental disease, and prevention of mammary gland tumors in rats).
Collapse
Affiliation(s)
- Vladimir Jekl
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tr. 1946/1, Brno 61242, Czech Republic.
| | - Karel Hauptman
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tr. 1946/1, Brno 61242, Czech Republic
| | - Zdenek Knotek
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tr. 1946/1, Brno 61242, Czech Republic
| |
Collapse
|