1
|
Zhang J, Argueta D, Tong X, Vinters HV, Mathern GW, Cepeda C. Iconography of abnormal non-neuronal cells in pediatric focal cortical dysplasia type IIb and tuberous sclerosis complex. Front Cell Neurosci 2025; 18:1486315. [PMID: 39835291 PMCID: PMC11743721 DOI: 10.3389/fncel.2024.1486315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs. Hence, their role in epileptogenesis remained obscure. In this review, we provide a detailed characterization of abnormal non-neuronal cells including BC/GC, intermediate cells, and dysmorphic/reactive astrocytes found in FCDIIb and TSC cases, with special emphasis on electrophysiological and morphological assessments. Regardless of pathology, the electrophysiological properties of abnormal cells appear more glial-like, while others appear more neuronal-like. Their morphology also differs in terms of somatic size, shape, and dendritic elaboration. A common feature of these types of non-neuronal cells is their inability to generate action potentials. Thus, despite their distinct properties and etiologies, they share a common functional feature. We hypothesize that, although the exact role of abnormal non-neuronal cells in FCDIIb and TSC remains mysterious, it can be suggested that cells displaying more glial-like properties function in a similar way as astrocytes do, i.e., to buffer K+ ions and neurotransmitters, while those with more neuronal properties, may represent a metabolic burden due to high energy demands but inability to receive or transmit electric signals. In addition, due to the heterogeneity of these cells, a new classification scheme based on morphological, electrophysiological, and gene/protein expression in FCDIIb and TSC cases seems warranted.
Collapse
Affiliation(s)
- Joyce Zhang
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Deneen Argueta
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Gary W. Mathern
- Department of Neurosurgery, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Cho E, Kwon J, Lee G, Shin J, Lee H, Lee SH, Chung CK, Yoon J, Ho WK. Net synaptic drive of fast-spiking interneurons is inverted towards inhibition in human FCD I epilepsy. Nat Commun 2024; 15:6683. [PMID: 39107293 PMCID: PMC11303528 DOI: 10.1038/s41467-024-51065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Focal cortical dysplasia type I (FCD I) is the most common cause of pharmaco-resistant epilepsy with the poorest prognosis. To understand the epileptogenic mechanisms of FCD I, we obtained tissue resected from patients with FCD I epilepsy, and from tumor patients as control. Using whole-cell patch clamp in acute human brain slices, we investigated the cellular properties of fast-spiking interneurons (FSINs) and pyramidal neurons (PNs) within the ictal onset zone. In FCD I epilepsy, FSINs exhibited lower firing rates from slower repolarization and action potential broadening, while PNs had increased firing. Importantly, excitatory synaptic drive of FSINs increased progressively with the scale of cortical activation as a general property across species, but this relationship was inverted towards net inhibition in FCD I epilepsy. Further comparison with intracranial electroencephalography (iEEG) from the same patients revealed that the spatial extent of pathological high-frequency oscillations (pHFO) was associated with synaptic events at FSINs.
Collapse
Affiliation(s)
- Eunhye Cho
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Jii Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Gyuwon Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Jiwoo Shin
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Hyunsu Lee
- Department of Physiology, Pusan National University School of Medicine, Busan, Korea
| | - Suk-Ho Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| | - Jaeyoung Yoon
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Won-Kyung Ho
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea.
| |
Collapse
|
3
|
Liu Z, Shen X, Lin K, Wang F, Gao J, Yao Y, Sun J. Balloon cells in malformations of cortical development: friends or foes? ACTA EPILEPTOLOGICA 2024; 6:20. [PMID: 40217486 PMCID: PMC11960319 DOI: 10.1186/s42494-024-00164-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2025] Open
Abstract
Balloon cells (BCs) are specific pathological marker of cortical malformations during brain development, often associated with epilepsy and development delay. Although a large number of studies have investigated the role of BCs in these diseases, the specific function of BCs as either epileptogenic or antiepileptic remains controversial. Therefore, we reviewed literatures on BCs, delved into the molecular mechanisms and signaling pathways, and updated their profile in several aspects. Firstly, BCs are heterogeneous and some of them show progenitor/stem cell characteristics. Secondly, BCs are relatively silent in electrophysiology but not completely isolated from their surroundings. Notably, abnormal mTOR signaling and aberrant immunogenic process have been observed within BCs-containing malformations of cortical development (MCDs). The question whether BCs function as the evildoer or the defender in BCs-containing MCDs is further discussed. Importantly, this review provides perspectives on future investigations of the potential role of BCs in epilepsy.
Collapse
Affiliation(s)
- Zili Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Xuefeng Shen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Kaomin Lin
- Epilepsy Center, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Fengpeng Wang
- Epilepsy Center, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Jin Gao
- Department of Pathology, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Yi Yao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China.
- Epilepsy Center, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China.
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China.
| | - Jianyuan Sun
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China.
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China.
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China.
| |
Collapse
|
4
|
Fila M, Przyslo L, Derwich M, Pawlowska E, Blasiak J. Potential of focal cortical dysplasia in migraine pathogenesis. Cereb Cortex 2024; 34:bhae158. [PMID: 38615241 DOI: 10.1093/cercor/bhae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024] Open
Abstract
Focal cortical dysplasias are abnormalities of the cerebral cortex associated with an elevated risk of neurological disturbances. Cortical spreading depolarization/depression is a correlate of migraine aura/headache and a trigger of migraine pain mechanisms. However, cortical spreading depolarization/depression is associated with cortical structural changes, which can be classified as transient focal cortical dysplasias. Migraine is reported to be associated with changes in various brain structures, including malformations and lesions in the cortex. Such malformations may be related to focal cortical dysplasias, which may play a role in migraine pathogenesis. Results obtained so far suggest that focal cortical dysplasias may belong to the causes and consequences of migraine. Certain focal cortical dysplasias may lower the threshold of cortical excitability and facilitate the action of migraine triggers. Migraine prevalence in epileptic patients is higher than in the general population, and focal cortical dysplasias are an established element of epilepsy pathogenesis. In this narrative/hypothesis review, we present mainly information on cortical structural changes in migraine, but studies on structural alterations in deep white matter and other brain regions are also presented. We develop the hypothesis that focal cortical dysplasias may be causally associated with migraine and link pathogeneses of migraine and epilepsy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Łódzkie, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Łódzkie, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 90-647 Lodz, Łódzkie, Poland
| | - Ezbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 90-647 Lodz, Łódzkie, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plac Generała Dabrowskiego 2, 09-420 Plock, Mazowieckie, Poland
| |
Collapse
|
5
|
Santos MV, Garcia CAB, Hamad APA, Costa UT, Sakamoto AC, Dos Santos AC, Machado HR. Clinical and Surgical Approach for Cerebral Cortical Dysplasia. Adv Tech Stand Neurosurg 2023; 48:327-354. [PMID: 37770690 DOI: 10.1007/978-3-031-36785-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The present article describes pathophysiological and clinical aspects of congenital malformations of the cerebral tissue (cortex and white matter) that cause epilepsy and very frequently require surgical treatment. A particular emphasis is given to focal cortical dysplasias, the most common pathology among these epilepsy-related malformations. Specific radiological and surgical features are also highlighted, so a thorough overview of cortical dysplasias is provided.
Collapse
Affiliation(s)
- Marcelo Volpon Santos
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil.
- Department of Surgery and Anantomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, SP, Brazil.
| | - Camila Araujo Bernardino Garcia
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Paula Andrade Hamad
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Ursula Thome Costa
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Americo Ceiki Sakamoto
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Antonio Carlos Dos Santos
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Helio Rubens Machado
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Huang K, Wang Z, He Z, Li Y, Li S, Shen K, Zhu G, Liu Z, Lv S, Zhang C, Yang H, Yang X, Liu S. Downregulated formyl peptide receptor 2 expression in the epileptogenic foci of patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Immun Inflamm Dis 2022; 10:e706. [PMID: 36301030 PMCID: PMC9597500 DOI: 10.1002/iid3.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC) show persistent neuroinflammation, which promotes epileptogenesis and epilepsy progression, suggesting that endogenous resolution of inflammation is inadequate to relieve neuronal network hyperexcitability. To explore the potential roles of formyl peptide receptor 2 (FPR2), which is a key regulator of inflammation resolution, in epilepsy caused by FCDIIb and TSC, we examined the expression and cellular distribution of FPR2. METHOD The expression of FPR2 and nuclear factor-κB (NF-κB) signaling pathway was examined by real-time PCR, western blots, and analyzed via one-way analysis of variance. The distribution of FPR2 was detected using immunostaining. The expression of resolvin D1 (RvD1, the endogenous ligand of FPR2) was observed via enzyme-linked immunosorbent assay. Pearson's correlation test was used to evaluate the correlation between the expression levels of FPR2 and RvD1 and the clinical variants. RESULTS The expression of FPR2 was significantly lower in FCDIIb (p = .0146) and TSC (p = .0006) cortical lesions than in controls, as was the expression of RvD1 (FCDIIb: p = .00431; TSC: p = .0439). Weak FPR2 immunoreactivity was observed in dysmorphic neurons (DNs), balloon cells (BCs), and giant cells (GCs) in FCDIIb and TSC tissues. Moreover, FPR2 was mainly distributed in dysplastic neurons; it was sparse in microglia and nearly absent in astrocytes. The NF-κB pathway was significantly activated in patients with FCDIIb and TSC, and the protein level of NF-κB was negatively correlated with the protein level of FPR2 (FCDIIb: p = .00395; TSC: p = .0399). In addition, the protein level of FPR2 was negatively correlated with seizure frequency in FCDIIb (p = .0434) and TSC (p = .0351) patients. CONCLUSION In summary, these results showed that the expression and specific distribution of FPR2 may be involved in epilepsy caused by FCDIIb and TSC, indicating that downregulation of FPR2 mediated the dysfunction of neuroinflammation resolution in FCDIIb and TSC.
Collapse
Affiliation(s)
- Kaixuan Huang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zhongke Wang
- Department of NeurosurgeryArmed Police Hospital of ChongqingChongqingChina
| | - Zeng He
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yang Li
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shujing Li
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Kaifeng Shen
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Gang Zhu
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zhonghong Liu
- Department of NeurosurgeryArmed Police Hospital of ChongqingChongqingChina
| | - Shengqing Lv
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chunqing Zhang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Hui Yang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaolin Yang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shiyong Liu
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
7
|
Yang XY, Wang YY, Zhou YP, He J, Mei MJ, Zhang MN, Wang B, Zhou WJ, Luo MH, Wang QH, Li ZY, Xu Y, Lu Q, Zou LP. Postnatal Cytomegalovirus Infection May Increase the Susceptibility of Tuberous Sclerosis Complex to Autism Spectrum Disorders. Microbiol Spectr 2022; 10:e0186421. [PMID: 35467404 PMCID: PMC9241718 DOI: 10.1128/spectrum.01864-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Autism spectrum disorder (ASD), a highly hereditary and heterogeneous neurodevelopmental disorder, is influenced by genetic and environmental factors. Tuberous sclerosis complex (TSC) is a common syndrome associated with ASD. Cytomegalovirus (CMV) infection is an environmental risk factor for ASD. The similarities in pathological and mechanistic pathways of TSC and CMV intrigued us to investigate whether CMV and TSC interacted in ASD's occurrence. We detected CMV IgG seroprevalence of 308 TSC patients from our prospective cohort (September 2011 to March 2021) and 93 healthy children by magnetic particle indirect chemiluminescence immunoassay. A total of 206 TSC patients enrolled were divided into ASD and non-ASD groups, and the relationship between ASD and CMV seroprevalence was analyzed. Nested PCR and Western blot were used to detect CMV DNAs and proteins in cortical malformations of seven TSC patients with and without ASD. No difference was found in CMV seroprevalence between TSC patients and healthy children (74.0% versus 72.0%, P = 0.704). Univariate analysis showed the seroprevalence in TSC patients with ASD was higher than that in TSC patients without ASD (89.2% versus 75.1%, P = 0.063), and multifactorial analysis showed that CMV seroprevalence was a risk factor for ASD in TSC patients (OR = 3.976, 95% CI = 1.093 to 14.454). Moreover, CMV was more likely to be detected in the cortical malformations in TSC patients with ASD but not in those without ASD. The findings demonstrated that CMV may increase the susceptibility of TSC to ASD. IMPORTANCE CMV is an environmental risk factor for ASD, but its role in syndromic autism with known genetic etiology has been rarely studied. The pathogenesis of ASD is related to the interaction between environmental and genetic factors. This study demonstrated that CMV can contribute to the occurrence of ASD related to TSC, a common genetic syndrome associated with ASD. Our findings provided support for the theory of gene-environment interaction (G × E) in pathogenesis of ASD and a new perspective for the prevention and therapy for TSC related ASD.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Medical School of Chinese PLA, Beijing, China
- Faculty of Pediatrics, Chinese PLA General Hospital, Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang-Yang Wang
- Faculty of Pediatrics, Chinese PLA General Hospital, Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yue-Peng Zhou
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jing He
- Department of Neurosurgery, Yuquan Hospital of Tsinghua University, Beijing, China
| | - Meng-Jie Mei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Meng-Na Zhang
- Medical School of Chinese PLA, Beijing, China
- Faculty of Pediatrics, Chinese PLA General Hospital, Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bin Wang
- Department of the Outpatients, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen-Jing Zhou
- Department of Neurosurgery, Yuquan Hospital of Tsinghua University, Beijing, China
| | - Min-Hua Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiu-Hong Wang
- Medical School of Chinese PLA, Beijing, China
- Faculty of Pediatrics, Chinese PLA General Hospital, Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhong-Yuan Li
- Faculty of Pediatrics, Chinese PLA General Hospital, Department of Pediatrics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Xu
- Medical School of Chinese PLA, Beijing, China
- Faculty of Pediatrics, Chinese PLA General Hospital, Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Lu
- Medical School of Chinese PLA, Beijing, China
- Faculty of Pediatrics, Chinese PLA General Hospital, Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li-Ping Zou
- Medical School of Chinese PLA, Beijing, China
- Faculty of Pediatrics, Chinese PLA General Hospital, Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Braun CM, Elie-Fortier J. Epilepsy and autism: How does age at seizure onset factor in? JOURNAL OF EPILEPTOLOGY 2021. [DOI: 10.21307/jepil-2021-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Breuss MW, Yang X, Gleeson JG. Sperm mosaicism: implications for genomic diversity and disease. Trends Genet 2021; 37:890-902. [PMID: 34158173 PMCID: PMC9484299 DOI: 10.1016/j.tig.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
While sperm mosaicism has few consequences for men, the offspring and future generations are unwitting recipients of gonadal cell mutations, often yielding severe disease. Recent studies, fueled by emergent technologies, show that sperm mosaicism is a common source of de novo mutations (DNMs) that underlie severe pediatric disease as well as human genetic diversity. Sperm mosaicism can be divided into three types: Type I arises during sperm meiosis and is non-age dependent; Type II arises in spermatogonia and increases as men age; and Type III arises during paternal embryogenesis, spreads throughout the body, and contributes stably to sperm throughout life. Where Types I and II confer little risk of recurrence, Type III may confer identifiable risk to future offspring. These mutations are likely to be the single largest contributor to human genetic diversity. New sequencing approaches may leverage this framework to evaluate and reduce disease risk for future generations.
Collapse
Affiliation(s)
- Martin W Breuss
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiaoxu Yang
- Rady Children's Institute for Genomic Medicine, Department of Neurosciences, University of California, San Diego, CA, USA
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, Department of Neurosciences, University of California, San Diego, CA, USA.
| |
Collapse
|
10
|
PsychENCODE and beyond: transcriptomics and epigenomics of brain development and organoids. Neuropsychopharmacology 2021; 46:70-85. [PMID: 32659782 PMCID: PMC7689467 DOI: 10.1038/s41386-020-0763-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Crucial decisions involving cell fate and connectivity that shape the distinctive development of the human brain occur in the embryonic and fetal stages-stages that are difficult to access and investigate in humans. The last decade has seen an impressive increase in resources-from atlases and databases to biological models-that is progressively lifting the curtain on this critical period. In this review, we describe the current state of genomic, transcriptomic, and epigenomic datasets charting the development of normal human brain with a particular focus on recent single-cell technologies. We discuss the emergence of brain organoids generated from pluripotent stem cells as a model to compensate for the limited availability of fetal tissue. Indeed, comparisons of neural lineages, transcriptional dynamics, and noncoding element activity between fetal brain and organoids have helped identify gene regulatory networks functioning at early stages of brain development. Altogether, we argue that large multi-omics investigations have pushed brain development into the "big data" era, and that current and future transversal approaches needed to leverage both fetal brain and organoid resources promise to answer major questions of brain biology and psychiatry.
Collapse
|
11
|
Increased expression of Fragile X mental retardation protein in malformative lesions of patients with focal cortical dysplasia. Neuroreport 2020; 31:1036-1041. [PMID: 32833881 DOI: 10.1097/wnr.0000000000001517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) accounts for nearly half of all cases of medically refractory epilepsy in the pediatric and adult patient populations. This neurological disorder stems from localized malformations in cortical brain tissue due to impaired neuronal proliferation, differentiation, and migration patterns. Recent studies in animal models have highlighted the potential role of the Fragile X mental retardation protein (FMRP) levels in FCD. The purpose of this study was to investigate the status of FMRP activation in cortical brain tissues surgically resected from patients with FCD. In parallel, this study also investigated protein levels within the PI3K/AKT/mTOR and canonical Wnt signaling pathways. METHODS Pathologic tissue from malformative lesions of FCD patients with medically refractory epilepsy was compared to relatively normal control non-epileptic tissue from patients with intracranial neoplasms. A series of western blotting assays were performed to assess key proteins in the PI3K/AKT/mTOR, canonical Wnt signaling pathways, and FMRP. RESULTS There was suppression of S235/236-phosphorylated S6, GSK3α, and GSK3β protein levels in samples derived from FCD patients, compared to non-epileptic controls. FCD samples also had significantly greater levels of total and S499-phosphorylated FMRP. CONCLUSION These findings support our hypothesis that malformative lesions associated with FCD are characterized by high levels of FMRP activation along with dysregulation of both PI3K/AKT/mTOR and canonical Wnt signaling. These novel clinical findings extend previous work in animal models, further suggesting a potential unforeseen role of GSK3α and GSK3β in the pathophysiology of FCD and refractory epilepsy.
Collapse
|
12
|
Han P, Welsh CT, Smith MT, Schmidt RE, Carroll SL. Complex Patterns of GABAergic Neuronal Deficiency and Type 2 Potassium-Chloride Cotransporter Immaturity in Human Focal Cortical Dysplasia. J Neuropathol Exp Neurol 2020; 78:365-372. [PMID: 30856249 DOI: 10.1093/jnen/nlz009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a common histopathologic finding in cortical specimens resected for refractory epilepsy. GABAergic neuronal abnormalities and K-Cl cotransporter type 2 (KCC2) immaturity may be contributing factors for FCD-related epilepsy. We examined surgical specimens from 12 cases diagnosed with FCD, and brain tissues without developmental abnormality obtained from 6 autopsy cases. We found that GABAergic neuronal density was abnormal in FCD with 2 distinct patterns. In 7 of 12 (58%) FCD subjects, the GABAergic neuron density in dysplastic regions and in neighboring nondysplastic regions was equally reduced, hence we call this a "broad pattern." In the remaining cases, GABAergic neuron density was decreased in dysplastic regions but not in the neighboring nondysplastic regions; we designate this "restricted pattern." The different patterns are not associated with pathologic subtypes of FCD. Intracytoplasmic retention of KCC2 is evident in dysmorphic neurons in the majority of FCD type II subjects (5/7) but not in FCD type I. Our study suggests that (1) "broad" GABAergic deficiency may reflect epileptic vulnerability outside the dysplastic area; and (2) abnormal distribution of KCC2 may contribute to seizure generation in patients with FCD type II but not in type I.
Collapse
Affiliation(s)
- Pengcheng Han
- Department of Pathology and Laboratory Medicine.,Department of Pathology and Laboratory Medicine Residency Program, Medical University of South Carolina, Charleston, South Carolina
| | | | | | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
13
|
Jin B, Aung T, Geng Y, Wang S. Epilepsy and Its Interaction With Sleep and Circadian Rhythm. Front Neurol 2020; 11:327. [PMID: 32457690 PMCID: PMC7225332 DOI: 10.3389/fneur.2020.00327] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Growing evidence shows the bidirectional interactions between sleep, circadian rhythm, and epilepsy. Comprehending how these interact with each other may help to advance our understanding of the pathophysiology of epilepsy and develop new treatment strategies to improve seizure control by reducing the medication side effects and the risks associated with seizures. In this review, we present the overview of different temporal patterns of interictal epileptiform discharges and epileptic seizures over a period of 24 consecutive hours. Furthermore, we discuss the underlying mechanism of the core-clock gene in periodic seizure occurrences. Finally, we outline the role of circadian patterns of seizures on seizure forecasting models and its implication for chronotherapy in epilepsy.
Collapse
Affiliation(s)
- Bo Jin
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Thandar Aung
- Barrow Neurological Institute, Epilepsy Center, Phoenix, AZ, United States
| | - Yu Geng
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Chronister WD, Burbulis IE, Wierman MB, Wolpert MJ, Haakenson MF, Smith ACB, Kleinman JE, Hyde TM, Weinberger DR, Bekiranov S, McConnell MJ. Neurons with Complex Karyotypes Are Rare in Aged Human Neocortex. Cell Rep 2020; 26:825-835.e7. [PMID: 30673605 DOI: 10.1016/j.celrep.2018.12.107] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022] Open
Abstract
A subset of human neocortical neurons harbors complex karyotypes wherein megabase-scale copy-number variants (CNVs) alter allelic diversity. Divergent levels of neurons with complex karyotypes (CNV neurons) are reported in different individuals, yet genome-wide and familial studies implicitly assume a single brain genome when assessing the genetic risk architecture of neurological disease. We assembled a brain CNV atlas using a robust computational approach applied to a new dataset (>800 neurons from 5 neurotypical individuals) and to published data from 10 additional neurotypical individuals. The atlas reveals that the frequency of neocortical neurons with complex karyotypes varies widely among individuals, but this variability is not readily accounted for by tissue quality or CNV detection approach. Rather, the age of the individual is anti-correlated with CNV neuron frequency. Fewer CNV neurons are observed in aged individuals than in young individuals.
Collapse
Affiliation(s)
- William D Chronister
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Universidad San Sebastian, Escuela de Medicina, Sede de la Patagonia, Puerto Montt, Chile
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Matthew J Wolpert
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark F Haakenson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Aiden C B Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
15
|
Majolo F, Marinowic DR, Palmini ALF, DaCosta JC, Machado DC. Migration and Synaptic Aspects of Neurons Derived from Human Induced Pluripotent Stem Cells from Patients with Focal Cortical Dysplasia II. Neuroscience 2019; 408:81-90. [DOI: 10.1016/j.neuroscience.2019.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/30/2023]
|
16
|
Rankovic M, Zweckstetter M. Upregulated levels and pathological aggregation of abnormally phosphorylated Tau-protein in children with neurodevelopmental disorders. Neurosci Biobehav Rev 2019; 98:1-9. [DOI: 10.1016/j.neubiorev.2018.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
|
17
|
|
18
|
Establishment of a Regional Interdisciplinary Medical System for Managing Patients with Tuberous Sclerosis Complex (TSC). Sci Rep 2018; 8:16747. [PMID: 30425292 PMCID: PMC6233214 DOI: 10.1038/s41598-018-35168-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 10/31/2018] [Indexed: 01/25/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant inherited disease characterized by lesions that involve multiple organs. Interdisciplinary management at individual facilities needs to be coordinated to treat multiple organ systems. We hypothesized that the number of patients, opportunities for patients to undergo examinations, and opportunities for patients to be treated would increase after establishment of a TSC board (TB) in our hospital. From August 1979 to August 2017, 76 patients were studied. We established the TB in our hospital in 2014. We divided the patients into the pre-TB group and post-TB group. Patients consisted of 33 females and 43 males (mean age, 18.7 years; median age, 15 years). The follow-up period was 2 to 457 months (mean, 51.6 months; median, 24.5 months). Twenty-four patients were in the pre-TB group, and 52 were in the post-TB group. Regular follow-up (p < 0.001), younger age (p = 0.002), opportunities for patients to undergo examinations, opportunities for patients to receive neurological treatment (p < 0.001), and mammalian target of rapamycin (mTOR) inhibitor usage (p = 0.041) were significantly higher in the post-TB group. The radial relationship around the axis of TSC coordinators may be the key to interdisciplinary management of TSC.
Collapse
|
19
|
Golgi-specific DHHC type zinc finger protein is decreased in neurons of intractable epilepsy patients and pentylenetetrazole-kindled rats. Neuroreport 2018; 29:1157-1165. [PMID: 29994811 DOI: 10.1097/wnr.0000000000001088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Golgi-specific DHHC type zinc finger protein (GODZ) is a member of the DHHC protein family, and its enzymatic activity is regulated by fibroblast growth factor or Src kinase-mediated tyrosine phosphorylation. In cultured neurons, GODZ affects the numbers of calcium ions channels, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, N-methy-D-aspartate receptors, and γ-aminobutyric acid A receptors on postsynaptic membrane by palmitoylation, thus modulating synaptic plasticity. As the change in synaptic plasticity plays a role in epilepsy, GODZ may play roles in epilepsy. However, the expression of GODZ has never been investigated in brain tissues in vivo, and its change during epilepsy is still unclear. In this study, the cellular distribution of GODZ in brain tissues of both patients and rats was determined using double-labeled immunofluorescence and the levels of GODZ protein and mRNA among intractable epilepsy patients, pentylenetetrazole (PTZ)-kindled rats, and controls were measured using immunohistochemistry, Western blot, and real-time quantitative polymerase chain reaction. GODZ expression was identified on cytomembranes and in the cytoplasm of neurons in the temporal neocortex of intractable epilepsy patients and in the hippocampus and the adjacent temporal cortex of PTZ-kindled rats, but not in astrocytes. Decreased GODZ protein and mRNA were identified in brain tissues of intractable epilepsy patients and PTZ-kindled rats compared with the controls. In conclusion, GODZ is expressed in neurons, but not astrocytes, and epilepsy may reduce the protein and mRNA levels of GODZ, indicating a possible role of GODZ in the pathogenesis or the pathophysiology of epilepsy.
Collapse
|
20
|
Abstract
Evidence from both preclinical and clinical studies suggest the importance of zinc homeostasis in seizures/epilepsy. Undoubtedly, zinc, via modulation of a variety of targets, is necessary for maintaining the balance between neuronal excitation and inhibition, while an imbalance between excitation and inhibition underlies seizures. However, the relationship between zinc signaling and seizures/epilepsy is complex as both extracellular and intracellular zinc may produce either protective or detrimental effects. This review provides an overview of preclinical/behavioral, functional and molecular studies, as well as clinical data on the involvement of zinc in the pathophysiology and treatment of seizures/epilepsy. Furthermore, the potential of targeting elements associated with zinc signaling or homeostasis and zinc levels as a therapeutic strategy for epilepsy is discussed.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Katarzyna Młyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
21
|
Kielbinski M, Setkowicz Z, Gzielo K, Janeczko K. Profiles of gene expression in the hippocampal formation of rats with experimentally-induced brain dysplasia. Dev Neurobiol 2018; 78:718-735. [DOI: 10.1002/dneu.22595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Michal Kielbinski
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Zuzanna Setkowicz
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Kinga Gzielo
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Krzysztof Janeczko
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| |
Collapse
|
22
|
Avansini SH, Torres FR, Vieira AS, Dogini DB, Rogerio F, Coan AC, Morita ME, Guerreiro MM, Yasuda CL, Secolin R, Carvalho BS, Borges MG, Almeida VS, Araújo PAOR, Queiroz L, Cendes F, Lopes-Cendes I. Dysregulation of NEUROG2 plays a key role in focal cortical dysplasia. Ann Neurol 2018; 83:623-635. [PMID: 29461643 PMCID: PMC5901021 DOI: 10.1002/ana.25187] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Focal cortical dysplasias (FCDs) are an important cause of drug-resistant epilepsy. In this work, we aimed to investigate whether abnormal gene regulation, mediated by microRNA, could be involved in FCD type II. METHODS We used total RNA from the brain tissue of 16 patients with FCD type II and 28 controls. MicroRNA expression was initially assessed by microarray. Quantitative polymerase chain reaction, in situ hybridization, luciferase reporter assays, and deep sequencing for genes in the mTOR pathway were performed to validate and further explore our initial study. RESULTS hsa-let-7f (p = 0.039), hsa-miR-31 (p = 0.0078), and hsa-miR34a (p = 0.021) were downregulated in FCD type II, whereas a transcription factor involved in neuronal and glial fate specification, NEUROG2 (p < 0.05), was upregulated. We also found that the RND2 gene, a NEUROG2-target, is upregulated (p < 0.001). In vitro experiments showed that hsa-miR-34a downregulates NEUROG2 by binding to its 5'-untranslated region. Moreover, we observed strong nuclear expression of NEUROG2 in balloon cells and dysmorphic neurons and found that 28.5% of our patients presented brain somatic mutations in genes of the mTOR pathway. INTERPRETATION Our findings suggest a new molecular mechanism, in which NEUROG2 has a pivotal and central role in the pathogenesis of FCD type II. In this way, we found that the downregulation of hsa-miR-34a leads to upregulation of NEUROG2, and consequently to overexpression of the RND2 gene. These findings indicate that a faulty coupling in neuronal differentiation and migration mechanisms may explain the presence of aberrant cells and complete dyslamination in FCD type II. Ann Neurol 2018;83:623-635.
Collapse
Affiliation(s)
- Simoni H Avansini
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fábio R Torres
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - André S Vieira
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Danyella B Dogini
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fabio Rogerio
- Department of Anatomical Pathology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Ana C Coan
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Marcia E Morita
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Marilisa M Guerreiro
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Rodrigo Secolin
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Benilton S Carvalho
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Murilo G Borges
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Vanessa S Almeida
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Patrícia A O R Araújo
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Luciano Queiroz
- Department of Anatomical Pathology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fernando Cendes
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| |
Collapse
|
23
|
Di Cristo G, Awad PN, Hamidi S, Avoli M. KCC2, epileptiform synchronization, and epileptic disorders. Prog Neurobiol 2018; 162:1-16. [DOI: 10.1016/j.pneurobio.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
|
24
|
Kerr WT, Janio EA, Braesch CT, Le JM, Hori JM, Patel AB, Gallardo NL, Bauirjan J, Chau AM, Hwang ES, Davis EC, Buchard A, Torres-Barba D, D'Ambrosio S, Al Banna M, Cho AY, Engel J, Cohen MS, Stern JM. An objective score to identify psychogenic seizures based on age of onset and history. Epilepsy Behav 2018; 80:75-83. [PMID: 29414562 PMCID: PMC5845850 DOI: 10.1016/j.yebeh.2017.11.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Psychogenic nonepileptic seizure (PNES) is a common diagnosis after evaluation of medication resistant or atypical seizures with video-electroencephalographic monitoring (VEM), but usually follows a long delay after the development of seizures, during which patients are treated for epilepsy. Therefore, more readily available diagnostic tools are needed for earlier identification of patients at risk for PNES. A tool based on patient-reported psychosocial history would be especially beneficial because it could be implemented in the outpatient clinic. METHODS Based on the data from 1375 patients with VEM-confirmed diagnoses, we used logistic regression to compare the frequency of specific patient-reported historical events, demographic information, age of onset, and delay from first seizure until VEM in five mutually exclusive groups of patients: epileptic seizures (ES), PNES, physiologic nonepileptic seizure-like events (PSLE), mixed PNES plus ES, and inconclusive monitoring. To determine the diagnostic utility of this information to differentiate PNES only from ES only, we used multivariate piecewise-linear logistic regression trained using retrospective data from chart review and validated based on data from 246 prospective standardized interviews. RESULTS The prospective area under the curve of our weighted multivariate piecewise-linear by-sex score was 73%, with the threshold that maximized overall retrospective accuracy resulting in a prospective sensitivity of 74% (95% CI: 70-79%) and prospective specificity of 71% (95% CI: 64-82%). The linear model and piecewise linear without an interaction term for sex had very similar performance statistics. In the multivariate piecewise-linear sex-split predictive model, the significant factors positively associated with ES were history of febrile seizures, current employment or active student status, history of traumatic brain injury (TBI), and longer delay from first seizure until VEM. The significant factors associated with PNES were female sex, older age of onset, mild TBI, and significant stressful events with sexual abuse, in particular, increasing the likelihood of PNES. Delays longer than 20years, age of onset after 31years for men, and age of onset after 40years for women had no additional effect on the likelihood of PNES. DISCUSSION Our promising results suggest that an objective score has the potential to serve as an early outpatient screening tool to identify patients with greater likelihood of PNES when considered in combination with other factors. In addition, our analysis suggests that sexual abuse, more than other psychological stressors including physical abuse, is more associated with PNES. There was a trend of increasing frequency of PNES for women during childbearing years and plateauing outside those years that was not observed in men.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States; Department of Internal Medicine, Eisenhower Medical Center, Rancho Mirage, CA, United States.
| | - Emily A Janio
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Chelsea T Braesch
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Justine M Le
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Jessica M Hori
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Akash B Patel
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Norma L Gallardo
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Janar Bauirjan
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Andrea M Chau
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Eric S Hwang
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Emily C Davis
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Albert Buchard
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - David Torres-Barba
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Shannon D'Ambrosio
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Mona Al Banna
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Andrew Y Cho
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Jerome Engel
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States; Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Mark S Cohen
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States; Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Departments of Radiology, Psychology, Biomedical Physics, and Bioengineering, University of California Los Angeles, Los Angeles, CA, United States; California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - John M Stern
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
25
|
mTOR-dependent alterations of Kv1.1 subunit expression in the neuronal subset-specific Pten knockout mouse model of cortical dysplasia with epilepsy. Sci Rep 2018; 8:3568. [PMID: 29476105 PMCID: PMC5824782 DOI: 10.1038/s41598-018-21656-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 02/08/2018] [Indexed: 01/03/2023] Open
Abstract
Cortical dysplasia (CD) is a common cause for intractable epilepsy. Hyperactivation of the mechanistic target of rapamycin (mTOR) pathway has been implicated in CD; however, the mechanisms by which mTOR hyperactivation contribute to the epilepsy phenotype remain elusive. Here, we investigated whether constitutive mTOR hyperactivation in the hippocampus is associated with altered voltage-gated ion channel expression in the neuronal subset-specific Pten knockout (NS-Pten KO) mouse model of CD with epilepsy. We found that the protein levels of Kv1.1, but not Kv1.2, Kv1.4, or Kvβ2, potassium channel subunits were increased, along with altered Kv1.1 distribution, within the hippocampus of NS-Pten KO mice. The aberrant Kv1.1 protein levels were present in young adult (≥postnatal week 6) but not juvenile (≤postnatal week 4) NS-Pten KO mice. No changes in hippocampal Kv1.1 mRNA levels were found between NS-Pten KO and WT mice. Interestingly, mTOR inhibition with rapamycin treatment at early and late stages of the pathology normalized Kv1.1 protein levels in NS-Pten KO mice to WT levels. Together, these studies demonstrate altered Kv1.1 protein expression in association with mTOR hyperactivation in NS-Pten KO mice and suggest a role for mTOR signaling in the modulation of voltage-gated ion channel expression in this model.
Collapse
|
26
|
Wang LK, Chen X, Zhang CQ, Liang C, Wei YJ, Yue J, Liu SY, Yang H. Elevated Expression of TRPC4 in Cortical Lesions of Focal Cortical Dysplasia II and Tuberous Sclerosis Complex. J Mol Neurosci 2017; 62:222-231. [PMID: 28455787 DOI: 10.1007/s12031-017-0923-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
Focal cortical dysplasia type II (FCD II) and tuberous sclerosis complex (TSC) are well-known causes of chronic refractory epilepsy in children. Canonical transient receptor potential channels (TRPCs) are non-selective cation channels that are commonly activated by phospholipase C (PLC) stimulation. Previous studies found that TRPC4 may participate in the process of epileptogenesis. This study aimed to examine the expression and distribution of TRPC4 in FCD II (n = 24) and TSC (n = 11) surgical specimens compared with that in age-matched autopsy control samples (n = 12). We found that the protein levels of TRPC4 and its upstream factor, PLC delta 1 (PLCD1), were elevated in FCD II and TSC samples compared to those of control samples. Immunohistochemistry assays revealed that TRPC4 staining was stronger in malformed cells, such as dysmorphic neurons, balloon cells and giant cells. Moderate-to-strong staining of the upstream factor PLCD1 was also identified in abnormal neurons. Moreover, double immunofluorescence staining revealed that TRPC4 was colocalised with glutamatergic and GABAergic neuron markers. Taken together, our results indicate that overexpression of TRPC4 protein may be involved in the epileptogenesis of FCD II and TSC.
Collapse
Affiliation(s)
- Lu-Kang Wang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Xin Chen
- Department of Neurosurgery, General Hospital of the People's Liberation Army Chengdu Military Region, Chengdu, Sichuan, 610083, China
| | - Chun-Qing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Chao Liang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Yu-Jia Wei
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Jiong Yue
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Shi-Yong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Hui Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
27
|
Six adult patients with septo-optic dysplasia and drug-resistant epilepsy: Clinical findings and course. EPILEPSY & BEHAVIOR CASE REPORTS 2017; 8:73-84. [PMID: 29159066 PMCID: PMC5678750 DOI: 10.1016/j.ebcr.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/26/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
Septo-optic dysplasia (SOD) is a rare disorder associated with optic nerve hypoplasia, pituitary abnormalities and agenesis/dysgenesis of midline brain structures including the septum pellucidum and corpus callosum. Though sometimes associated with drug-resistant epilepsy, this association has not been well studied. We report six SOD patients with associated malformation of cortical development (MCD) and drug-resistant epilepsy who underwent video-EEG telemetry at our centre between 1998 and 2016 for drug-resistant epilepsy. Three then underwent surgery; right temporal neocortical resection, right functional hemispherectomy and placement of a vagus nerve stimulator. Clinical findings and the patients' ultimate courses are discussed.
Collapse
|
28
|
Chi X, Huang C, Li R, Wang W, Wu M, Li J, Zhou D. Inhibition of mTOR Pathway by Rapamycin Decreases P-glycoprotein Expression and Spontaneous Seizures in Pharmacoresistant Epilepsy. J Mol Neurosci 2017; 61:553-562. [PMID: 28229367 DOI: 10.1007/s12031-017-0897-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/08/2017] [Indexed: 02/05/2023]
Abstract
The mammalian target of rapamycin (mTOR) has been demonstrated to mediate multidrug resistance in various tumors by inducing P-glycoprotein (P-gp) overexpression. Here, we investigated the correlation between the mTOR pathway and P-gp expression in pharmacoresistant epilepsy. Temporal cortex specimens were obtained from patients with refractory mesial temporal lobe epilepsy (mTLE) and age-matched controls who underwent surgeries at West China Hospital of Sichuan University between June 2014 and May 2015. We established a rat model of epilepsy kindled by coriaria lactone (CL) and screened pharmacoresistant rats (non-responders) using phenytoin. Non-responders were treated for 4 weeks with vehicle only or with the mTOR pathway inhibitor rapamycin at doses of 1, 3, and 6 mg/kg. Western blotting and immunohistochemistry were used to detect the expression of phospho-S6 (P-S6) and P-gp at different time points (1 h, 8 h, 1 day, 3 days, 1 weeks, 2 weeks, and 4 weeks) after the onset of treatment. Overexpression of P-S6 and P-gp was detected in both refractory mTLE patients and non-responder rats. Rapamycin showed an inhibitory effect on P-S6 and P-gp expression 1 week after treatment in rats. In addition, the expression levels of P-S6 and P-gp in the 6 mg/kg group were significantly lower than those in the 1 mg/kg or the 3 mg/kg group at the same time points (all P < 0.05). Moreover, rapamycin decreased the duration and number of CL-induced seizures, as well as the stage of non-responders (all P < 0.05). The current study indicates that the mTOR signaling pathway plays a critical role in P-gp expression in drug-resistant epilepsy. Inhibition of the mTOR pathway by rapamycin may be a potential therapeutic approach for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Xiaosa Chi
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China
| | - Cheng Huang
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China
| | - Rui Li
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Wang
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China
| | - Mengqian Wu
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China
| | - Jinmei Li
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
29
|
Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly JS, Benelli M, Demichelis F, Poliani PL, Sieger D, Mione M. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech 2017; 10:15-28. [PMID: 27935819 PMCID: PMC5278524 DOI: 10.1242/dmm.026500] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
Somatic mutations activating MAPK and PI3K signalling play a pivotal role in both tumours and brain developmental disorders. We developed a zebrafish model of brain tumours based on somatic expression of oncogenes that activate MAPK and PI3K signalling in neural progenitor cells and found that HRASV12 was the most effective in inducing both heterotopia and invasive tumours. Tumours, but not heterotopias, require persistent activation of phospho (p)-ERK and express a gene signature similar to the mesenchymal glioblastoma subtype, with a strong YAP component. Application of an eight-gene signature to human brain tumours establishes that YAP activation distinguishes between mesenchymal glioblastoma and low grade glioma in a wide The Cancer Genome Atlas (TCGA) sample set including gliomas and glioblastomas (GBMs). This suggests that the activation of YAP might be an important event in brain tumour development, promoting malignant versus benign brain lesions. Indeed, co-expression of dominant-active YAP (YAPS5A) and HRASV12 abolishes the development of heterotopias and leads to the sole development of aggressive tumours. Thus, we have developed a model proving that neurodevelopmental disorders and brain tumours might originate from the same activation of oncogenes through somatic mutations, and established that YAP activation is a hallmark of malignant brain tumours.
Collapse
Affiliation(s)
- Marie Mayrhofer
- Institute for Toxicology and Genetics, Hermann von Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Victor Gourain
- Institute for Toxicology and Genetics, Hermann von Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Markus Reischl
- Institute for Applied Informatics at Karlsruhe Institute of Technology, Hermann von Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Pierre Affaticati
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Ivette 91190, France
| | - Arnim Jenett
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Ivette 91190, France
| | - Jean-Stephane Joly
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Ivette 91190, France
| | - Matteo Benelli
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Francesca Demichelis
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia School of Medicine, Spedali Civili Brescia, Brescia 25123, Italy
| | - Dirk Sieger
- Centre for Neuroregeneration, The University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Marina Mione
- Institute for Toxicology and Genetics, Hermann von Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Trento 38123, Italy
| |
Collapse
|
30
|
Liu JY, Reeves C, Diehl B, Coppola A, Al-Hajri A, Hoskote C, Mughairy SA, Tachrount M, Groves M, Michalak Z, Mills K, McEvoy AW, Miserocchi A, Sisodiya SM, Thom M. Early lipofuscin accumulation in frontal lobe epilepsy. Ann Neurol 2016; 80:882-895. [DOI: 10.1002/ana.24803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Joan Y.W. Liu
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
| | - Cheryl Reeves
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
- Department of Clinical Neurophysiology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Antonietta Coppola
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
| | - Aliya Al-Hajri
- The Lysholm Department of Neuroradiology in National Hospital for Neurology and Neurosurgery; London United Kingdom and Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Chandrashekar Hoskote
- The Lysholm Department of Neuroradiology in National Hospital for Neurology and Neurosurgery; London United Kingdom and Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Salim al Mughairy
- The Lysholm Department of Neuroradiology in National Hospital for Neurology and Neurosurgery; London United Kingdom and Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Mohamed Tachrount
- The Lysholm Department of Neuroradiology in National Hospital for Neurology and Neurosurgery; London United Kingdom and Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Michael Groves
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Zuzanna Michalak
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
| | - Kevin Mills
- Biological Mass Spectrometry Centre, Institute of Child Health; University College London; London United Kingdom
| | - Andrew W. McEvoy
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
- Victor Horsley Department of Neurosurgery; National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Anna Miserocchi
- Victor Horsley Department of Neurosurgery; National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
- Epilepsy Society, Chesham Lane; Chalfont St Peter United Kingdom
| | - Maria Thom
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
| |
Collapse
|
31
|
Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N. The Cellular and Molecular Landscapes of the Developing Human Central Nervous System. Neuron 2016; 89:248-68. [PMID: 26796689 DOI: 10.1016/j.neuron.2015.12.008] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human CNS follows a pattern of development typical of all mammals, but certain neurodevelopmental features are highly derived. Building the human CNS requires the precise orchestration and coordination of myriad molecular and cellular processes across a staggering array of cell types and over a long period of time. Dysregulation of these processes affects the structure and function of the CNS and can lead to neurological or psychiatric disorders. Recent technological advances and increased focus on human neurodevelopment have enabled a more comprehensive characterization of the human CNS and its development in both health and disease. The aim of this review is to highlight recent advancements in our understanding of the molecular and cellular landscapes of the developing human CNS, with focus on the cerebral neocortex, and the insights these findings provide into human neural evolution, function, and dysfunction.
Collapse
Affiliation(s)
- John C Silbereis
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ying Zhu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics and Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Section of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
32
|
Cattani AA, Allene C, Seifert V, Rosenow F, Henshall DC, Freiman TM. Involvement of microRNAs in epileptogenesis. Epilepsia 2016; 57:1015-26. [PMID: 27207608 DOI: 10.1111/epi.13404] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2016] [Indexed: 12/12/2022]
Abstract
Patients who have sustained brain injury or had developmental brain lesions present a non-negligible risk for developing delayed epilepsy. Finding therapeutic strategies to prevent development of epilepsy in at-risk patients represents a crucial medical challenge. Noncoding microRNA molecules (miRNAs) are promising candidates in this area. Indeed, deregulation of diverse brain-specific miRNAs has been observed in animal models of epilepsy as well as in patients with epilepsy, mostly in temporal lobe epilepsy (TLE). Herein we review deregulated miRNAs reported in epilepsy with potential roles in key molecular and cellular processes underlying epileptogenesis, namely neuroinflammation, cell proliferation and differentiation, migration, apoptosis, and synaptic remodeling. We provide an up-to-date listing of miRNAs altered in epileptogenesis and assess recent functional studies that have interrogated their role in epilepsy. Last, we discuss potential applications of these findings for the future development of disease-modifying therapeutic strategies for antiepileptogenesis.
Collapse
Affiliation(s)
| | | | - Volker Seifert
- Department of Neurosurgery, Goethe University, Frankfurt, Germany
| | - Felix Rosenow
- Department of Epileptology, Goethe-University, Frankfurt, Germany
| | - David C Henshall
- Physiology & Medical Physics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Thomas M Freiman
- Department of Neurosurgery, Goethe University, Frankfurt, Germany
| |
Collapse
|
33
|
Hanson E, Danbolt NC, Dulla CG. Astrocyte membrane properties are altered in a rat model of developmental cortical malformation but single-cell astrocytic glutamate uptake is robust. Neurobiol Dis 2016; 89:157-68. [PMID: 26875663 PMCID: PMC4794447 DOI: 10.1016/j.nbd.2016.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 12/31/2022] Open
Abstract
Developmental cortical malformations (DCMs) are linked with severe epilepsy and are caused by both genetic and environmental insults. DCMs include several neurological diseases, such as focal cortical dysplasia, polymicrogyria, schizencephaly, and others. Human studies have implicated astrocyte reactivity and dysfunction in the pathophysiology of DCMs, but their specific role is unknown. As astrocytes powerfully regulate glutamate neurotransmission, and glutamate levels are known to be increased in human epileptic foci, understanding the role of astrocytes in the pathological sequelae of DCMs is extremely important. Additionally, recent studies examining astrocyte glutamate uptake in DCMs have reported conflicting results, adding confusion to the field. In this study we utilized the freeze lesion (FL) model of DCM, which is known to induce reactive astrocytosis and cause significant changes in astrocyte morphology, proliferation, and distribution. Using whole-cell patch clamp recording from astrocytes, we recorded both UV-uncaging and synaptically evoked glutamate transporter currents (TCs), widely accepted assays of functional glutamate transport by astrocytes. With this approach, we set out to test the hypothesis that astrocyte membrane properties and glutamate transport were disrupted in this model of DCM. Though we found that the developmental maturation of astrocyte membrane resistance was disrupted by FL, glutamate uptake by individual astrocytes was robust throughout FL development. Interestingly, using an immunolabeling approach, we observed spatial and developmental differences in excitatory amino acid transporter (EAAT) expression in FL cortex. Spatially specific differences in EAAT2 (GLT-1) and EAAT1 (GLAST) expression suggest that the relative contribution of each EAAT to astrocytic glutamate uptake may be altered in FL cortex. Lastly, we carefully analyzed the amplitudes and onset times of both synaptically- and UV uncaging-evoked TCs. We found that in the FL cortex, synaptically-evoked, but not UV uncaging-evoked TCs, were larger in amplitude. Additionally, we found that the amount of electrical stimulation required to evoke a synaptic TC was significantly reduced in the FL cortex. Both of these findings are consistent with increased excitatory input to the FL cortex, but not with changes in how individual astrocytes remove glutamate. Taken together, our results demonstrate that the maturation of astrocyte membrane resistance, local distribution of glutamate transporters, and glutamatergic input to the cortex are altered in the FL model, but that single-cell astrocytic glutamate uptake is robust.
Collapse
Affiliation(s)
- Elizabeth Hanson
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Neuroscience Program, Tufts Sackler School of Biomedical Sciences, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Niels Christian Danbolt
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Neuroscience Program, Tufts Sackler School of Biomedical Sciences, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
34
|
Abstract
Pediatric epilepsy is a debilitating condition that impacts millions of patients throughout the world. Approximately 20-30% of children with recurrent seizures have drug-resistant epilepsy (DRE). For these patients, surgery offers the possibility of not just seizure freedom but significantly improved neurocognitive and behavioral outcomes. The spectrum of surgical options is vast, ranging from outpatient procedures such as vagus nerve stimulation to radical interventions including hemispherectomy. The thread connecting all of these interventions is a common goal-seizure freedom, an outcome that can be achieved safely and durably in a large proportion of patients. In this review, we discuss many of the most commonly performed surgical interventions and describe the indications, complications, and outcomes specific to each.
Collapse
Affiliation(s)
- Jian Guan
- 1 Division of Pediatric Neurosurgery, Department of Neurosurgery, Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA ; 2 Division of Neurosurgery, University of Vermont, Burlington, Vermont, USA
| | - Michael Karsy
- 1 Division of Pediatric Neurosurgery, Department of Neurosurgery, Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA ; 2 Division of Neurosurgery, University of Vermont, Burlington, Vermont, USA
| | - Katrina Ducis
- 1 Division of Pediatric Neurosurgery, Department of Neurosurgery, Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA ; 2 Division of Neurosurgery, University of Vermont, Burlington, Vermont, USA
| | - Robert J Bollo
- 1 Division of Pediatric Neurosurgery, Department of Neurosurgery, Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA ; 2 Division of Neurosurgery, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
35
|
Du C, Zheng F, Wang X. Exploring novel AEDs from drugs used for treatment of non-epileptic disorders. Expert Rev Neurother 2016; 16:449-61. [PMID: 27010915 DOI: 10.1586/14737175.2016.1158101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epilepsy is a chronic neurological disease. Although many anti-epileptic drugs (AEDs) have been developed for clinical use, they have no effect on 20-30% of patients and do not generally prevent epileptogenesis. Because of the long development cycle for new AEDs and the high cost, increasing efforts are being made to find anti-epileptic effects among drugs that are already listed for the treatment of other diseases and repurpose them as potential anti-epileptic treatments. Here, we review the progress that has been made in this field as a result of animal and clinical trials of drugs such as rapamycin, everolimus, losartan, celecoxib, bumetanide and other non-epileptic drugs. These drugs can prevent the epileptogenesis, reduce the epileptic pathological changes, and even be used to treat intractable epilepsy. Their mechanisms of action are completely different from those of existing AEDs, prompting researchers to change their perspectives in the search for new AEDs.
Collapse
Affiliation(s)
- Chao Du
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Fangshuo Zheng
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Xuenfeng Wang
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| |
Collapse
|
36
|
Xue H, Cai L, Dong S, Li Y. Clinical characteristics and post-surgical outcomes of focal cortical dysplasia subtypes. J Clin Neurosci 2016; 23:68-72. [DOI: 10.1016/j.jocn.2015.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/10/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
|
37
|
Kang HC, Baek ST, Song S, Gleeson JG. Clinical and Genetic Aspects of the Segmental Overgrowth Spectrum Due to Somatic Mutations in PIK3CA. J Pediatr 2015; 167:957-62. [PMID: 26340871 DOI: 10.1016/j.jpeds.2015.07.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/10/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Hoon-Chul Kang
- Laboratory of Pediatric Brain Disease, Howard Hughes Medical Institute, The Rockefeller University, New York, NY; Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Seung Tae Baek
- Laboratory of Pediatric Brain Disease, Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Saera Song
- Laboratory of Pediatric Brain Disease, Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Joseph G Gleeson
- Laboratory of Pediatric Brain Disease, Howard Hughes Medical Institute, The Rockefeller University, New York, NY.
| |
Collapse
|
38
|
Bhatnagar M, Shorvon S. Genetic mutations associated with status epilepticus. Epilepsy Behav 2015; 49:104-110. [PMID: 25982265 DOI: 10.1016/j.yebeh.2015.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 01/28/2023]
Abstract
This paper reports the results of a preliminary search of the literature aimed at identifying the genetic mutations reported to be strongly associated with status epilepticus. Genetic mutations were selected for inclusion if status epilepticus was specifically mentioned as a consequence of the mutation in standard genetic databases or in a case report or review article. Mutations in 122 genes were identified. The genetic mutations identified were found in only rare conditions (sometimes vanishingly rare) and mostly in infants and young children with multiple other handicaps. Most of the genetic mutations can be subdivided into those associated with cortical dysplasias, inborn errors of metabolism, mitochondrial disease, or epileptic encephalopathies and childhood syndromes. There are no identified 'pure status epilepticus genes'. The range of genes underpinning status epilepticus differs in many ways from the range of genes underpinning epilepsy, which suggests that the processes underpinning status epilepticus differ from those underpinning epilepsy. It has been frequently postulated that status epilepticus is the result of a failure of 'seizure termination mechanisms', but the wide variety of genes affecting very diverse biochemical pathways identified in this survey makes any unitary cause unlikely. The genetic influences in status epilepticus are likely to involve a wide range of mechanisms, some related to development, some to cerebral energy production, some to diverse altered biochemical pathways, some to transmitter and membrane function, and some to defects in networks or systems. The fact that many of the identified genes are involved with cerebral development suggests that status epilepticus might often be a system or network phenomenon. To date, there are very few genes identified which are associated with adult-onset status epilepticus (except in those with preexisting neurological damage), and this is disappointing as the cause of many adult-onset status epilepticus cases remains obscure. It has been suggested that idiopathic adult-onset status epilepticus might often have an immunological cause but no gene mutations which relate to immunological mechanisms were identified. Overall, the clinical utility of what is currently known about the genetics of status epilepticus is slight and the findings have had little impact on clinical treatment despite what has been a very large investment in money and time. New genetic technologies may result in the identification of further genes, but if the identified genetic defects confer only minor susceptibility, this is unlikely to influence therapy. It is also important to recognize that genetics has social implications in a way that other areas of science do not. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- M Bhatnagar
- UCL Institute of Neurology, University College London, UK
| | - S Shorvon
- UCL Institute of Neurology, University College London, UK.
| |
Collapse
|
39
|
Nakashima M, Saitsu H, Takei N, Tohyama J, Kato M, Kitaura H, Shiina M, Shirozu H, Masuda H, Watanabe K, Ohba C, Tsurusaki Y, Miyake N, Zheng Y, Sato T, Takebayashi H, Ogata K, Kameyama S, Kakita A, Matsumoto N. Somatic Mutations in the MTOR gene cause focal cortical dysplasia type IIb. Ann Neurol 2015; 78:375-86. [PMID: 26018084 DOI: 10.1002/ana.24444] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) type IIb is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, and balloon cells. It has been suggested that FCDs are caused by somatic mutations in cells in the developing brain. Here, we explore the possible involvement of somatic mutations in FCD type IIb. METHODS We collected a total of 24 blood-brain paired samples with FCD, including 13 individuals with FCD type IIb, 5 with type IIa, and 6 with type I. We performed whole-exome sequencing using paired samples from 9 of the FCD type IIb subjects. Somatic MTOR mutations were identified and further investigated using all 24 paired samples by deep sequencing of the entire gene's coding region. Somatic MTOR mutations were confirmed by droplet digital polymerase chain reaction. The effect of MTOR mutations on mammalian target of rapamycin (mTOR) kinase signaling was evaluated by immunohistochemistry and Western blotting analyses of brain samples and by in vitro transfection experiments. RESULTS We identified four lesion-specific somatic MTOR mutations in 6 of 13 (46%) individuals with FCD type IIb showing mutant allele rates of 1.11% to 9.31%. Functional analyses showed that phosphorylation of ribosomal protein S6 in FCD type IIb brain tissues with MTOR mutations was clearly elevated, compared to control samples. Transfection of any of the four MTOR mutants into HEK293T cells led to elevated phosphorylation of 4EBP, the direct target of mTOR kinase. INTERPRETATION We found low-prevalence somatic mutations in MTOR in FCD type IIb, indicating that activating somatic mutations in MTOR cause FCD type IIb.
Collapse
Affiliation(s)
- Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jun Tohyama
- Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Hiroki Kitaura
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, Epilepsy Center, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Hiroshi Masuda
- Department of Functional Neurosurgery, Epilepsy Center, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Keisuke Watanabe
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Chihiro Ohba
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yingjun Zheng
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Tatsuhiro Sato
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shigeki Kameyama
- Department of Functional Neurosurgery, Epilepsy Center, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
40
|
Abstract
Malformations of cortical development (MCDs) are a common cause of neurodevelopmental delay and epilepsy and are caused by disruptions in the normal development of the cerebral cortex. Several causative genes have been identified in patients with MCD. There is increasing evidence of role of de novo mutations, including those occurring post fertilization, in MCD. These somatic mutations may not be detectable by traditional methods of genetic testing performed on blood DNA. Identification of the genetic cause can help in guiding families in future pregnancies. Research has highlighted how elucidation of key molecular pathways can also allow for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Saumya S Jamuar
- Department of Paediatrics, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore; Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Paediatrics Academic Programme, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA.
| |
Collapse
|
41
|
Lin YX, Lin K, Kang DZ, Liu XX, Wang XF, Zheng SF, Yu LH, Lin ZY. Similar PDK1–AKT–mTOR pathway activation in balloon cells and dysmorphic neurons of type II focal cortical dysplasia with refractory epilepsy. Epilepsy Res 2015; 112:137-49. [DOI: 10.1016/j.eplepsyres.2015.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/25/2015] [Accepted: 02/06/2015] [Indexed: 11/30/2022]
|
42
|
Wong M, Roper SN. Genetic animal models of malformations of cortical development and epilepsy. J Neurosci Methods 2015; 260:73-82. [PMID: 25911067 DOI: 10.1016/j.jneumeth.2015.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022]
Abstract
Malformations of cortical development constitute a variety of pathological brain abnormalities that commonly cause severe, medically-refractory epilepsy, including focal lesions, such as focal cortical dysplasia, heterotopias, and tubers of tuberous sclerosis complex, and diffuse malformations, such as lissencephaly. Although some cortical malformations result from environmental insults during cortical development in utero, genetic factors are increasingly recognized as primary pathogenic factors across the entire spectrum of malformations. Genes implicated in causing different cortical malformations are involved in a variety of physiological functions, but many are focused on regulation of cell proliferation, differentiation, and neuronal migration. Advances in molecular genetic methods have allowed the engineering of increasingly sophisticated animal models of cortical malformations and associated epilepsy. These animal models have identified some common mechanistic themes shared by a number of different cortical malformations, but also revealed the diversity and complexity of cellular and molecular mechanisms that lead to the development of the pathological lesions and resulting epileptogenesis.
Collapse
Affiliation(s)
- Michael Wong
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Steven N Roper
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
43
|
|
44
|
Baulac S, Ishida S, Marsan E, Miquel C, Biraben A, Nguyen DK, Nordli D, Cossette P, Nguyen S, Lambrecq V, Vlaicu M, Daniau M, Bielle F, Andermann E, Andermann F, Leguern E, Chassoux F, Picard F. Familial focal epilepsy with focal cortical dysplasia due toDEPDC5mutations. Ann Neurol 2015; 77:675-83. [DOI: 10.1002/ana.24368] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Stéphanie Baulac
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
| | - Saeko Ishida
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
| | - Elise Marsan
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
| | - Catherine Miquel
- Sainte Anne Hospital Center, Paris Descartes University; Paris France
| | - Arnaud Biraben
- University of Rennes Hospital Center; Rennes France
- National Institute of Health and Medical Research; INSERM U1099, University of Rennes; Rennes France
| | - Dang Khoa Nguyen
- University of Montreal Hospital Center (Notre Dame Hospital); University of Montreal; Montreal Quebec Canada
| | - Doug Nordli
- Epilepsy Division, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University; Chicago IL
| | - Patrick Cossette
- University of Montreal Hospital Center (Notre Dame Hospital); University of Montreal; Montreal Quebec Canada
- Center of Excellence in Neuromics; University of Montreal; Montreal Quebec Canada
| | - Sylvie Nguyen
- Child Neurology Unit, Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS); Angers France
| | - Virginie Lambrecq
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
- Epilepsy Unit, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris; Paris France
| | - Mihaela Vlaicu
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
- Neurosurgery Department; Pitié-Salpêtrière Hospital, Public Hospital Network of Paris; Paris France
| | - Maïlys Daniau
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
| | - Franck Bielle
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
- Neuropathology Department; Pitié-Salpêtrière Hospital, Public Hospital Network of Paris; Paris France
| | - Eva Andermann
- Neurogenetics Unit and Epilepsy Research Group; Montreal Neurological Hospital and Institute; Montreal Quebec Canada
- Departments of Neurology and Neurosurgery and Human Genetics; McGill University; Montreal Quebec Canada
| | - Frederick Andermann
- Seizure Clinic and Epilepsy Research Group; Montreal Neurological Hospital and Institute; Montreal Quebec Canada
- Department of Neurology and Neurosurgery and Department of Pediatrics; McGill University; Montreal Quebec Canada
| | - Eric Leguern
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
- Department of Genetics; Pitié-Salpêtrière Hospital, Public Hospital Network of Paris; Paris France
| | - Francine Chassoux
- Sainte Anne Hospital Center, Paris Descartes University; Paris France
- National Institute of Health and Medical Research; INSERM U1129, Paris Descartes University; Sorbonne Paris Cité Gif-sur-Yvette France
| | - Fabienne Picard
- Department of Neurology; University Hospitals of Geneva and Medical School of Geneva; Geneva Switzerland
| |
Collapse
|
45
|
Doisy ET, Wenzel HJ, Mu Y, Nguyen DV, Schwartzkroin PA. Nodule excitability in an animal model of periventricular nodular heterotopia: c-fos activation in organotypic hippocampal slices. Epilepsia 2015; 56:626-35. [PMID: 25752321 DOI: 10.1111/epi.12945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Aberrations in brain development may lead to dysplastic structures such as periventricular nodules. Although these abnormal collections of neurons are often associated with difficult-to-control seizure activity, there is little consensus regarding the epileptogenicity of the nodules themselves. Because one common treatment option is surgical resection of suspected epileptic nodules, it is important to determine whether these structures in fact give rise, or essentially contribute, to epileptic activities. METHODS To study the excitability of aberrant nodules, we have examined c-fos activation in organotypic hippocampal slice cultures generated from an animal model of periventricular nodular heterotopia created by treating pregnant rats with methylazoxymethanol acetate. Using this preparation, we have also attempted to assess tissue excitability when the nodule is surgically removed from the culture. We then compared c-fos activation in this in vitro preparation to c-fos activation generated in an intact rat treated with kainic acid. RESULTS Quantitative analysis of c-fos activation failed to show enhanced nodule excitability compared to neocortex or CA1 hippocampus. However, when we compared cultures with and without a nodule, presence of a nodule did affect the excitability of CA1 and cortex, at least as reflected in c-fos labeling. Surgical removal of the nodule did not result in a consistent decrease in excitability as reflected in the c-fos biomarker. SIGNIFICANCE Our results from the organotypic culture were generally consistent with our observations on excitability in the intact rat-as seen not only with c-fos but also in previous electrophysiologic studies. At least in this model, the nodule does not appear to be responsible for enhanced excitability (or, presumably, seizure initiation). Excitability is different in tissue that contains a nodule, suggesting altered network function, perhaps reflecting the abnormal developmental pattern that gave rise to the nodule.
Collapse
Affiliation(s)
- Emily T Doisy
- Department of Neurological Surgery, University of California, Davis, Davis, California, U.S.A
| | | | | | | | | |
Collapse
|
46
|
Cooper CJ, McConnell F, Walmsley G, Gonçalves R. Focal cortical dysplasia resulting in seizures in an adult dog. VETERINARY RECORD CASE REPORTS 2015. [DOI: 10.1136/vetreccr-2015-000254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | | | - Gemma Walmsley
- Small Animal Teaching HospitalUniversity of LiverpoolNestonUK
| | - Rita Gonçalves
- Small Animal Teaching HospitalUniversity of LiverpoolNestonUK
| |
Collapse
|
47
|
Abdijadid S, Mathern GW, Levine MS, Cepeda C. Basic mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci Ther 2014; 21:92-103. [PMID: 25404064 DOI: 10.1111/cns.12345] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Cortical dysplasia (CD) is a neurodevelopmental disorder due to aberrant cell proliferation and differentiation. Advances in neuroimaging have proven effective in early identification of the more severe lesions and timely surgical removal to treat epilepsy. However, the exact mechanisms of epileptogenesis are not well understood. This review examines possible mechanisms based on anatomical and electrophysiological studies. CD can be classified as CD type I consisting of architectural abnormalities, CD type II with the presence of dysmorphic cytomegalic neurons and balloon cells, and CD type III which occurs in association with other pathologies. Use of freshly resected brain tissue has allowed a better understanding of basic mechanisms of epileptogenesis and has delineated the role of abnormal cells and synaptic activity. In CD type II, it was demonstrated that balloon cells do not initiate epileptic activity, whereas dysmorphic cytomegalic and immature neurons play an important role in generation and propagation of epileptic discharges. An unexpected finding in pediatric CD was that GABA synaptic activity is not reduced, and in fact, it may facilitate the occurrence of epileptic activity. This could be because neuronal circuits display morphological and functional signs of dysmaturity. In consequence, drugs that increase GABA function may prove ineffective in pediatric CD. In contrast, drugs that counteract depolarizing actions of GABA or drugs that inhibit the mammalian target of rapamycin (mTOR) pathway could be more effective.
Collapse
Affiliation(s)
- Sara Abdijadid
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|